
Towards Generation of High-performance
Transformations

Attila Vizhanyo, Aditya Agrawal, Feng Shi

Institute for Software Integrated Systems, Vanderbilt University
Nashville, TN 37235, USA

{viza, aditya, fengshi }@isis.vanderbilt.edu

Abstract. In this paper we introduce a graph rewriting language, called Graph
Rewriting and Transformation (GReAT), and a code generator tool, which
together provide a programming framework for the specification and efficient
realization of graph rewriting systems. We argue that the performance problems
frequently associated with the implementation of the transformation can be
significantly reduced by adopting language and algorithmic optimizations and
partial evaluation.

1 Introduction

The Model Driven Architecture (MDA) [3] advocates the use of models in software
development through either Unified Modeling Language (UML) [2] or though
domain specific languages supported by Meta Object Facility (MOF) [4]. In the later
approach, transformations are to bridge the semantic gap between domain specific
models and implementation. Other software engineering areas such as Model-
Integrated Computing [1] and tool integration also have a requirement of model
transformations that bridge semantic gaps between design tools.

Such transformations can be formally specified and automatically implemented
using Graph Rewriting/Transformation (GRT) languages [5]. A GRT language
typically consists of transformation rules where a pattern graph is matched in the host
graph and replaced with a replacement graph. The time complexity of such
transformation systems is determined by (1) the sub graph isomorphism algorithm,
known to be NP complete and (2) the algorithm to keep track of ready to fire
productions. The complexity of such transformation system becomes unacceptable for
complex transformations and large graphs. We conjecture that these concerns can be
addressed at various places in a transformation system ranging from the language to
its implementation.

This paper presents runtime-optimization related features of Graph Rewriting and
Transformation (GReAT) [12][13][14] a graphical rewriting/ transformation language
and its Code Generator (CG) that is used to implement the transformations. The
optimizations have been classified into two categories, (1) language and algorithmic
optimization and (2) partial evaluation and implementation optimizations.

mailto:}@isis.vanderbilt.edu

2 Attila Vizhanyo, Aditya Agrawal, Feng Shi

Language and algorithmic optimizations are based on language constructs that
have optimized implementation algorithms. While partial evaluation and
implementation optimization are performed by the Code Generator (CG) which
produces code specific to a given transformation and input/output domains. The
generated code provides a significant performance boost over GRE, GReAT’s generic
graph rewrite/transformation engine. Since the CG does not partially evaluate the
transformation based on input/output graph, the generated transformation can be
reused for any graph in the input/output domains. There is some overhead associated
with regeneration and recompilation of the transformation code if the transformation
is changed, but those transformations that are still under development can be executed
and debugged using a generic rewrite/transformation engine. Once the transformation
reaches a mature state, the transformation can be compiled into a high-performance
executable that is capable of performing transformations on large models.

Paper organization: Section 2 reviews the area of graph grammars and
transformations. Section 3 briefly describes Graph Rewriting and Transformation
(GReAT) a metamodel based model-to-model transformation language and discusses
language and algorithm level optimizations in GReAT. Section 4 describes GReAT’s
Code Generator (CG) and implementation level optimizations. Section 5 provides
some experimental results comparing the runtime performance of transformations
using CG and GRE. Conclusions and proposals for future research are presented in
Section 6.

2 Background

2.1 Graph rewriting and Transformations

There are a variety of graph transformation techniques described in
[5][6][7][8][9][10][11]. Prominent among these are node replacement grammars,
hyper edge replacement grammars, single/double pushout and programmed graph
replacement systems. The next few paragraphs will discuss each approach and point
out some complexity issues [5].

Node replacement grammars are a class of graph grammars that are based
primarily upon the replacement of nodes in a graph. The basic production of every
node replacement grammar has a LHS subgraph (called mother graph) that produces
an RHS subgraph (called daughter graph). Usually the LHS subgraph consists of only
one node, making this class of grammars context free. The productions can be applied
whenever a mother node is found in the host graph. If two productions can be applied
at the same time then the order of application is non-deterministic [5].

The execution time of node replacement grammars is bounded by graph search and
tracking of ready-to-execute productions. If all the subgraphs contain only one node
in the mother graph then the worst case complexity of finding a ready-to-execute
production is , where n is the number of nodes in the graph and r is number
of productions. Single node mother graphs are suitable for defining and parsing

)(rnO ×

Towards Generation of High-performance Transformations 3

graphical languages but are restrictive and not suitable for defining complex
“algorithmic” transformations.

