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Abstract— The seminal work on theory of Supervisory control
in Discrete Event Systems was pioneered by Ramadge and
Wonham. Taking inspiration from this work, extensive research
has been done to extend the theory to real-time. The main
problem in the research related to real-time supervisory control
is that theories of RW framework are not directly applicable
because of infiniteness of state space. This paper gives a survey
of the methods of real-time supervisory control with a focus on
their methods to confront the problem of infinite state space.

I. INTRODUCTION

A Discrete event system (DES) is a discrete state, event-
driven system, in which, the state evolution depends entirely
on occurrence of discrete events over time [9], [27]. The event
driven property implies that the state of the system changes at
discrete points in time which correspond to instantaneous oc-
currence of the events. Unlike, a continuous-variable dynamic
system, the state of a DES, if tracked vs. time on a graph will
be a piece wise continuous function. Many systems are in fact
discrete event systems, or can be modeled as discrete event
systems, if only the order among the events is of consequence.

In supervisory control of DES, one seeks to restrict the
behavior of a plant in such a way that the supervised system
(closed loop of the supervisor and plant) meets the required
specifications. These might include “safety” specifications
(e.g. Prohibit the behavior that can lead to a catastrophe) and
“liveness” specifications (e.g. Guarantee the eventuality of a
specified goal). The seminal work on supervisory control in
DES was pioneered by Ramadge and Wonham [27], [28]. In
their framework1, both plant and specification are modeled
as finite state automaton. The set of events are divided into
controllable, similar to user controlled input in the traditional
control theory, and uncontrollable, similar to environmental
disturbances. Depending upon history of executed events,
the control is achieved by disabling the events that leads to
undesirable behavior.

However, in some systems the elapse of time between con-
sequent events can affect the system behavior in a significant
manner. For example, in the Fig. 1 if delay of event e2
by some t seconds causes the state to change from S2 to
S4 and skip S3 then we can conclude that the DES model
is unsuitable for this system. Therefore, one can no longer
ignore the timing of events. The set of possible time values
within any given bound has values that are in real-number
space. That is between any two instants of time value, a

1We will refer to it as RW framework in the rest of the paper.

third value can be always found [13]. This shows that the
set of time, even if bounded and compact i.e. closed interval,
is uncountable, dense and hence has infinite state space.
When introduced in the DES model the total state space
becomes “infinite”. This violates the basic assumption of RW
framework that plant and specification are modeled as “finite”
state automaton.

Fig. 1. A sample execution trace in a discrete event system. In this example,
the states are discrete and the transition between them happens when an event
occurs.

The significance of time is specifically apparent in a class
of systems called real-time discrete event systems. Real-Time
implies that the correctness of system is contingent to the cor-
rectness of logical result, and also on the time at which results
are produced [8]. For example, if a missile has been targeted
at some installation, anti-missile batteries only have a fixed
time window in which they can shoot down the rogue missile.
If this window is missed, catastrophic consequences ensue. In
general, these systems share the following characteristics:

1) Events occur at discrete times. These events may imply
start/end of a job.

2) Events can be enabled or disabled due to physical state
of the process.

3) There are timing constraints governing the ordering
between events.

4) Processes can be non-deterministic in nature.



5) Interaction between sub-processes can be synchronous
or asynchronous.

6) “Hard” time deadlines, if associated with a job, must
be met.

In order to extend the supervisory control to this class of
systems, first one has to model the DES behavior with timing
information, then the infinite state space of the model has to
be translated to a finite state space by using abstraction. Only
then can one apply the extensions of RW theory to design
supervisor for timed discrete event systems.

In the research community, two different approaches have
been used. The first approach, uses a discrete time model to
specify the behavior of plant and specification. An example
of such a model is Timed Transition Model [25], [16]. In
the discrete time model, the set of integers are used to build
a partition on the set of reals [7], [6], [25], [16]. This is
done by a priori fixing the smallest measurable time unit.
This can be understood as the sampling of the continuous
time at the rate fixed by this smallest unit. All the continuous
values that occur after the current sample and before the next
sample are approximated by the next sample. Due to the use of
discrete time the state space of the model remains finite. This
approach has been used to formulate the real-time supervisory
control theory by Brandin and Wonham [6], Daren Cofer and
Vijay Garg [11]. In [15], Peyman Gohari and Wonham have
extended the work of [6].

