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Abstract

Aeromechanical testing is conducted to define the
vibratory characteristics of turbine engine structures
for assessment of durability. These tests are typically
conducted independent of the component design
models, yet the pre-test strain/stress limit definitions
have their origin in these models and subsequent
component tests. Therefore the assumptions for the
model become the assumptions for the engine test and
subsequent data analysis. For instance, the mode
identification is generally determined from the finite
element method (FEM) model based upon frequency
alone, validated via component bench testing,
although changes in stress ratios based on engine to
bench condition changes are not typically taken into
account. To provide an assessment not only of the
structural component but also of the design model,
with the goal of correcting the design model for true
engine operating conditions, the Structural Dynamic
Response Analysis Capability (SDRAC) was
developed at Arnold Engineering Devel opment
Center (AEDC). This capability processes strain
gage (and eventually light probe displacement) data
in near-real-time to assess the mode fit of the data to
the FEM model simultaneously with the processing of
the data against various failure criteria. This paper
will describe the internal algorithms of SDRAC for
determining the vibratory modes and establishing the
fatigue integrity margin. An application of SDRAC
on arecent test program will be discussed to
demonstrate the concept and its utility for turbine
engine aeromechanical assessment.

Background
Aeromechanical dataistypically acquired by
sweeping the engine RPM range for various operating
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conditions to excite the vibratory modes of the engine
components. Classically, aeromechanical data
processing and analysis has been performed by
examining modes based upon frequency only, and
utilizing scope limits and strain ratios on a per mode
basis as a criterion for reliability. These scope limits
were based upon a reduced-Goodman diagram to
ensure a margin of safety was established. Strain
ratios obtained from component lab testing or finite
element analysis are used to identify the maximum
stress level on installed components with minimal
instrumentation (often a complete engine typically
only has two straingages per blade). These strain
ratios were obtained on a per mode basis. Peaks were
sorted per mode and assembled into stress summaries
to identify critical operating points. Low strain ratio
data was typically ignored regardless of the stress
value because of unreliability of extrapolating peak
stress from such low strain ratios. Then these
summaries were summarized further across many test
periods to establish trends based upon transient
parameters applicable to the operating environment
(e.g., temperature, pressure, guide vane position,
etc.). Thisclassical aeromechanical evaluation
process has been automated by the devel opment of
DatWizard at AEDC. This program utilizes the strain
ratios and frequency bands for the different vibratory
modes and generates the stress summaries
automatically, immediately following the test point.
A typical DatWizard analysis screen is shownin
Figure 1, which shows a spreadsheet of the actual
data, and a plot of peaks (stressin this case) on a
modal basis.
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Figure 1. DatWizard Summary Analysis Screen

DatWizard also serves as the set-up interfaceto
ensure a onsistent setup amongst all of the data
processng systems, as iown in Figure 4.

SDRAC Overview

The dasdcd approadch worked well for high asped
ratio bades, where the modes are widely spacel in
frequency. However, with the advent of low asped
ratio blades and integrally bladed rotors (IBRS), the
modes many times are too closely spaced to discern
with frequencies only. Rather strain ratios acossthe
blade must be used to properly identify the modes.

Peterson, et al1, first reported the concept for
SDRAC in 1978 Development of the aurrent
cgpability beganin 1988 Reference?2 describesthe
SDRAC in detail. Asarealy stated, the SDRAC is
esentialy atod that combines analyticd models of a
component with red time test data to asessthe
dynamic response charaderistics for all locations on
the component. A key element in the operation of the
SDRAC isthe finite dement model. The model is
used to define the geometry and to interpolate and
extrapolate measured data to uninstrumented
locaions. Figure 2 ill ustrates the SDRAC analysis
process