Hyperedge replacement grammars deal with the productions that replace hyper
edges by subgraphs. Each production has a hyperedge on the LHS, which is replaced
by a subgraph on the RHS. Hyperedge replacement by definition is confluent,
associative and parallelizable. The time complexity and shortcomings are similar to
the node replacement grammars [5].

Another approach to graph grammars is the algebraic one. The approach is based
on a generalization of Chomsky grammars from strings to graphs. The main goal was
to generalize the string concatenation to a gluing construction of graphs. The gluing
of graphs is defined by algebraic constructions called pushouts. The pushout approach
has been borrowed from a more general field of category theory. Significant research
has been done on pushouts and how productions can be parallelized. The algebraic
approach is more powerful and has concepts for sequencing and parallelizing the rules
[6].

The algebraic approaches, in the general case, have subgraphs in the LHS and thus
subgraph isomorphism algorithms are required find a particular LHS subgraph in the
host graph. Subgraph isomorphism is known to have a order complexity of
where, n is the number of host graph nodes and p is the number of nodes in the
subgraph. The time complexity of finding a ready-to-execute transformation, in the
general case, is where r is the number of transformation in the system. In
the algebraic approaches it is possible to specify a sequence of the transformation
rules. This eliminates the need for finding the next ready-to-fire transformation. The
sequencing of rules is limited only to sequential and parallel execution of the rules. It
lacks high-level sequencing constructs such as conditional branching of productions,
loping and recursion. The lack of high-level sequencing means that the user cannot
represent and/or choose between depth-first search and breadth-first search.

)(pnO

)(pnrO ×

The last approach to be discussed is that of programmed replacement systems,
which are the most practical of all the approaches discussed so far. The leading
research result is the PROgrammed GRaph REplacement System (PROGRES) [6].
The major breakthrough of PROGRES is that it concentrates equally on productions
and sequencing of the productions. Thus the system has a graph replacement language
that defines the productions and also programming constructs that define the order of
application of the productions. The PROGRES system consists of two parts - the first
is a logic based structure replacement system that describes graph transformation
productions of the language, and the second is a collection of programming constructs
such as recursion, non-deterministic application of productions, conditions and loops.
Apart from these PROGRES can also specify static integrity constraints on the
graphs. The time complexity of PROGRES based transformations is in the hands of
the user [5][6][7].

4 Attila Vizhanyo, Aditya Agrawal, Feng Shi

3 Language and Algorithmic Optimizations

3.1 GReAT: Graph Rewriting and Transformation

Graph Rewriting and Transformation (GReAT) [12][13][14] is the transformation
language developed for model-to-model transformations/rewriting. This section
provides a brief overview of GReAT, while [12] provides a more detailed description.
The operational semantics of GReAT is formally defined in [14]. GReAT is based on
the theoretical work of graph grammars and transformations [5] and belongs to the set
of practical graph transformations systems, like AGG [8] and PROGRES [7]. GReAT
has two parts: (1) graph transformation language, and (2) control flow language. The
graph transformation language is used to specify transformations on localized
subgraphs and follows the Single Pushout (SPO) algebraic approach [5].

A production (also referred to as rule) is the basic unit of transformation and it
contains a pattern graph that consists of pattern vertices and edges. Each pattern
element has an attribute called role that specifies what happens during the
transformation step. A pattern element can play one of three roles: Bind, Delete,
CreateNew. The execution of a rule involves matching every pattern object marked
either Bind or Delete. If the match is successful and an (optional) guard condition is
true, then for each match the pattern objects marked Delete are deleted from the
match and objects marked New are created. GReAT uses the UML [2] class diagram
notation for the specification of patterns.

For example, in Fig. 1, OrState, SubOrState, State, SubOrState/State composition
and OrState/SubOrState composition have the Bind role while NewState,
OrStateNewState composition and State/NewState association have the CreateNew
role. The semantics of the rule is: find the pattern marked Bind, in this case the
OrState, SubOrState, State, SubOrState/State composition and OrState/SubOrState
composition pattern. Then, for every such pattern evaluate the Guard expression. Let
the guard expression be “SubOrState.name = State.name”. Thus only those matches
that have this property will pass the guard and the rest will be discarded. Then create
the objects marked CreateNew, in this case NewState, OrState/NewState composition
and State/NewState association. Finally, use AttributeMapping to fill in the attributes
of the newly created objects.

