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Abstract

Aeromechanical testing is conducted to define the
vibratory characteristics of turbine engine structures
for assessment of durability.  These tests are typically
conducted independent of the component design
models, yet the pre-test strain/stress limit definitions
have their origin in these models and subsequent
component tests.  Therefore the assumptions for the
model become the assumptions for the engine test and
subsequent data analysis.  For instance, the mode
identification is generally determined from the finite
element method (FEM) model based upon frequency
alone, validated via component bench testing,
although changes in stress ratios based on engine to
bench condition changes are not typically taken into
account.  To provide an assessment not only of the
structural component but also of the design model,
with the goal of correcting the design model for true
engine operating conditions, the Structural Dynamic
Response Analysis Capability (SDRAC) was
developed at Arnold Engineering Development
Center (AEDC).  This capability processes strain
gage (and eventually light probe displacement) data
in near-real-time to assess the mode fit of the data to
the FEM model simultaneously with the processing of
the data against various failure criteria.  This paper
will describe the internal algorithms of SDRAC for
determining the vibratory modes and establishing the
fatigue integrity margin.  An application of SDRAC
on a recent test program will be discussed to
demonstrate the concept and its utility for turbine
engine aeromechanical assessment.

Background
Aeromechanical data is typically acquired by
sweeping the engine RPM range for various operating

conditions to excite the vibratory modes of the engine
components.  Classically, aeromechanical data
processing and analysis has been performed by
examining modes based upon frequency only, and
utilizing scope limits and strain ratios on a per mode
basis as a criterion for reliability.  These scope limits
were based upon a reduced-Goodman diagram to
ensure a margin of safety was established.  Strain
ratios obtained from component lab testing or finite
element analysis are used to identify the maximum
stress level on installed components with minimal
instrumentation (often a complete engine typically
only has two straingages per blade).  These strain
ratios were obtained on a per mode basis.  Peaks were
sorted per mode and assembled into stress summaries
to identify critical operating points.  Low strain ratio
data was typically ignored regardless of the stress
value because of unreliability of extrapolating peak
stress from such low strain ratios.  Then these
summaries were summarized further across many test
periods to establish trends based upon transient
parameters applicable to the operating environment
(e.g., temperature, pressure, guide vane position,
etc.).  This classical aeromechanical evaluation
process has been automated by the development of
DatWizard at AEDC.  This program utilizes the strain
ratios and frequency bands for the different vibratory
modes and generates the stress summaries
automatically, immediately following the test point.
A typical DatWizard analysis screen is shown in
Figure 1, which shows a spreadsheet of the actual
data, and a plot of peaks (stress in this case) on a
modal basis.
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Figure 1.  DatWizard Summary Analysis Screen

DatWizard also serves as the set-up interface to
ensure a consistent setup amongst all of the data
processing systems, as shown in Figure 4.

SDRAC Overview

The classical approach worked well for high aspect
ratio blades, where the modes are widely spaced in
frequency.  However, with the advent of low aspect
ratio blades and integrally bladed rotors (IBRs), the
modes many times are too closely spaced to discern
with frequencies only.  Rather strain ratios across the
blade must be used to properly identify the modes.

Peterson, et al1, first reported the concept for
SDRAC in 1978. Development of the current
capabilit y began in 1988.  Reference 2 describes the
SDRAC in detail .  As already stated, the SDRAC is
essentially a tool that combines analytical models of a
component with real time test data to assess the
dynamic response characteristics for all locations on
the component.  A key element in the operation of the
SDRAC is the finite element model.  The model is
used to define the geometry and to interpolate and
extrapolate measured data to uninstrumented
locations.  Figure 2 ill ustrates the SDRAC analysis
process.
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Figure 2.  The SDRAC Analysis Process.