Test Analysis
Time-domain < s Geometry,
data stream Material Properties

v

Real Time Dynamic

Data Processing

CADDMAS

}

Frequency-domain
response data

Evaluation
SDRAC

Finite Element
Modeling

v

Modal analysis

v

Revised Structural

«Full-field stress state ;
Fatigue assessment i

Analysis M odel #

Figure 2. The SDRAC Analysis Process

During the test, the SDRAC is fed a dynamic data
strean from the AEDC developed Computer Asssted
Dynamic Data Monitoring and Analysis System
(CADDMAS)®. The CADDMAS converts the analog
time-domain signal into frequency domain digital
datain red-time using the fast Fourier transform
(FFT) on aparall el-processng platform. Thisdatais
then used to discern which modes are responding and
at what levels based upon frequency and strain ratios.
Once responding modes are identified, the

corresponding eigenvedors, @ , from the FEM

model are selected and linearly summed according to
the harmonic motion assumption to establish the
overall response vector,

At) = galcﬁlsin(Alt)wﬁz sin(Azt)+... (1)

Figure 3 ill ustrates how thisis done.
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Figure 3. FFT mode seledion.

Thisresponse is then compared with the straingages
(minimum of two required per component)
amplitudes and amplit ude ratios to assessthe vali dity
of the model and its potential for predicting the
complete cmponent stressfield. Modal stresses can
be combined with the steady stressesin a stress
component consistent fashion for application to a
given fatigue aiteria. The Goodman fatigue aiterion
and some fradure mechanicstodls are arrently
implemented.

A key fedure of the SDRAC isthe aility to
acarately map “numericd” straingages to the finite
element models for dired comparison with test strain
data. These numericd straingages model the size of
the straingage to acournt for averaging eff eds present
inthetest. Thisresultsinan “apples-to- apples’
comparison of analyticd and experimental strain
values. The dgorithms developed for this purpose
are documented in [4].



PAPER Submitted to the ITEA Conference, UTSI, Tullahoma, TN, October 12-15, 1999

The SDRAC can aso be used in an off-line mode by
reading CADDMAS stored time-domain files,
CADDMAS stored Campbell diagram data files, and
CADDMAS or Pre-Processor System (this system
utilizesa CADDMAS front end only, no online
monitoring displays) continuous frequency-domain
peaks datafiles. The SDRAC has been used in both
off-line and on-line modes for a number of recent
engine programs, including the JSF program. The
SDRAC can also be used on-line when no mode! of
the component exists by using the strain ratios and
scope limitsin a classical aeromechanical analysis
sense to monitor fatigue potential using the
DatWizard setup files.

Finally, the AEDC aeromechanical analysis process
using the two new toolsis shown in Figure 4. What
followsis a detailed description of the analytical
techniques embodied in SDRAC.

CADDMAS/Pre-Processor| 1
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Figure 4. AEDC Aeromechanical Analysis Process

M ode | dentification

Modal analysisistypically applied assuming the
structure isin free vibration where the externally
applied periodic loading is zero, and the vibration of
the structure is primarily dependent upon the effects
of the initial and boundary conditions only.
Specifically, this process provides solutions of the
problem

[M K}, +[cHu}, +[kKu}, ={o} 2
Assuming {u}, ={¢@}. Sn(w t -a,) where [M]
is the mass matrix, [K] is the stiffness matrix, [C] is
the damping matrix, {u}i isthei™ mode nodal
displacement vector, {lll}i isthe i™ mode velocity

vector (" implies time-derivative), {u}l isthei™ mode

acceleration vector, {go}i isthe ™ mode shape vector,

. isthei™ mode radial frequency, O, isthei™ mode
phase angle, and | isthe modeindex. For negligible
damping, [C] D[O], such that

[M K}, + [ Ku}, ={o} 3

Substituting for {u}i yields

(Kl-w2 Mk ={0d @

whichisasetof N equationsfor N nodes of the
model for each mode I of vibration. Equation (4)

describes an eigenproblem, where the solutions {qo}i

are not unique in amplitude, but rather merely
describe the relative motion of the nodes. A non-

trivial solution (where the 00; and the {qo}i are not
all zero) requires that

det(K]-w?[M])=0 ®)
which determines the natural radial frequencies, from
which the mode shapes {qo}i are obtained by

substituting the @; back into the original
homogeneous equation (4).