Fig. 1 An example production rule

Towards Generation of High-performance Transformations 5

The order complexity of the pattern matching is and if there are many
rules to choose from then the complexity of finding the correct transformation is

.

)(pnO

)(pnrO ×
Traditionally, in graph grammars and transformations there is no ordering imposed

on the productions, but practical model-to-model transformations often require strict
control over the execution sequence. GReAT has a high-level control flow language
built on top of the graph transformation language with the following constructs for
improving the efficiency of the transformations: (1) pivoting and (2) sequencing.

3.2 Typed Patterns

It is well known that subgraph isomorphism is an exponential time algorithm in terms
of the input graph and the pattern graph. In order to reduce the average case execution
time a number of steps can be taken.

The first step is to type the pattern vertices and edges, this restrict the search to a
subgraph of the host that only contains the particular types used in the pattern. If we
consider a host graph having say T types of vertices and if we assume that the vertices
have even distribution with respect to its type then the time complexity of matching a

pattern with Pt types of vertices is pt n
T
P)(× . Even though the worst case execution

time is the expected case execution will have a saving. On an average, graphs
contain ~30 vertex types while a pattern graph uses ~3 vertex type and thus in the
average case the saving should be ~10x.

)(pnO

3.3 Pivoted Pattern Matching

Another optimization technique is to start the pattern matcher with an initial binding
and we have named it “pivoted pattern matching”. In this technique the programmer
provides an initial binding for some of the models in the pattern graph to the host
graph nodes. The pattern matching is then performed in the context of the initial
binding.

In Fig. 2, the pattern vertex Pv is initially bound to the host vertex Hv. This
restricts the search to the area shown within dotted line. This particular optimization
works well for sparsely connected graphs. For example, graph has an average
connectivity, the number of edges incident on a vertex, of 3 and the greatest distance
from the pivot to a vertex in the pattern graph to be 2. Then the matching algorithm
will only search within a tree of depth 3 starting from the pivoted node. In general the
number of host graph vertices included in the search will be where c is the
connectivity and d is the depth of the pattern. Hence the order complexity of the
matching algorithm is , where and p is the umber of unbound
vertices.

dc

)(pnO dcn =

6 Attila Vizhanyo, Aditya Agrawal, Feng Shi

Fig. 2 Pivoted Matching

This optimization technique, when added to the typed pattern vertex technique
gives a significant saving because in this case the connectivity of the restricted graph
is even less. Fig. 3 shows the same rule as in Fig. 1 with the addition of In and Out
ports used to provide the initial binding. The OrState pattern vertex is bound to a host
graph vertex supplied by the port labeled In.

Fig. 3 Transformation Rule with pivot

3.4 Reusing Previously Matched Objects

The next optimization technique used in the GReAT is the called “Reusing previously
matched objects”. The idea here is to cache previously found results and pass it on to
subsequent rules as the initial binding.

For example, in Fig. 4, there are two rules, the first rule gets an input binding for
Parent and finds all ChildA, ChildB, Assoc triples that correspond to the pattern. In
the subsequent rule these triples are required to perform an action. Instead of finding
the pattern again, the first rule passes the triples along to the next rule. For the next
rule they serve as the initial binding. When a rule executes it can produce multiple
matches. Each match produces a host graph object for each output port and this
coherent set of objects is called a packet. These packets are sent to the subsequent
rules as one unit.

Towards Generation of High-performance Transformations 7

GReAT supports hierarchical specification of transformation rules. High-level
rules can be created by composing a sequence of primitive rules. There are two kinds
of high-level rules in GReAT: Block and ForBlock. The execution semantics of the
Block is to pass all input packets to the first contained rule, the outputs packets
created by it are passed to subsequent rules and so on. After all packets have been
processed and all output packets of the Block have been generated the Block returns
control to its parent. Semantics for the ForBlock is to pass one input packet at a time
through all the contained rules. After the first packet has been processed all the way to
the output of the ForBlock the next packet is processed. These two constructs enables
user to choose different traversal strategies. A Test/Case is also available in GReAT.
It can be used to choose between different execution paths, during the transformation
and is similar to ’if’ statements in programming languages.