The other approach is to use a dense real-time model
such as timed automaton [1]. This way of modeling time
is most natural, as it imposes minimal restriction on the
modeling semantics. There is no minimum measurable time
unit. However, the cost of expressiveness has to be paid with
computational difficulty in analysis. This is due to the infinite
domain of time. However, with certain restrictions in place,
it is possible to construct a bisimilar finite transition system
from the infinite space of a timed automaton. This transition
system is called a region automaton. RW theory can then be
applied to develop supervisor for the finite region automaton.
This approach was first proposed by Wong-Toi and Hoffman
in [31]. In [19], Ahmed Khoumsi and Mustapha Nourelfath
proposed a different method for transforming a timed automa-
ton into a minimal and equivalent finite state automaton using
two special types of events, Set and Exp. The transformed
model, having a small state size compared to corresponding
timed automaton, was used to design supervisor using the
usual RW framework. In [22], Ratnesh Kumar et. al. have
used process algebra to explain the interaction between the
supervisor and plant under prioritized synchronization.

One approach that consistently differs than the ones using
the RW theory is the work of Oded Maler et.al[24], [26].
They translate the control problem into a game between a
supervisor (with desired specification) and a plant with the
goal of driving the plant into a set of safe state that will make
it impervious to the environmental disturbances that can lead
to illegitimate behavior.

What follows is a review of both discrete and dense model
of time. With the differences of these two models in mind,
we will present a comparative study of different supervisory

theories related to these two models of time. We will also
present arguments that the region automaton constructed in
the dense time approach can be considered similar to the
timed transition model. The choice in using the either one
is dictated by a trade off between the ease of specification
of plant behavior in the concerned model of choice and the
related computational complexities.

A. Preliminaries

Let Σ be a set of finite alphabets2. Then Σ∗ denotes
the set of all possible finite sequences, including the empty
sequence denoted by ∅, that can be formed using alphabets
of Σ. Let len(s) denote the length of the finite sequence s.
Concatenation of two sequences, s, t ∈ Σ∗, is defined to be a
new finite sequence s∘t ∈ Σ∗. In order to reduce the notations
we will write the concatenated string simply as st. It should
be noted that len(st) = len(s) + len(t). Also, st ≤ s i.e. s
can be extended by the alphabets from some other sequence
(in this case t) to form the sequence st. A prefix of any finite
sequence s ∈ Σ∗ is a set s = {u ∈ Σ∗∣(∃v ∈ Σ∗)(uv = s)}.
Prefix of any language, L ⊆ Σ∗, written as L, is the union
of prefixes of all the sequences that are a member of L. L is
said to be complete and closed if L = L.

Given a DES, G = (Q, q0,Σ, �, Qm), where Q is a finite set
containing all the states of DES, Qm ⊆ Q is the set of marked
states, q0 ∈ Q is the initial state, � is the transition map.
�(qi, �)! denotes that DES can accept the alphabet � ∈ Σ if
it is in the state qi. Language L(G) denotes the finite sequence
of strings in Σ∗ that can be executed by following the
transition map. Inductively, the execution due to a string s�,
where s ∈ Σ∗, and � ∈ Σ is the current alphabet, is written
as �(�(q0, s), �). Therefore, L(G) = {s ∈ Σ∗∣(�(q0, s)!}.
These languages also signify the set of behaviors of a DES.
Language Lm(G), also known as marked language, is the set
of finite sequences that if executed by the DES leads them to
a marked state i.e. Lm(G) = {s ∈ Σ∗∣(�(q0, s)! ∧ �(q0, s) =
q′ =⇒ q′ ∈ Qm}. G is said to be non-blocking if
Lm(G) = L(G) i.e. any finite string that can be accepted
by the DES can in future be completed to form a string in
the marked language.

B. A Quick Review: Supervisory Control Theory in DES

In Ramadge and Wonham’s theory, a supervisor controls
a plant by observing its current execution string and then
disabling certain possible events (one call also call them
alphabets) that might lead to undesirable behavior.