The above modal analysis approach assumes that the
geometry iswell defined to allow a suitable grid of
finite elements (typically ten node tetrahedrons) to
accurately describe the component displacements,

and that the boundary conditions are known and
adequately implemented. Centrifugal stiffening of the
component is accounted for in the stiffness matrix

[K], resulting in the solutions (wi ,{go}i) that are

valid over some limited engine RPM range. To
expand this range of validity, the SDRAC monitors
the RPM and adjusts the steady stresses accordingly

asa f (wiz).

Since SDRAC generates fatigue and stress monitoring
displays based upon stress levels derived from FEM
mode shapes, it ismost critical that the modes of
vibration be identified accurately. Consequently, the
modes of vibration are identified by examining three
distinct criteria. Thefirst criterion is based strictly
upon the peak vibration frequencies of the component
obtained from FFT data. These peak frequencies are
individually compared to the FEM models, and nodal
displacement patterns for a given vibration frequency
derived from component bench tests. A window is
placed about these nominal analytical/experimental
modal frequencies to account for centrifugal
gtiffening effects, temperature softening effects, and
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changes in the boundary conditions. Figure 5
illustrates the modal frequency windows for afan
blade as a function of RPM. Thisplot isessentialy a
Campbell diagram, where the engine order lines
crossing a natural frequency window indicates a
potential for a critical operating region due to the
potential for resonance.
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Figure 5. Frequency Windows on a Campbell
Diagram.

Within SDRAC, the frequency fit is determined by
maximizing

FFit, =1- 1—ff—i =l-——— (8

0,

where f; isthe actual frequency and f, isthe

nominal frequency for mode i , which may be
determined from the FEM model or from component

bench testing. Within SDRAC, f, may be

approximated as afunction of RPM, if desired. This
process returns avalue in the interval [0,1] , Where

1.0 isaperfect fit based upon frequencies alone. This
term is called the frequency fit coefficient for mode
l.

In regions where the frequency windows meet, or
when multiple modes are excited simultaneously,
additional criteria are necessary to discern the
responding modes from which the component stresses
will generated. Conseguently, the second mode
detection criterion is theratio of strains from different
positions on the blade. For a given mode shape, the
ratio of the strains for each node with respect to a
reference node (say the maximum) should be unique.
Utilizing the component strain gages, the ratio of
some humber of gages at agiven instant are

compared with those from the FEM model for each
mode near (i.e., within an input tolerance) the
nominal frequency of oscillation to arrive at a
coefficient describing the goodness of fit to the test

mode. Let Ery, bethe FEM model strain for
mode i at the location of gage ] , and then

Eren: = {EFEM j}i isthe FEM model strain vector

for all gages for mode i . Similarly, for measured

—

strains, Ey,, = EMj}i. Then the maximum least

square mode amplitude may be described by

S
MA = max(MA ) = maxHJETFEM'ﬁE 7)
EFFEMi [Eren E

Now for each mode, an amplitude least squares mode
fit coefficient may also be calculated as

AFit, = A @
MA

where AFit, =1.0 impliesa perfect match to mode

i based upon mode amplitude alone. The primary
purpose for this parameter, however, isto steer the
identification towards the large measured peaks. The
other criteria described herein would otherwise settle
on possibly some low amplitude noise peak if that
happened to best fit the other criteria.

Finally, athird mode fit criterion is based upon the
dot product of the actual mode vectors. Recall, for

two vectors a and B,the dot product
ab = |é||5|Cos(9)

where 8 isthe angle between the two vectors.