During the test, the SDRAC is fed a dynamic data
stream from the AEDC developed Computer Assisted
Dynamic Data Monitoring and Analysis System
(CADDMAS)3.  The CADDMAS converts the analog
time-domain signal into frequency domain digital
data in real-time using the fast Fourier transform
(FFT) on a parallel-processing platform.  This data is
then used to discern which modes are responding and
at what levels based upon frequency and strain ratios.
Once responding modes are identified, the

corresponding eigenvectors, 
*
φ i , from the FEM

model are selected and linearly summed according to
the harmonic motion assumption to establish the
overall response vector,
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Figure 3 ill ustrates how this is done.
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Figure 3.   FFT mode selection.

This response is then compared with the straingages
(minimum of two required per component)
amplitudes and amplitude ratios to assess the validity
of the model and its potential for predicting the
complete component stress field.  Modal stresses can
be combined with the steady stresses in a stress-
component consistent fashion for application to a
given fatigue criteria.  The Goodman fatigue criterion
and some fracture mechanics tools are currently
implemented.

A key feature of the SDRAC is the abilit y to
accurately map “numerical” straingages to the finite
element models for direct comparison with test strain
data.  These numerical straingages model the size of
the straingage to account for averaging effects present
in the test.  This results in an “apples-to- apples”
comparison of analytical and experimental strain
values.  The algorithms developed for this purpose
are documented in [4].
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The SDRAC can also be used in an off-line mode by
reading CADDMAS stored time-domain files,
CADDMAS stored Campbell diagram data files, and
CADDMAS or Pre-Processor System (this system
utilizes a CADDMAS front end only, no online
monitoring displays) continuous frequency-domain
peaks data files.  The SDRAC has been used in both
off-line and on-line modes for a number of recent
engine programs, including the JSF program.  The
SDRAC can also be used on-line when no model of
the component exists by using the strain ratios and
scope limits in a classical aeromechanical analysis
sense to monitor fatigue potential using the
DatWizard setup files.

Finally, the AEDC aeromechanical analysis process
using the two new tools is shown in Figure 4.  What
follows is a detailed description of the analytical
techniques embodied in SDRAC.
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Figure 4.  AEDC Aeromechanical Analysis Process

Mode Identification
Modal analysis is typically applied assuming the
structure is in free vibration where the externally
applied periodic loading is zero, and the vibration of
the structure is primarily dependent upon the effects
of the initial and boundary conditions only.
Specifically, this process provides solutions of the
problem

[ ]{ } [ ]{ } [ ]{ } { }0=++ iii uKuCuM ��� (2)

Assuming { } { } ( )iiii tSinu αϖφ −=  where [ ]M

is the mass matrix, [ ]K  is the stiffness matrix, [ ]C  is

the damping matrix, { }iu  is the ith mode nodal

displacement vector, { }iu�  is the ith mode velocity

vector (
.
 implies time-derivative), { }iu��  is the ith mode

acceleration vector, { }iφ  is the ith mode shape vector,

iϖ  is the ith mode radial frequency, iα is the ith mode

phase angle, and i  is the mode index.  For negligible

damping, [ ] [ ]0≅C , such that

[ ]{ } [ ]{ } { }0=+ ii uKuM �� (3)

Substituting for { }iu  yields

[ ] [ ]( ){ } { }02 =− ii MK φϖ (4)

which is a set of N  equations for N  nodes of the
model for each mode i  of vibration.  Equation (4)

describes an eigenproblem, where the solutions { }iφ
are not unique in amplitude, but rather merely
describe the relative motion of the nodes.  A non-

trivial solution (where the iϖ  and the { }iφ  are not

all zero) requires that

[ ] [ ]( ) 0det 2 =− MK iϖ (5)

which determines the natural radial frequencies, from

which the mode shapes { }iφ  are obtained by

substituting the iϖ  back into the original

homogeneous equation (4).

The above modal analysis approach assumes that the
geometry is well defined to allow a suitable grid of
finite elements (typically ten node tetrahedrons) to
accurately describe the component displacements,
and that the boundary conditions are known and
adequately implemented.  Centrifugal stiffening of the
component is accounted for in the stiffness matrix

[ ]K , resulting in the solutions { }( )ii φϖ ,  that are

valid over some limited engine RPM range.  To
expand this range of validity, the SDRAC monitors
the RPM and adjusts the steady stresses accordingly

as a ( )2
if ϖ .