Fig. 4 Sequence of rules with passing of previous results

4 Partial Evaluation and Implementation Optimization

4.1 Motivation

In the previous section, GReAT has been introduced as a graphical rewriting
language, and the language and algorithmic optimizations related to the runtime
behavior of the transformations have been discussed. We further stress the importance
of the execution aspects of the graph transformation system by discussing the
runtime-optimization related features of the Code Generator (CG), which is used to
implement the transformations.

Graph Rewrite Engine (GRE), the generic graph rewrite/transformation engine is
[12] suitable for prototyping transformations but due to a high runtime overhead it is
not suitable for the realization of applications with real software engineering runtime
constraints. The motivation behind development of CG is to (1) meet the criteria for
acceptable performance standards in speed of execution, and (2) enable the
application of GReAT system implementations as a feasible alternative to hand

8 Attila Vizhanyo, Aditya Agrawal, Feng Shi

written code, i.e. without the introduction of significant performance overhead.
Clearly, the performance of the generated code will remain below that of the hand
written code, but the reduced development time attributed to the implementation of
the transformation using the GReAT approach often compensates or outweighs the
conventional manual implementation techniques.

4.2 Partial Evaluation

If we write the Graph Rewriting Engine (GRE) of GReAT as a function it will have
the following signature:

OTMMIGRE OI →×××)(: , where

• - metamodels. A Metamodel is a graph that defines the graph
grammar of the input/output models.

OI MM ,

• I – input model. A graph that conforms to the metamodel . IM
• O- output model. A graph that conforms to the metamodel . OM
• - transformation. Is a graph rewrite/transformation specification. T

The Code Generator performs a partial evaluation of the GRE function to produce
code specific to a given transformation and input/output metamodels.

))(:()(: OITTMMCG COI →→××
The justification for the partial evaluation is that the transformation and the

metamodels make up the invariant part of transformation system. The same
transformation is typically run on multiple inputs over a course of time. We argue that
once the transformation and the modeling paradigm(s) reach a mature state, the
transformation can be compiled into a high-performance executable that is capable of
performing transformations in an efficient way.

By treating the metamodels as invariants, the CG can generate code that
manipulate input and output models using paradigm-specific API’s. These API’s are
generated by Universal Data Model (UDM), a framework that provides object-
oriented C++ interfaces to programmatically access input/output models. UDM can
generate a domain specific custom API with type-safe access methods for object
creation/removal, link creation/removal, and attribute setters/getters [15]. The
transformation executable can be built by compiling the generated transformation
files and the paradigm-specific API files.

4.3 Implementation of Algorithmic Optimizations

The transformation rules are compiled into C++ class definitions. Although from the
point of view of the language semantics, the procedural programming paradigm
would suffice, we will see later in this section that introducing user-defined types for
the transformation rules results in a much cleaner design. In C++, data abstraction is

Towards Generation of High-performance Transformations 9

implemented by classes, and the class is also the unit of encapsulation, which OO
concept will assist in the implementation of the packet passing mechanism.

 The only function exposed in the public interface of each class definition is the
function operator; calling the function operator of a given class triggers the execution
of the corresponding rule.

GReAT trans. Rule Generated C++ class definition

class Rule
{
public:
 void operator()(const Packets_t& In1, const Packets_t& In2,
 Packets_t& Ou1, Packets_t& Ou2, Packets_t& Ou3);
…
};

Fig. 5 Mapping GReAT transformation rules to C++ classes

GReAT introduces the optimization “Reusing Previously Matched Objects”,
which is basically the idea of passing graph objects attached to ports from one rule to
another.

The function operator argument list implements the facility for passing vertices of
already matched subgraphs between a set of rules. Packets_t is a list of objects, which
is the common base class for all classes that represent the graph objects. In this
context, the Packets_t arguments represent a list of graph objects directed to a specific
port. Subgraphs can be derived by taking together the input or output packets of the
corresponding rule.