—

=T
Therefore, the term COS(Q) = T|—§) isameasure
id

of the collinearity of the two vectors, i.e.,

COS(@) - 1as 6@ - 0, implying the two vectors
are collinear. Collinear reduced eigenvectors, one
derived experimentally and the other derived from the
FEM model, implies the nodal displacements for both
must be the same, up to the uniqueness of these
nodes describing the mode shape. Since the
component is typically not heavily instrumented, this
uniquenessis not guaranteed. The mode fit
coefficient is then calculated as

. E-II;EMil:H_éMi
MFit = —————
T[]
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Ead of the threemode fit criteria can be combined
utili zing weights appropriate for the confidencelevel
one hasin ead of the aiteriafor agiven situation,
i.e,

WFit, =C, . MFit, +C_, AFlt +C, o FFit;

mode freq
Cop» and Cfreq

ontheinterval [0,1] asciated with the onfidence

in the mode fit, amplit ude fit, and frequency fit
criterion, respedively, for the cmmponent and
vibration mode under investigation. Maximizing

WFit, seledsthei™ mode, i.e.,
i Omax{WFit, ) = WFit
If eath of these weights are set at 1/3, then ead

criterion is considered equall y applicable. However,
the dfea of onefit coefficient could be minimized,

suchas C.___ if two modes were very closein

where C are the mefficients

mode '

freq
frequency, such that the mode determination is
heavily based upon the remaining two. In any case,
the sum of the aiterion weights must be equal to 1.0,
i.e,

Crote TComp TCheq =1

mode freq

Stress Evaluation

The stressfield of a component is evaluated oncethe
modes of vibration have been identified. In the FEM
approad, the displacaments determine the
stresses/strains via the foll owing considerations.
First, the continuous displacement function for the
element is based upon the nodal displacenents
derived from the @genvedorsvia

=[N =Y g sn@t-a) o
a-v Vv
O
w0 0V
Q;WD v
.0 E ©
T,0 @+v)i-2v)g 0
0r,, O B 0 0
Hr..H 0o
H

where E isYoungsmodulusand V isPoison’s

ratio. Notethat the uni-axial assumption is not made.
Due to symmetry of the shea stresses, i.e., T;; =T,

where [N] is the shape function matrix for the
element, Nisthe number of participating modes, and

d isavedor contai ning the degrees of freedom for
ead node, i.e,

5 _ T
5={uv,wu,v,w,..}
whereindex | indicaesnode j,and U, V,and W

arethelocd coordinates of the node.

With the displacements known aaossthe dement, the
components of strain are cdculated at ead node of
the FEM model by

€] = au d[N]5 [Bl5

These strains and the egenvedors arethen scded to
match the strains at the gage locationsin aleast
squares ense. Thisis done by mapping the
straingage onto the FEM model and suitably
averaging the surrounding rodal strainsto arrive & an
equivalent strain for the center of the region occupied
by the gage. Consider

_ a0 _OiC
Eres, = Ep E Erem, = 8( E
' a?+b?
then (pIRESPOHSQ ai _.|FEM aiResponse = aiaipEM

Finaly, the stresscomponents at ead node ae

cdculated by
[o]=[E]le]
where [E] isthe dasticity matrix associated with the

material of the cmponent. For isotropic
homogeneous materials, the stressequation is

0 0 0 O
0 0 0 He. O
0 0 o g, U
1-2v -
=2 0 o0 r=F
Y =
0 =X 0 Mo
o o ¥ -

2

the stresscomponents may be re-written as a stress
tensor
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The principal stresses can be cdculated by
diagonali zation of the stresstensor, such that

@, 0 OC
Oprin = SO g, O E
HO 0 o,E

where 0, >0, > 0,. Thevon Mises

(distortional/octahedral) stresscan be cdculated from
these nodal principal stresscomponents via