Since SDRAC generates fatigue and stress monitoring
displays based upon stress levels derived from FEM
mode shapes, it is most critical that the modes of
vibration be identified accurately.  Consequently, the
modes of vibration are identified by examining three
distinct criteria.  The first criterion is based strictly
upon the peak vibration frequencies of the component
obtained from FFT data.  These peak frequencies are
individually compared to the FEM models, and nodal
displacement patterns for a given vibration frequency
derived from component bench tests.  A window is
placed about these nominal analytical/experimental
modal frequencies to account for centrifugal
stiffening effects, temperature softening effects, and
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changes in the boundary conditions.  Figure 5
illustrates the modal frequency windows for a fan
blade as a function of RPM.  This plot is essentially a
Campbell diagram, where the engine order lines
crossing a natural frequency window indicates a
potential for a critical operating region due to the
potential for resonance.

Figure 5.  Frequency Windows on a Campbell
Diagram.

Within SDRAC, the frequency fit is determined by
maximizing
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where if  is the actual frequency and 
i

f0  is the

nominal frequency for mode i , which may be
determined from the FEM model or from component

bench testing.  Within SDRAC, 
i

f0  may be

approximated as a function of RPM, if desired.  This

process returns a value in the interval [ ]1,0 , where

1.0 is a perfect fit based upon frequencies alone.  This
term is called the frequency fit coefficient for mode
i .

In regions where the frequency windows meet, or
when multiple modes are excited simultaneously,
additional criteria are necessary to discern the
responding modes from which the component stresses
will generated.  Consequently, the second mode
detection criterion is the ratio of strains from different
positions on the blade.  For a given mode shape, the
ratio of the strains for each node with respect to a
reference node (say the maximum) should be unique.
Utilizing the component strain gages, the ratio of
some number of gages at a given instant are

compared with those from the FEM model for each
mode near (i.e., within an input tolerance) the
nominal frequency of oscillation to arrive at a
coefficient describing the goodness of fit to the test

mode.  Let ijFEMΕ  be the FEM model strain for

mode i  at the location of gage j , and then

{ }
ijFEMiFEM Ε=Ε

&
 is the FEM model strain vector

for all gages for mode i .  Similarly, for measured

strains, { }
ijMiM Ε=Ε

&
.  Then the maximum least

square mode amplitude may be described by
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Now for each mode, an amplitude least squares mode
fit coefficient may also be calculated as

MA

MA
AFit i

i = (8)

where 0.1=iAFit  implies a perfect match to mode

i  based upon mode amplitude alone.  The primary
purpose for this parameter, however, is to steer the
identification towards the large measured peaks.  The
other criteria described herein would otherwise settle
on possibly some low amplitude noise peak if that
happened to best fit the other criteria.

Finally, a third mode fit criterion is based upon the
dot product of the actual mode vectors.  Recall, for

two vectors a
�

 and b
&

, the dot product

( )θCosbaba
&&&& =⋅

where θ  is the angle between the two vectors.

Therefore, the term ( )
ba

ba
Cos

T

&&

&& ⋅=θ  is a measure

of the collinearity of the two vectors, i.e.,

( ) 1→θCos  as 0→θ , implying the two vectors

are collinear.  Collinear reduced eigenvectors, one
derived experimentally and the other derived from the
FEM model, implies the nodal displacements for both
must be the same, up to the uniqueness of these
nodes describing the mode shape.  Since the
component is typically not heavily instrumented, this
uniqueness is not guaranteed.  The mode fit
coefficient is then calculated as

iM
T

iFEM

iM
T

iFEM

iMFit
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= &&
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(9)
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Each of the three mode fit criteria can be combined
utili zing weights appropriate for the confidence level
one has in each of the criteria for a given situation,
i.e.,

ifreqiampiei FFitCAFitCMFitCWFit ++= mod

where eCmod , ampC , and freqC  are the coeff icients

on the interval [ ]1,0  associated with the confidence

in the mode fit, amplitude fit, and frequency fit
criterion, respectively, for the component and
vibration mode under investigation.  Maximizing

iWFit  selects the i th mode, i.e.,

( ) ii WFitWFiti =∋ max
If each of these weights are set at 1/3, then each
criterion is considered equally applicable.  However,
the effect of one fit coeff icient could be minimized,

such as freqC  if two modes were very close in

frequency, such that the mode determination is
heavily based upon the remaining two.  In any case,
the sum of the criterion weights must be equal to 1.0,
i.e.,