Consider an unsupervised DES G = (Q, q0,Σ, �, Qm) with
corresponding pair of languages= (L(G), Lm(G)). The set
of events (Σ) is partitioned into two set, controllable (Σc)
and uncontrollable events Σu). The supervisor is a map to a
control pattern, V : L → Γ, such that any set  ∈ Γ, where
( = V (s))(s ∈ L(G)) represents the events that should
remain enabled in G, after it has already executed the events
in s. It is assumed that the set of uncontrollable events are
due to environmental disturbances and can never be disabled
i.e. (∀ ∈ Γ)(Σu ⊆ ).

2These alphabets are used to denote possible events in a DES



Problem 1: (Supervisory Control Problem in DES) Given a
specification language K ⊆ Lm(G), design a supervisor DES
V such that the supervised system, denoted (G/V ), satisfies
the following (a) Lm(G/V ) ⊆ K (b) Lm(G/V ) = L(G/V )
i.e. the supervised DES is also non-blocking.

In RW framework the solution to the above problem hinges
upon the notion of controllability of the specification with
respect to the unsupervised DES. This can be summarized in
the following theorem:

Theorem 1 (Notion of Controllability): Given a DES G,
and a specification K ⊆ Lm(G). A maximally permissive
supervisor V exists iff

1) KΣu ∩ L ⊆ K i.e. K is controllable.
2) K ∩ Lm(G) = K i.e. K is Lm(G) closed.
Furthermore, even if the specification K is uncontrollable,

a class of languages that are subset of specification K
exists such that they are controllable and are Lm(G)-closed.
Ramadge and Wonham [27], [28] have shown that this class
of controllable sub-languages forms a lattice under subset
inclusion and is closed under union. This can be expressed
as the following theorem:

Theorem 2 (Set of Supremal Controllable Sublanguages):
Let C = {E ⊆ K∣E is controllable wrt L} be the set of
controllable sublanguages of specification K. Following two
properties are satisfied by this set:

1) (∀c1, c2 ∈ C)(∃c3 ∈ C)(c3 = c1 ∪ c2).
2) A supremum element of the set C, sup(C) always exists

and sup(C) ∈ C.
This implies that by iteration one can always find a fixed

point solution supC(K) ⊆ K that is the supremal control-
lable sublanguage of K. Thus the supremal controllable super-
visor, V = supC(G,K,Σu), will be maximally permissive
while still implementing a subset of the specification. They
also showed that the supervisory control problem has the
complexity O(∣G∣2∣K∣2).

II. MODELS OF TIME

A. Discrete Model: Timed Transition Model

Timed transition model, introduced by Ostroff [25], is
based on the discrete approximation of time. The typical
DES model G = (Q, q0,Σ, �, Qm), is augmented with time
bounds for each event. The time bounds are specified as
triples (�, l�, u�) where, � ∈ Σ, l�, u� ∈ ℤ+ s.t. l� ≤ u� .
The modeling function of time bounds is straightforward: l�
typically represents a delay in firing of the event, and u�
is a hard deadline, imposed by physical constraints on the
system. Such an augmented DES is sometimes also referred
to as Timed Discrete Event System (TDES).

In [6], differentiation is made between events that can be
delayed forever and those that cannot be delayed forever. This
is because for some events there might be no hard deadline i.e.
u� = ∞ while others have a finite upperbound. The former
are called remote events (denoted by the set Σrem) since they
can be delayed forever, while the latter are termed prospective
events (denoted by the set Σspe).

The semantics of execution of a TDES is given as a
Timed Transition Graph(TTG). Corresponding to a given

TDES G = (Q, q0,Σ, �, Qm), a TTG is written as G′ =
(Q′, q′0,Σ

′, �′, Q′m) where,
∙ Σ′ = Σ∪ {tick}. tick is an event that is generated by a

global clock at a fixed sampling quantum. This sampling
quantum decides the resolution of time measurement in
a TDES and thus maps an infinite domain of real-time
into a countable sequence < 0, tick, 2tick, 3tick, ⋅ ⋅ ⋅ >.
Due to sampling, a compact interval of dense time will
map to a finite number of terms in the tick sequence.