1
O =——

The triaxidity fador, TF , isdefined astheratio of
hydrostatic (first invariant or traceof stresstensor) to
von Mises' stress
TE= 0,+0,+0, _
1 2 2 2]}
E [(01 _02) +(02 _03) +(03 _01) 2
Calculating the triaxiality fador at ead node dl ows
for the plotting of triaxiality contours. In regions

where TF =1.0, auniaxial condition exists. If

TF = 0.0 astate of pure shea exists sncethe sum
g, +0, + 0, (thefirst invariant of stress is zero,
which implies the stress $ate must be zeo or no axial
streses exist. Finaly, if TF = 2.0, then abiaxial
State of stressexistsin that region. Such contours
serve to ill ustrate the fallacy of making the uniaxial
assumption for criticd regions of the component.

Figure 6 shows the triaxiality contour for a twisted
blade in first bending \vibration.

e \/E[(az _01)2 + (03 _01)2 + (03 _02)2]

B .. B.33 ——
B.33 .. .66 —
T
: 1 .. 1.33 ——
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Figure 6. Twisted Blade Triaxiality Contour for First
Bending Vibrational Mode.

Failure Criteria Comparisons

The Goodman diagram is the most basic fatigue
failure aiterion plotted. The Goodman diagramis
plotted using von Mises gressto cgpture aly non-
uniaxial condition, however, for the node caisingthe

pe&k stress the maximum principal stress(0,) is
also shown. Figure 7 shows atypicd Goodman

diagram showing the material li mits for 10026 and
60% levels.
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Figure 7. Goodman Diagram

Another fatigue monitoring approach isto plot blade
contours of critica crad size based upon

ac :.1}1 I<TH
R mHL120K, Ao,

Here the threshold K value, K, , isfor aninput
minimum cradk growth rate (say 10 in/cycle),
Ao, isthe dternating stressobserved (von Mises
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stressis used, but the qadk is asumed to be
perpendicular to the max principal stressdiredion),

and K, isastressconcentration fador or astress
margin fador. For the worst blade locaion (region),
an arrow-aligred perpendicular to the 0, diredion

indicaes its theoreticd propagation relative to the
edge of the blade.

Still another approach is to use the MIL-HNBK-5G
or similar cradk growth curve, and then for an input
crak interval [al, a2], integrate the aeaunder the
inverse of the arve for the range of the [al, a2] to
find the expeded life of the component in cycles.
Thiswould be performed for a dosed-form solution
for the aadk growth curve, probably based upon the
Paris Law (which fitsthe center linea portion of the
curve)

da
dN

Thiswould be cdculated for ead node such that a
blade life cntour could be generated. In addition,
the minimum life and its node should be spedfiedin a
box somewhere, which | guesscould be updating in
red-time. Infinitelife would be assumed to be 10°
cycles, and thiswould be the green contour, with the
lowest life beingred. Alternatively, one could input
just the minimum detedable aad size and then the
criticd cradk length could be cdculated from

K max 9IVEN O pjierating,., and used for 2.

A final approadch isto use agiven input minimum
detedtable cak size, &, , alongwith the pesk

da
stresees and plot thisfor al nodes on the d_N VS

AK' curve, where the dternating stressis used to
determine AK

AK =1.120K, Ao Oy/rrCa,,, .

In this case one hopes to stay nea the threshold or at
least in the lower linea region of the cadk

da
propagation curve. SDRAC can also plot w

contours on the cmponent model.