1mod =++ freqampe CCC

Stress Evaluation

The stress field of a component is evaluated once the
modes of vibration have been identified.  In the FEM
approach, the displacements determine the
stresses/strains via the following considerations.
First, the continuous displacement function for the
element is based upon the nodal displacements
derived from the eigenvectors via

[ ] )( ii

n

i
i tSinNu αϖφδ −== ∑
&&&

(10)

where [ ]N  is the shape function matrix for the

element, n is the number of participating modes, and

δ
&

 is a vector containing the degrees of freedom for
each node, i.e.,

{ }Twvuwvu ...222111=δ
&

where index j  indicates node j , and u , v , and w
are the local coordinates of the node.

With the displacements known across the element, the
components of strain are calculated at each node of
the FEM model by

[ ] [ ] [ ]δδε
&&

&&

&

B
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These strains and the eigenvectors are then scaled to
match the strains at the gage locations in a least
squares sense.  This is done by mapping the
straingage onto the FEM model and suitably
averaging the surrounding nodal strains to arrive at an
equivalent strain for the center of the region occupied
by the gage.  Consider
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Finally, the stress components at each node are
calculated by

[ ] [ ][ ]εσ E=
where [ ]E  is the elasticity matrix associated with the

material of the component.  For isotropic
homogeneous materials, the stress equation is
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where E  is Young’s modulus and ν  is Poisson’s
ratio.  Note that the uni-axial assumption is not made.

Due to symmetry of the shear stresses, i.e., jiij ττ = ,

the stress components may be re-written as a stress
tensor
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The principal stresses can be calculated by
diagonalization of the stress tensor, such that
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where 321 σσσ >> .  The von Mises

(distortional/octahedral) stress can be calculated from
these nodal principal stress components via

( ) ( ) ( )[ ]2
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The triaxiality factor, TF , is defined as the ratio of
hydrostatic (first invariant or trace of stress tensor) to
von Mises’  stress:
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Calculating the triaxiality factor at each node allows
for the plotting of triaxiality contours.  In regions
where 0.1=TF , a uniaxial condition exists. If

0.0=TF  a state of pure shear exists since the sum

321 σσσ ++  (the first invariant of stress) is zero,

which implies the stress state must be zero or no axial
stresses exist.  Finally, if 0.2=TF , then a biaxial
state of stress exists in that region.  Such contours
serve to ill ustrate the fallacy of making the uniaxial
assumption for critical regions of the component.
Figure 6 shows the triaxiality contour for a twisted
blade in first bending vibration.

Figure 6.  Twisted Blade Triaxiality Contour for First
Bending Vibrational Mode.

Failure Criteria Comparisons

The Goodman diagram is the most basic fatigue
failure criterion plotted.  The Goodman diagram is
plotted using von Mises stress to capture any non-
uniaxial condition, however, for the node causing the

peak stress, the maximum principal stress ( 1σ ) is

also shown.  Figure 7 shows a typical Goodman
diagram showing the material limits for 100% and
60% levels.

Figure 7.  Goodman Diagram

Another fatigue monitoring approach is to plot blade
contours of critical crack size based upon

2

max12.1

1






∆∗∗

=
σπ t

TH
CR K

K
a .

Here the threshold K  value, THK , is for an input

minimum crack growth rate (say 10-8 in/cycle),

maxσ∆  is the alternating stress observed (von Mises
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stress is used, but the crack is assumed to be
perpendicular to the max principal stress direction),

and tK  is a stress concentration factor or a stress

margin factor.  For the worst blade location (region),

an arrow-aligned perpendicular to the 1σ  direction

indicates its theoretical propagation relative to the
edge of the blade.