Two incoming packets, two input ports Generated C++ interface

void operator()(
 // IP will contain P1 & P2
 const Packets_t& IP,
 // IR will contain R1 & R2
 const Packets_t& IR
);

Fig. 6 A graph object passing use-case

The implementation of operator() depends on the type of the GReAT rule:
• For rules of type Block, the function operator executes the contained rules in

the sequencing order for all incoming packets.
• For rules of type ForBlock, the function operator executes each contained

rule for each incoming packet, one-by-one.
• For rules of type Test, the contained cases are executed for all incoming

packets in a deterministic order, which is derived from the physical
placement of the cases, until a match has been found in a case.

• For rules of type ForTest, the contained cases are executed in the same way
as in the case of the Test, but each case is executed for each incoming packet,
one-by-one.

10 Attila Vizhanyo, Aditya Agrawal, Feng Shi

• For rules of type Rule, the incoming packets representing a host subgraph are
tested against the pattern graph, then for each match new objects are created
and matched objects deleted according to the rule specification. The pattern
objects connected to the output port are then used to create output packets.

• For rules of type Case, incoming packets representing a host subgraph are
tested against the pattern graph, and the pattern objects connected to the
output port are then used to create output packets.

4.4 Rule Execution and Sequencing

The generated transformation code can be initiated starting from any rewriting rule;
rules contained in that rule will be executed. The execution sequence of contained
rules is maintained by rule callers. Rule callers are protected member functions of
composite rules, and are designed to implement three important tasks:

1 Calling rules with the necessary arguments.
2 Calling the rule callers of destination rules. Destination rules are defined as

the set of those rules, whose inputs are supplied by the current rule.
3 Forwarding packets to the output ports of the parent rule.

Let block Block contain Rule0, Rule1, Rule2. The class definition generated for

block Block, will contain one rule caller for each rules: Rule0, Rule1, Rule2. Fig. 7
shows the code for the rule caller of Rule0. Observe, how packets are passed from
caller to caller through the function argument lists.

GReAT rule sequencing pattern Generated C++ code

void Block::callRule0(const Packets_t& In1,
 const Packets_t& In2) {

// declare output packets local
Packets_t Ou1, Ou2;
Rule0 rule0;
rule0(In1, In2, Ou1, Ou2);
if ((!Ou1.empty()) && (!Ou2.empty()))
 callRule1(Ou1, Ou2);
if ((!Ou1.empty()) && (!Ou2.empty()))
 callRule2(Ou1, Ou2);

}

Fig. 7 Rule execution and sequencing via rule callers

To solve task 3, each contained rule must be able to append its own outputs to the
parent block’s outputs. The block’s outputs should be visible only for those rules
which are contained in that block. If every block output were passed as an individual
argument to each rule caller function, the interface would quickly become very
bloated. Our preferred approach to this problem is to represent the block output ports
as member variables. Initially, rule callers had been implemented as procedures, but
the design constraint described above led us to rely on OO encapsulation and C++
classes. Restricting data visibility to a set of functions automatically entails the

Towards Generation of High-performance Transformations 11

conversion of those functions to class member functions. Classes are the primary
language elements in C++ that represent concepts in the application domain. Thus in
the process of seeking a good representation of the GReAT rules, we eventually
employed abstract data types.

4.5 Pattern Matcher

The graph rewriting/transformation process starts with the pattern matching, where an
input subgraph and pattern graph are used to perform subgraph isomorphism on the
input graph. The pattern graph can be described as a set of graph objects each with
specific type, connected together with specific containment and association
relationships. Therefore the task of the generated code is to (1) type-check all input
subgraph elements and (2) check for the existence of the pattern vertices and edges in
the input graph. If any type mismatch is found, then the pattern matching fails for the
current input, and the processing proceeds to the next input. The pattern matching
algorithm used in CG traverses the relationships specified in the pattern graph and
generates code for each relationship. Traversed relationships are marked bound. The
code generation process stops when all relationships in the pattern have been marked
bound.

Specification of the types of the graph objects is fully exploited in the code
generation process in the following way. In contrast with a naïve and general pattern
matching implementation, we utilize strongly typed interfaces in the generated code,
which leads to the restriction of the candidate objects and relations. This brings about
the performance gain consequence of checking smaller number of graph objects and
relations in the input host graph.