Strain Energy Density (SED)

“Fail ure of material elementsin asolid is caused by
permanent deformation or fracture which can be
related to shape dhange (distortion) and volume
change (dil atation)” [ref. Gdoutos, 199(. Thestrain

A _ coak™ =cOfL120K, CAo CWrra)"

energy density criterion of failure is based upon the
energy storage cgadty of adifferential volume of
material. Consequently, this criterionisyield based,
which is $milar to the von Mises Maximum
Distortional Energy (Octahedral Shea StressEnergy)
criterion. However, SED includes the dil atational
component in addition to the von Mises' distortional
component, and can predict the onset of fail ure via
yielding or fradure in ductile materials. The
pertinent SED equations are:

ED ) d_V B |é%éjistortion ' DdV

o e,

DdV |jiistortion 3E =

_(-2) ZU)(O'X +0 +az)2
DdV |lvolume 6E ’
(1+ U)(l— 2U)

6E

dW _ dw 0
A

volume

SED = [(ax vo,+0,f+ 20;]

A contour of SED doesn’t diredly provide much
more information than a ssimple von Mises’ stress
plot. However, the interpretation of the SED
component ratios provides a measure of the potential
for failure and the mode of failure (yielding or
fradure). Let

RSED — DdV Chvolume — (1_ 2U) (GX +0y -'-O-Z)2

2(1+0) ol

eq

DdV |jlistorti on

if Rep >1.0, then fradure fail ure is predicted at

the location of SED,,,, whileif Ry <1.0, then
yieldingfailureis predicted at the location of
SED,,.,. Contour plots of fradure potential and of
yield paential areincluded in SDRAC.

Socie Parameter

The Socie Parameter [ref. Langlais, et al, ASTM STP
1303 1997 provides an indication of the potential
for failure due to stresses on a aiticd shea plane.
The Socie model is based upon shea and is defined
as

vmax%’”%%:%(z'\'fs)b +y, 2N ),

O-Weld
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where N (5 isthe fatigue life for pure shea, and the

primed components are the shea fatigue ductility
fadtors. The Socie Parameter, SP , isthe LHS of
this multi-axial fatigue model. This parameter does
for shea what the Smith-Watson-Topper parameter

does for tension
12

Onuts =N } +5ru ot (N, )

3

where N isthefatigue life for pure tension, and

the primed components are the tensil e fatigue strength
fadors. Both of these models are extensions of the
Basquin equation for accounting for mean stress
effedsin uriaxial data. The foll owing steps are used
to determine the Socie Parameter:

1. Determine the principal strains from eigenvalues:

I

O&a Vo Vel
_0O v L —
£=1 e, Ve.C defe-a1)=0,

vy

EBymm £,k

whereyi'j=%yij, iz, A =&

max

2. Find eigenvedor (diredion cosines) 8\7i , then

o \L T
6, =Cos l(s\/il)+ — definesthe
max 4

maximum shea plane with resped to the
principal normals, 8\711 beingthefirst

(maximum) term of & \71 the maximum

eigenvedor, then Y .. = |/\max _/\min|'

3. The maximum normal stressassociated with this
maximum shea strainisg, =€&V,0€V,

00, Ty T.C
h g = = g T = Thisi

EBymm O.E
the equivalent cradk opening tensil e stress

assuming the aad propagates on the plane of
maximum shea.

(o}
4. Finaly, S|3=ymax%,+r]ﬂE where 1]

Vield
isaninput, typicdly n = 0.5.

For multi-axial fatigue, a mnservative estimate of the
life, N, may be determined by
1 1 1

’

N Ng  Ng
and contours of thislife ae plotted within SDRAC.

Application
For thistest program, DatWizard was used to identify
key data points, where SDRAC was to be gplied.
SDRAC was then run for these data points.
SDRAC's gedra plots confirmed the participating
modes. At thispaint, to minimize dgebraic
contribution of inadive modes, which may be noisy,
bad straingage dhannels and poa fitting modes may
be turned off. Thisessntially adsasafilter, since
most data has a broadband response below some
threshold. Conseguently, this ensures that false
readings are not obtained due to high stressmodes
being excited by noise during the harmonic
summation. Figure 8 shows a %-Goodman time-
history plot for the data point.