∙ Define for each �, T� , the timer interval,

T� =

{
[0,u�] if � ∈ Σspe
[0, l�] if � ∈ Σrem

Then the state space of TTG, Q′ = Q×
∏
{T�∣� ∈ Σ}.

∙ Initial State, q′0 = (q0,
∏
{t�0∣� ∈ Σ}), where,

t�0 =

{
u� if � ∈ Σspe
l� if � ∈ Σrem

∙ Marked states, Q′m ⊆ ×
∏
{T�∣� ∈ Σ}

Thus a state of a TTG is of the form x = {q ∈ Q, {t�∣� ∈
Σ}}. The second component of the state is called the timer
for a given event in state x. The timer values are changed due
to transitions representing passage of times. These are called
tick transition. These transitions can be explained as follows:
Let (a1, a2 ∈ Q′), where a1 = {q1 ∈ Q, {t�∣� ∈ Σ}} and
a2 = {q2 ∈ Q, {t′�∣� ∈ Σ}}. Then �′(tick, a1) = a2 =⇒
q1 = q2 ∧ t′� = max(t� − 1, 0). Thus, after every tick the
timer value is decremented by 1.

A timer associated with a prospective event represents its
current deadline. If enabled in the current state a prospective
event can fire if its current timer value satisfies the following
inequality: 0 ≤ t� ≤ u� − l� . In order to understand this,
recall that the timers for prospective events are initialized from
upper bound.

Example 1: Now, consider an example of a prospective
timed event, (�, 2, 5). This implies that sigma can fire only
after waiting for at least 2 time units and at most 5 time
units. The initial value of timer, t� is 5. After the first tick,
t� = 4. After second tick, t� = 3. Note, that at ntℎ tick after
initialization n = u� − t� . When n ≥ l� , or t� = u� − l� ,
� can fire. Now, if at any point t� = 0 i.e. n = u� , the hard
deadline has arrived and the event should be either fired or a
state transition must take place to a state in which � cannot
be accepted.

A similar explanation can be given for remote events. For
them, the timer value at any instant denotes the current delay
(initialized to l�). The event can fire only when the value of
tsigma is zero.

Further point to note is that not all events are enabled in all
states. Suppose, a transition is made from state q ∈ Q to q′ ∈
Q. Let Σ1 = {� ∈ Σ∣�(�, q)!} and Σ2 = {� ∈ Σ∣�(�, q′)!}.
Now, timer values are inherited after a transition for the events
which are in the set Σ1 ∩ Σ2, except the event due to which
transition took place. For rest of the events in Σ2/Σ1, the
timers are reinitialized to either their upper bound or lower
bound depending upon if they are in remote or prospective.
For all the events that are disabled in q′ the timer is set to 0.



Using the just mentioned transition rules one can compute
the TTG of a TDES by generating the reachability graph
exploring all the possible transition due to tick and eligible
remote and prospective events. Consider an example:

Example 2: Consider the example of an endangered pedes-
trian described in [6]. This example consists of two timed
discrete events systems, a bus and a pedestrian. The
Bus== ({a, g}, {a}, {pass}, {[a, pass, g]}, {g}) can con-
sume an event pass. Its two states are a, g, where a =
approacℎing and g = gone by. The pedestrian, Ped =
({r, c}, {r}, {jump}, {[r, jump, c]}, {c}) can consume the
jump event. Its two states are r = on roadside and c =
on curb. Consider two timing constraints: (pass, 2, 2) and
(jump, 1,∞). Figure 3 shows the composed TDES. The
reachability graph or the TTG for this example is shown in
Fig. 2. Given the small state space, it is easy to check that
this timed transition graph is correct.

Fig. 3. The composed TDES for the bus pedestrian example. The timing
constraints are (pass, 2, 2) and (jump, 1,∞)

The language generated by the TTG is a subset of {Σ ∪
{tick}}∗. The concepts for marked language, non-blocking
follows straight from the DES model. The only additional
constraint will be to enforce the condition that in all traces
the tick transition will occur infinitely often. This translates
to the fact that time shall always diverge. It can be deduced
that the traces of a TTG are interleaving of a number of tick
transitions into the traces accepted by TDES model. Thus if
the trace admitted by TDES is finite, the interleaved trace
with ticks will also be finite.