GReAT pattern Generated UDM API C++ pseudo-code
 //get children of type UnboundChild only

set< Paradigm::UnboundChild> unboundChilds=
 boundParent.UnboundChild_kind_children();
for(set< Paradigm::UnboundChild>::const_iterator it=
 unboundChilds.begin();it!= unboundChilds.end(); ++it){
 Paradigm::UnboundChild currUnboundChild = *it;
 …
}

 Udm::Object& boundChildParent= boundChild.container();
// UDM RTTI
if(false== Uml::IsDerivedFrom(boundChildParent.type(),
 Paradigm::UnboundParent::meta))
 continue;
Paradigm::UnboundParent unboundParent=
 Paradigm::UnboundParent::Cast(boundChildParent);
…

Fig. 8 Composite relationships and the respective generated code fragments

12 Attila Vizhanyo, Aditya Agrawal, Feng Shi

The GReAT definition of a match enforces that each pattern object must refer to a
unique host graph object. The brute force approach would check a newly matched
graph object with all previously matched objects before actually making the match.
However, identity checks need not be so thorough, because in many cases different
pattern objects cannot possibly refer to the same graph object. Objects of different
types cannot be identical, objects of different parents cannot be either, and so on.
Nevertheless there are cases, when they can, and they would, if identity checks did not
prevent it.

The three fundamental relationships where identity checks are necessary:
1. Parent with two or more children, where two or more children are of the

same type.
2. Simple associations such that a source has two or more destinations, where

the destinations are of the same type; (source and destination roles are
interchangeable)

3. An association class such that a source is connected to two or more
association classes, where any association class has the type of another
association class, or a source is connected to two or more different type
association classes, but connected to destinations, where any destination has
the type of another destination; (source and destination roles are
interchangeable)

Fig. 9 Patterns where identity checker code is necessary

The performance gain resulting from the application of identity checkers is
apparent for large pattern graphs along with those relationships described above. The
brute force approach that checks each object for uniqueness would impose a
significant performance overhead in the runtime.

The generated code is guaranteed to have unique objects in the match iff, the
objects in the match have the same type, and they are connected to some identical
object (such as a parent, or other end of an association). (‘Has the type’ means same
type, or direct or indirect descendant of, as in OO terminology.)

Towards Generation of High-performance Transformations 13

4.6 Effector

Pattern graph can have pattern objects with roles set to CreateNew or Delete, as
described in Section 3.1. The actions are executed for each match found by the pattern
matcher. Fig. 10 presents some examples of consequence code generation.

GReAT consequence Generated UDM API C++ pseudo-code

// Create Pattern Object
Paradigm::Child newChild= Paradigm::Child::Create(Parent);

// Delete Pattern Object
if (Object) // if Object exists

Object.DeleteObject();

// create multiple cardinality simple association link
Source.dst()+= Destination;
// create single cardinality simple association link
Source.dst()= Destination;

Fig. 10 GReAT consequences and the respective generated code fragments

Another specification element of consequences is the Attribute Mapping Code.
These are code snippets provided by the user to manipulate the attributes of the graph
objects. The specification language for these snippets is C/C++, hence the code can be
directly copied into the generated code. The CG provides the context for the Attribute
Mapping Code by instantiating variables with pattern object names within the scope
of the Attribute Mapping Code.

4.7 Architecture of the CG

Having illustrated some required features of the generated code, we now focus our
attention on the design aspects of the CG tool. We present a way of using the
composite design pattern to produce the inherently complex transformation code. But
before going into details we present the architectural overview of the CG tool.

Fig. 11 The overall architecture diagram of the CG tool

14 Attila Vizhanyo, Aditya Agrawal, Feng Shi

The most fundamental design challenges along with their resolutions regarding the
generated C++ code are:

1. Simplicity and Clarity: Introducing the OO programming paradigm, that
results in a faithful representation of the architecture of the application
domain. Dependencies between different parts of the program are minimized
by the use of well-defined interfaces.

2. Correctness and Safety: The generated code is built up from small validated
code blocks in an iterative manner. Type safety is ensured by performing
run-time type checks previous to executing type casts. Application of STL
containers and iterators, which are not only safe but also predictably efficient
with the STL complexity guarantees.

3. Efficiency: Prudent application of language-level efficiency guidelines such
as passing objects by references, omission of creation objects on the heap,
elimination of implicit temporary objects, etc.