Still another approach is to use the MIL-HNBK-5G
or similar crack growth curve, and then for an input
crack interval [a1, a2], integrate the area under the
inverse of the curve for the range of the [a1, a2] to
find the expected li fe of the component in cycles.
This would be performed for a closed-form solution
for the crack growth curve, probably based upon the
Paris Law (which fits the center linear portion of the
curve)

( )m

t
m aKCKC

dN

da ∗∗∆∗∗∗=∆∗= πσ12.1

.
This would be calculated for each node such that a
blade li fe contour could be generated.  In addition,
the minimum li fe and its node should be specified in a
box somewhere, which I guess could be updating in
real-time.  Infinite li fe would be assumed to be 109

cycles, and this would be the green contour, with the
lowest li fe being red.  Alternatively, one could input
just the minimum detectable crack size, and then the
critical crack length could be calculated from

maxK given 
maxgAlternatinσ  and used for a2.

A final approach is to use a given input minimum

detectable crack size, mda , along with the peak

stresses and plot this for all nodes on the 
dN

da
 vs

K∆  curve, where the alternating stress is used to
determine K∆

mdt aKK ∗∗∆∗∗=∆ πσ12.1 .

In this case one hopes to stay near the threshold or at
least in the lower linear region of the crack

propagation curve.  SDRAC can also plot 
dN

da

contours on the component model.

Strain Energy Density (SED)
“Failure of material elements in a solid is caused by
permanent deformation or fracture which can be
related to shape change (distortion) and volume
change (dilatation)” [ref. Gdoutos, 1990].  The strain

energy density criterion of failure is based upon the
energy storage capacity of a differential volume of
material.  Consequently, this criterion is yield based,
which is similar to the von Mises’ Maximum
Distortional Energy (Octahedral Shear Stress Energy)
criterion.  However, SED includes the dilatational
component in addition to the von Mises’ distortional
component, and can predict the onset of failure via
yielding or fracture in ductile materials.   The
pertinent SED equations are:

volumedistortion dV
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A contour of SED doesn’ t directly provide much
more information than a simple von Mises’ stress
plot.  However, the interpretation of the SED
component ratios provides a measure of the potential
for failure and the mode of failure (yielding or
fracture).  Let
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if 0.1>SEDR , then fracture failure is predicted at

the location of minSED , while if 0.1<SEDR , then

yielding failure is predicted at the location of

maxSED .  Contour plots of fracture potential and of

yield potential are included in SDRAC.

Socie Parameter
The Socie Parameter [ref. Langlais, et al, ASTM STP
1303, 1997] provides an indication of the potential
for failure due to stresses on a critical shear plane.
The Socie model is based upon shear and is defined
as

( ) ( )c
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where fSN  is the fatigue li fe for pure shear, and the

primed components are the shear fatigue ductilit y
factors.  The Socie Parameter, SP , is the LHS of
this multi -axial fatigue model.  This parameter does
for shear what the Smith-Watson-Topper parameter
does for tension

( ) ( ) ( )c
fTffe

b
fT

f
a N

n
N

E
21

2
2

2

max εσυ
σ

εσ ′′++
′

=

,

where fTN  is the fatigue li fe for pure tension, and

the primed components are the tensile fatigue strength
factors.  Both of these models are extensions of the
Basquin equation for accounting for mean stress
effects in uniaxial data.  The following steps are used
to determine the Socie Parameter:

1. Determine the principal strains from eigenvalues:
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2. Find eigenvector (direction cosines) iV
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ε , then
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maximum shear plane with respect to the
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maximum shear strain is 11max
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σ .  This is

the equivalent crack opening tensile stress,
assuming the crack propagates on the plane of
maximum shear.

4. Finally,   





+=

Yield

SP
σ
σ

ηγ γ max1max ,   where η

is an input, typically 5.0=η .

For multi -axial fatigue, a conservative estimate of the
li fe, N , may be determined by

fSfT NNN

111 += ,

and contours of this li fe are plotted within SDRAC.