Composition of two TDES, G1, G2 can be achieved in
the same fashion as the composition of a DES and the
reevaluation bounds for each event common to both TDES
as, (l�, u�) = (max(l1�, l2�),min(u1�, u2�))

B. Dense Model: Timed Automaton

Classically, for systems with continuous timed variables,
the timed automaton (TA) model [1], [18] is used for proving
the correctness of system designs. This approach has also
been applied to solve scheduling problems by modeling real-
time tasks and scheduling algorithms as variants of timed
automaton and performing reachability analysis on the model
[21], [23]. The advantage of using timed automaton model
is the greater expressiveness and ease of composition of sub-
systems.

A timed automaton consists of a finite set of states called
locations and a finite set of real-valued clocks. It is assumed
that time passes at a uniform rate for each clock in the

automaton. Transitions between locations are triggered by the
satisfaction of associated clock constraints known as guards.
During a transition, a clock is allowed to be reset to zero
value. These transitions are assumed to be instantaneous. At
any time the value of each clock is equal to the time passed
since the last reset of that clock. In order to make the timed
automaton urgent, locations are also associated with clock
constraints called invariants which must be satisfied for a
timed automaton to remain inside a location. If there is no
enabled transition out of a location whose invariant has been
violated, the timed automaton is said to be blocked. Formally,
a timed automaton can be defined as follows:

Definition 1 (Timed Automaton): A timed automaton is a
6-tuple TA=< Σ, S, S0, X, Inv, T > such that
∙ Σ is a finite set of alphabets which TA can accept.
∙ S is a finite set of locations.
∙ S0 ⊆ S is a set of initial locations.
∙ X is a finite set of clocks.
∙ Inv : S → C (X) is a mapping called location invariant.

C (X) is the set of clock constraints over X defined in
BNF grammar by � ::= x ≺ c∣¬�∣� ∧ �, where x ∈ X
is a clock, � ∈ C (X), ≺∈ {<,≤}, and c is a rational
number.

∙ T ⊆ S×Σ×C (X)×2X×S is a set of transitions. The 5-
tuple < s, �,  , �, s′ > corresponds to a transition from
location s to s′ via an alphabet �, a clock constraint  
specifies when the transition will be enabled and � ⊆ X
is the set of clocks whose value will be reset to 0.

Fig. 4. The timed automaton model for Bus Pedestrian System (example
2)

The semantics of timed automaton models are described as
an infinite state transition graph A =< Q,Σ ∪ {�}, Q0, R >.
Each state in Q is a pair (s, v), where s ∈ S and v : X → ℝ+

is clock value map, assigning each clock a positive real value.
It is assumed that at any time all clocks increase with a
uniform unit rate i.e. ∀x ∈ X(ẋ = 1) is true. The initial state
of A, Q0 is given by {(q, v)∣q ∈ S0 ∧ ∀x ∈ X(v(x) = 0)}.
Before defining the transition relations we must give some
notations. For any d ∈ ℝ+, let us define v + d a clock
assignment map which increases the value of each clock
x ∈ X to v(x) + d. For � ⊆ X introduce v[� := 0] to
be the clock assignment that maps each clock y ∈ � to 0, but
keep the value of all clocks x ∈ X − � same.

The transition relation R is composed of two types of
transitions:



Fig. 2. The timed transition graph for the bus pedestrian example. Notice that the complete reachability graph has finite number of states.

∙ Delay Transitions refer to passage of time while staying
in the same location. They are written as (s, v)

t→ (s, v+
t). The necessary condition is v ∈ I(s) and v + t ∈
Inv(s). This transition is represented as the occurrence
of a stutter event �.

∙ Action Transitions refer to occurrence of a transi-
tion from the set T . Therefore for any transition <
s, �,  , �, s′ >, we can write (s, v)

�→ (s′, v[� := 0]),
given that v[� := 0] ∈ I(s′) and v ∈  .

The trace of a timed automaton over Σ∪{�} is a function � :
I� → Σ∪{�}, where I� is an open (closed) time interval. To
prevent zeno behavior, {t ∈ I� ∣�(t) ∈ Σ/�} i.e. the number of
possible events in a time bound should be finite. An example
trace for the timed automaton of bus pedestrian example (see
Fig. 4)is (�, 0)(pass, 2)(jump, 2.5).