MODE 10
MODE 11
MODE &

TR ; !
FATIRY/NT I S N I M\,
\ I ,Vl{ W W P N e T
\ / i A LA A K A TN\
e L A ey Al

::::

These traces are the maxima for the threeseleded
modes, 6 (benign), 10 (4" LE Bending), and 11 (2™
Chordwise Bending), obtained from the FEM model,
for anywhere on the @mmponent. Eadc point of eath
traceis determined by searching the whole
component for the maximum stressfor the seleded
mode, and then computing %-Goodman li mit based
upon input Goodman data and criterion. This plot
can be built in nea red-time, such that this plot
immediately indicates criticd rotor speeds and the
potential for fatigue. Sincethis plot isfor only the
seleded modes, it is much more explicit than a
heavily blackened Campbell diagram when severa
modes are excited at once (asin abladed disk
configuration). As down in Figure 9, the Goodman
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diagrams can also be plotted diredly utili zing the
same sorted padnts, however, the RPM at which the
criticd stressoccurred is no longer available.

A

1\(-\; o~ f\/ WA

N )
Al 4 “‘“, \ J“ 4 \ £\ Aok —'V Y
‘x[}\\,};‘Sf)f:\,;:'—\,’!’\f\"x{im‘i\:\uJ«Jy{ﬁ\” A ad
Figure 9. Goodman Diagrams Corresponding to the
%-Goodman Time-History

Note that in Figure 9 the straingage maxima ae dso
locaed (square enclosed ‘x’ data points) on the
Goodman-Diagram. For thistest, note that the
straingage maxima ae much lower for the 2CWB
mode (right Goodman) than the pe&k identified by
SDRAC.

Finally, the component may be animated to ill ustrate
the vibrational mode, as siown in Figure 10. The
straingage parameters and their locations are shown
on the omponent. Obvioudy, these animations are
exaggerated for visuali zaion purpaoses, but they do
demonstrate the mode (or modes) and the stressfield
fluctuations due to the mode (or modes). In addition,
the visuali zation can show the dfea of harmonic
summation on the distortion of the pure modes, as
well as, ill ustrate the susceptibilit y of the gages to
respond to the given mode.

4Zp»— ZPILO0Q Hat KpE
v oow & v @ oo

A

®mU0Z

sann

Figure 10. Blade Deformation animation for the
%-Goodman Time-History

For this particular test, it can be seenin Figures
1land 12that two different parameters can gve two
different %-Goodman and stressvalues for the same
component maximums based upon mode
identification via frequencies and strain ratios alone.
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Figure 11. Parameter and SDRAC comparisons for
4" Bending
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Figure 12. Parameter and SDRAC comparisons for
2nd Chordwise Bending
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The more sophisticated mode identification criterion
in SDRAC resolved the inconsistencies of these two
parameters, and provided a singe value for the
maxima. In addition, SDRAC corredly distingu shed
the aitica mode for this test as the 2™ chordwise
bending mode instead of the 4™ LE Bending mode &
shown from DatWizard in Figure 1. Finally, SDRAC
showed that the peks gresses were dlightly higher
than that indicaed by the dasdcd tedchnique
(possbly due to multi-mode interadion). In this
sense, SDRAC complements the dasdcd
agomedhanicd analysis approades, and can ad as
an arbitrator for inconsistencies.

Summary

Development programs for new engine systems are
generating significantly greaer volumes of dynamic
data than ever before. New engine systems are dso
seeking to extrad greaer and greaer work from ead
stage of the machine. These fadors highlight aneed
to increase understanding of the structural integrity of
ead component and to bring urderstanding to all of
the data generated. The SDRAC has been developed
to med these challenges. As sown, the SDRAC
combines the strengths of state-of-the-art dynamic
data processng technology and finite dement
modeling technology to produce asingle toal that
permits red time analysis of the modal charaderistics
of an engine mmponent and performs fatigue analysis
to insure that newly developed components mee their
structural integrity goals. The SDRAC has been used
successully on avariety of test programs, and has
demonstrated its advantages over the dasscd
agomechanicd approaches.
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