Application

For this test program, DatWizard was used to identify
key data points, where SDRAC was to be applied.
SDRAC was then run for these data points.
SDRAC’s spectra plots confirmed the participating
modes.  At this point, to minimize algebraic
contribution of inactive modes, which may be noisy,
bad straingage channels and poor fitting modes may
be turned off .  This essentially acts as a filter, since
most data has a broadband response below some
threshold.  Consequently, this ensures that false
readings are not obtained due to high stress modes
being excited by noise during the harmonic
summation.  Figure 8 shows a %-Goodman time-
history plot for the data point.

Figure 8.  SDRAC %-Goodman Time-History

These traces are the maxima for the three selected
modes, 6 (benign), 10 (4th LE Bending), and 11 (2nd

Chordwise Bending), obtained from the FEM model,
for anywhere on the component.  Each point of each
trace is determined by searching the whole
component for the maximum stress for the selected
mode, and then computing %-Goodman limit based
upon input Goodman data and criterion.  This plot
can be built i n near real-time, such that this plot
immediately indicates critical rotor speeds and the
potential for fatigue.  Since this plot is for only the
selected modes, it is much more explicit than a
heavily blackened Campbell diagram when several
modes are excited at once (as in a bladed disk
configuration).  As shown in Figure 9, the Goodman
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diagrams can also be plotted directly utili zing the
same sorted points, however, the RPM at which the
critical stress occurred is no longer available.

Figure 9.  Goodman Diagrams Corresponding to the
%-Goodman Time-History

Note that in Figure 9 the straingage maxima are also
located (square enclosed ‘x’ data points) on the
Goodman-Diagram.  For this test, note that the
straingage maxima are much lower for the 2CWB
mode (right Goodman) than the peak identified by
SDRAC.

Finally, the component may be animated to ill ustrate
the vibrational mode, as shown in Figure 10.  The
straingage parameters and their locations are shown
on the component.  Obviously, these animations are
exaggerated for visualization purposes, but they do
demonstrate the mode (or modes) and the stress field
fluctuations due to the mode (or modes).  In addition,
the visualization can show the effect of harmonic
summation on the distortion of the pure modes, as
well as, ill ustrate the susceptibilit y of the gages to
respond to the given mode.

Figure 10.  Blade Deformation animation for the
%-Goodman Time-History

For this particular test, it can be seen in Figures
11and 12 that two different parameters can give two
different %-Goodman and stress values for the same
component maximums based upon mode
identification via frequencies and strain ratios alone.
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Figure 11.  Parameter and SDRAC comparisons for
4th Bending
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Figure 12.  Parameter and SDRAC comparisons for
2nd Chordwise Bending

The more sophisticated mode identification criterion
in SDRAC resolved the inconsistencies of these two
parameters, and provided a single value for the
maxima.  In addition, SDRAC correctly distinguished
the critical mode for this test as the 2nd chordwise
bending mode instead of the 4th LE Bending mode as
shown from DatWizard in Figure 1.  Finally, SDRAC
showed that the peaks stresses were slightly higher
than that indicated by the classical technique
(possibly due to multi -mode interaction).  In this
sense, SDRAC complements the classical
aeromechanical analysis approaches, and can act as
an arbitrator for inconsistencies.

Summary
Development programs for new engine systems are
generating significantly greater volumes of dynamic
data than ever before.  New engine systems are also
seeking to extract greater and greater work from each
stage of the machine.  These factors highlight a need
to increase understanding of the structural integrity of
each component and to bring understanding to all of
the data generated.  The SDRAC has been developed
to meet these challenges.  As shown, the SDRAC
combines the strengths of state-of-the-art dynamic
data processing technology and finite element
modeling technology to produce a single tool that
permits real time analysis of the modal characteristics
of an engine component and performs fatigue analysis
to insure that newly developed components meet their
structural integrity goals.  The SDRAC has been used
successfully on a variety of test programs, and has
demonstrated its advantages over the classical
aeromechanical approaches.
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