Given a timed trace, an execution of the plant (timed
automaton), is called a run. Thus a trace � can be represented
by a run that is a finite sequence in (Σ×ℝ+)∗. However, as
one can envisage the state space associated with a timed au-
tomaton is infinite which makes the task of analysis including
construction of supervisory controller difficult.

C. Dense Model: Timed Automaton: Region Automaton
In [1], a construction called region graph automaton is

given to divide the infinite state space of clocks of timed au-
tomaton into finite number of equivalent classes. In the same
paper it has been shown that this construction is bisimular to
the timed automaton. Bisimular implies that for every trace
of timed automaton there is a trace of region automaton and
vice versa.

The main premise of constructing the equivalent classes
of region automaton is the fact that the guard values in clock
constraints are integers. The transition between two regions is
represented by an event � . For example, Fig. 5 shows various
clock equivalence regions in the region graph associated by
the timed automaton of bus and pedestrian example. One
might notice that the clock regions in Fig. 5 follow a pattern.
This pattern is visible if all the clock regions is divided into
two sets, boundary conditions, e.g. (x = 0, y > 1) and
continuous region such as (x ∈ (0, 1), y > 1). A region
is called boundary region if for any clock it has a direct
integral assignment. All other regions are continuous region.
Now, from the figure one can notice that after a � event a
continuous region always moves to a boundary region and

vice-versa. If we make one of these � , one from continuous
region to boundary region observable and make the other one
unobservable, we will transform the region graph into a timed
transition graph. So if events are allowed to happen only
at boundary regions then we can always directly reduce the
timed automaton to a TDES and construct the timed transition
graph.

Using this clock equivalence region one can generate a
finite transition system that reflects the behavior of timed
automaton. This is called the region graph. One can say that
this region graph is a DES with a language over {Σ ∪ �}∗.
Thus one can inherit the concept of marked language, non-
blocking behavior and similar constructs from the DES theory.

III. SUPERVISORY CONTROL USING DISCRETE TIME
MODEL

The preliminary work in supervisory control using the
discrete time model was done by Brandin and Wonham [6].
Their work has been implemented in a tool called TTCT [12].
The plant and specification were both specified as TDES. As
noted in the earlier section the model of TDES partitions the
set of events into remote and prospective events. The concept
of controllable and uncontrollable events was borrowed from
the RW framework. It was also noted that, Prospective events
are a subset of uncontrollable events i.e. Σspe ⊆ Σu, and
the remote events are a superset of controllable events i.e.
Σc ⊆ Σremote. They also introduced the notion of forcible
events, Σfor that can if enabled can be fired, preempting the
tick transition.

In this framework, given any specification and a plant
TDES, the first task is to compute the timed transition graphs,
K and G such that K ⊆ Lm(G). The supervisor is still
expressed as a control pattern, V : L → Γ, where Γ ⊆ Σ
is the set of events to be is however, given any s ∈ L(G),
 = V (s) has to satisfy following rules: Let EligG(s) =
{� ∈ Sigma∣�(q0, s)!}. Then

1) V (s) ∩ EligG(s) ∕= ∅
2) V (s) ⊇ Σu ∪ {tick} if V (s) ∩ Σfor = ∅
3) V (s) ⊇ Σu if V (s) ∩ Σfor ∕= ∅

Generalizing this one can write the controllability theorem as:

Theorem 3 (Controllability in TTG): Given a timed tran-
sition graph, G, and the timed transition graph K of a



Fig. 5. Clock equivalence classes for the region graph of the timed automaton model for Bus Pedestrian System (example 2)

specification such that K ⊆ Lm(G). Then, a maximally
permissive supervisor V exists if and only if

1) K = K ∩ Lm(G)
2) (∀s ∈ K) (Eligk(s) ∩ Σfor = ∅ =⇒ Eligk(s) ⊇

EligG(S) ∩ (Σu ∪ {tick}))
3) (∀s ∈ K) (Eligk(s) ∩ Σfor ∕= ∅ =⇒ Eligk(s) ⊇

EligG(S) ∩ Σu)
The theorem 2 still stands true for the timed transition

model. Therefore, after the construction of TTG the supremal
controller can be found by using an algorithm of complexity
same as that of untimed DES. However, the main problem
is that the size of state space associated with any TTG can
become very large soon.

Example 3: For the TDES model of example 2 a super-
visor has to be designed such that the pedestrian always
jumps before the bus passes. It is known that the pass event
is uncontrollable and jump event is forcible. Fig. 6 shows
the maximally permissive supervisor for this problem. One
can see that the trace tick tick is preempted by using the
forcible event jump. This is done because the trace tick tick
would have enabled pass which is uncontrollable and cannot
be disabled.

In order to deal with the problem of large state space
Gohari and Wonham suggested the use of abstraction in
[15]. They use the idea of a reduced model, which even
though has lesser states than the plant still encompasses all
its behaviors. Any abstraction transformation that reduces the
plant to this reduced model must have a corresponding inverse
transformation, which when applied to a controller designed
for reduced model gives a design for the original plant. Even
though this design might not be optimal it is a trade-off
against the computational complexity.

Gohari and Wonham used a transformation that scaled
down the time bounds of each timed event. If the resulting
bounds are not integers, they are rounded down (up) to
nearest integer for lower (upper) bound. This transformation
is a map that slows down the rate of ticks be aggregating
a fixed number of ticks together. As the behavior of timed
transition graph of reduced model is larger than the plant,
any supervisor that complies with a time independent spec-
ification for reduced model will upon subjection to inverse
transformation should still be a supervisor for original plant.
They have successfully argued that this transformation does
not increase the complexity of supervisor synthesis compared
to [6]. However, since the supervisor is not optimal cases
may arise when after the transformation the behavior of
reduced model will be large enough so that no controllable
sublanguage will exist.

The Brandin and Wonham framework was applied for real-
time supervisory control of a processor for non-preemptive
execution of periodic tasks by modeling the tasks as TDES
in [10]. In this paper the authors showed that if a scheduler
is computed as a maximally permissive supervisor then the
problem of finding a schedule and determining schedulability
are duals of each other.

In [11], a model that is a specialization of TDES is chosen.
It is assumed that all events are remote events i.e. they can
be delayed forever. In order to model these plants they used
petri nets. Then a ((max,+) algebra) [9] was used to define
the controllable behavior as an invariance condition quantified
by a lattice inequation, x = A ⊗ x ⊕ v, where x is the
sequence of firing time vectors, v is a sequence of earliest
allowable firing time vectors, and A is a matrix of delay
functions. A set of desired behaviors or event schedules must



Fig. 6. Maximally permissive supervisor that makes pedestrian jump before the bus passes

satisfy this inequation for it to be realizable by only delaying
controllable events. In this framework, optimal supervisors
are found by computing the extremal solutions to the lattice
inequation. Even though this framework does not give any
computational advantages it provides an alternative formalism
for the supervisory control theory in discrete timed systems.

IV. SUPERVISORY CONTROL USING DENSE TIME MODEL

The other approach is to use a dense real-time model
such as timed automaton [1]. This way of modeling time
is most natural, as it imposes minimal restriction on the
modeling semantics. There is no minimum measurable time
unit. However, the cost of expressiveness has to be paid with
computational difficulty in analysis.

The first work in this area was described in [31] by Wong-
Toi and Hoffman. They formulated the notion of controlla-
bility in the dense time domain by restricting the number of
event based transitions in any bounded interval of time finite.
Thus effectively their theorems are deductions of theorems
presented in the Ramadge and Wonham framework. The main
controllability theorem of Wong-Toi is reproduced here:

Theorem 4: Controllability Let G be a timed automa-
ton. Let the timed traces of G form the language
pair,(L(G)t, L(G)tM ). The event set is partitioned into un-
controllable and controllable events, Σ = Σc ∪ Σu. Let Kt

be a timed specification s.t. Kt ⊆ L(G)tM . Then there exists
a supervisor such that the supervised timed automaton, G/V ,
generates the language pair, (L(G/V )t, L(G/V )tM ) such that
it is non-blocking and L(G/V )tM = Kt if and only if

1) Kt.(Σu × ℝ+) ∩ Lt ⊆ Kt (Notice the similarity with
untimed version)

2) Kt ∩ L(G)tM = Kt (Ensures non-blocking)
The main algorithm of supervisor synthesis involves two

operation untime and time. The former converts a trace
of timed automaton to a trace in region graph, while the
latter takes the trace of region automaton and gives the
corresponding set of traces of timed automaton. With these
two operations the main idea is described in Fig. 7.

The main problem associated with this method is the
complexity of procedure associated with region graph con-
struction. It has been shown in [1] that this procedure in
PSPACE-hard. Once the region graph is constructed the pro-
cedure is similar to the RW framework and has a complexity
proportional to product of squares of size of state space of
region automaton for both plant and specification.

More or less, most of the methods involved with dense time
supervisory control differ in their mechanism of conversion
of timed automaton to an equivalent finite state structure. In
[19], Ahmed Khoumsi and Mustapha Nourelfath proposed

Fig. 7. Steps to compute a supervisor for a plant and specification specified
as timed automaton.

a different method for transforming a timed automaton into
a minimal and equivalent finite state automaton using two
special types of events, Set and Exp. The main idea behind
this approach is similar to the construction of timed transition
graph. Since the clock value is always compared to an integer
one can just measure the times to the boundary conditions of
a region automaton where at least one of the clocks has an
integer assignment. That means within a continuous region
the enabling or disabling of an event can be decided using
the predecessor boundary condition. (Refer to section II-C).
Therefore, by setting the set events to expire when time
reaches any boundary condition one can do away with clocks
and still maintain the timed ordering of events.

Fig. 8 shows an example SE-FSA for the pedestrian bus
example. Once this reduction is done, the procedure for com-
putation of supervisor is similar to the one used by Brandin
and Wonham with the knowledge that all set events are
controllable and all exp events are uncontrollable. However, if
an exp event is associated to a transition with another forcible
event it can be preempted.

Fig. 8. The Pedestrian Bus example converted to Set Exp FSA.

Asarin et.al [24], [26] have used zone graph abstraction and
posed the control problem as a game between the plant and
controller. The controller wins if it can drive the plant into



a set of safe states. (invariant). This method is PSPACE-hard
because the synthesis of safe state requires the construction of
zone graph. In [5], Bouyer et.al. extended the Asarin’s work
to case when certain events are unobservable.

V. A BRIEF INTRODUCTION TO SUPERVISORY CONTROL IN
HYBRID SYSTEM THEORY

Hybrid systems are usually modeled as hybrid automaton
[17] and have complex continuous dynamics along with
the discrete dynamics. The problem in supervisory control
[20][3] of hybrid system is plagued with a problem similar
to the dense real time space, infinite space. The applications
vary from cruise controllers [29][14] to other more complex
systems. This problem is explicitly apparent when one tries
to verify the behavior of a hybrid automaton.

The basic idea for supervisory control in hybrid system
remains the same. Construct a finite transition system that
can conservatively approximate the behaviors of a hybrid
system [2]. Then design the supervisor for the finite transition
structure using a framework similar to the one used by
Ramadge and Wonham.

If the construction of this finite structure is decidable as
shown by Wong-Toi for linear hybrid systems in [30] the
supervisory controller can be exactly computed. However,
in cases where over or under approximation is required to
compute the finite transition structure like in [4] the controller
is not optimal.

VI. CONCLUDING REMARKS

In this paper we reviewed methods pertaining to application
of supervisory control theory in real-time systems. The prob-
lems associated with denseness of time are handled either by
specifying the system as a Timed Discrete Event system or
by using the more expressive timed automaton formalism and
then designing the supervisor using the corresponding region
graph construction. The difference in complexity of the two
approaches is due to the extra step involved in generating the
region graph automaton from the timed automaton. This step
is known to be exponential in nature.

So, which approach should be used? One can argue that in
a region graph automaton the time progression event from a
boundary region to a continuous region if made observable
while making the timed transition from a continuous region
to a boundary region unobservable, the region graph will
reduce to a timed transition graph that could have been
constructed by using the discrete time approximation. Thus,
under such assumptions, one can choose to specify the plant
as a timed transition graph if it not too big. However, if
the specification difficulty has to be alleviated using the
expressive timed automaton formalism, then one will have
to pay the computational price as a trade off.
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