The approach we have taken to achieve these goals is to build a C++ syntax tree
like structure from various abstract data types representing C++ language primitives,
For instance, we created a class to embody the representation of a C++ class
definition or a C++ for-loop. This family of classes can also be thought of as the
metamodel for the output code, where each metamodel element corresponds to a
specific code fragment. In the code generation process we essentially construct the
appropriate objects and compose these objects into tree structures to represent the
generated program hierarchy. Finally the resulting hierarchical structure (or part of)
can be serialized in to C++ source file(s). This is an application of the Composite
design pattern [16].

The key to this design is the class PE, which is declared abstract, and represents
both primitives and containers. PE (Program Element) declares composite operations
for managing its children, and a print() function, which prints the object to the stream,
which is the function argument of print().

Fig. 12 The PE Class Hierarchy

All these operations are declared as virtual to take advantage of polymorphism in a
variety of cases where type dependent run-time discrimination is needed. One
example is the print() function of the composite class, which performs recursive
serialization through the polymorphic container _elems.

Towards Generation of High-performance Transformations 15

std::ostream& PEComposite::print(std::ostream &os) const
{

typedef std::list< const PE*> PEs_t;
 // print children
 for(PEs_t::const_iterator it= _elems.begin(); it != _elems.end(); ++it)
 {
 const PE* pe= *it;
 os= pe->print(os);
 }
 return os;
}

The CG tool generates human readable code -featuring formatted output and
separate header/source serialization-, by simply invoking the print() method on the
topmost object in the container hierarchy. Therefore, the fundamental challenge is
rather the creation of the PE hierarchy. In this sense, the CG tool can be thought of as
a translator, which translates the GReAT program hierarchy into the PE syntax
hierarchy.

The various modules of the Code Generator perform this translation in different
stages during the generation process. Each class encapsulates a set of algorithms
specific to a given task. If one class uses some services of another class, we made that
first class configurable with the behavior of the other class. This design first and
foremost supports runtime configuration of the various components, but it also
enhances reusability and advocates extensibility in the future. This is the Strategy
design pattern [16]. For example, the Sequencer class can be configured with a
Translator class, therefore the same sequencer can be (re)used with different translator
implementations. The key components of the CG tool are described below:

• CodeGenerator: This class provides the main user interface for the code
generation. It offers the family of strategy objects (see below) that support
the default translation course. The class also contains a Program object,
which represents the target of the translation. The primary design goal was to
make this class as easy to use as possible; if the user wants to perform more
sophisticated code generation, he can implement his own strategy classes and
plug them in the existing code generation framework.

• Sequencer: The structure of the GReAT rules can be represented by a
possibly cyclic directed graph. The Sequencer performs a Breadth-first
traversal on this graph starting from the root rule. Already visited vertices are
marked to prevent infinite traversals of the graph. For every sequenced rule,
the Sequencer calls the Translator to generate code which implements that
particular rule.

• Translator: This is the class that is primarily responsible for the translation.
Each rule is translated to its equivalent C++ class definition. The translation
procedure depends on the type of the rule, i.e. the implementation of the
class is rule-type-dependent. It is the Translator that generates the rule
callers, and it also keeps track of the mapping between the rules and the
corresponding generated class definitions. The Translator uses
PacketPassing, PatternMatcher and Effector modules to perform those
subtasks that are not directly related to the generic translation process.

16 Attila Vizhanyo, Aditya Agrawal, Feng Shi

• PacketPassing: This module defines a set of data structures that keep track
of the mapping between ports of a rule and the function argument list
generated for that rule. PacketPassing plays an indispensable role in the
generation of the rule callers, where function operators are to be called with
the correct function argument list to support the passing of already matched
subgraphs between various rules.

• PatternMatcher: The class PatternMatcher encapsulates all the translation
logic which is associated with the pattern matching code generation. The
pattern matching algorithm traverses the edges of the pattern graph, and
produces optimized pattern matching program code which implements the
pattern specification. The generated code checks the types of the graph
objects and the existence of specific type relationships in the host subgraph.
in an efficient way which is described in Section 4.5 The input subgraph gets
entered into the pattern matching context through the use of the
PacketPassing data structures. The PatternMatcher also generates an
embedded class definition which represents the match specific for the given
rule. If a match has been found, a container of the matches is appended with
the match. This container is going to be used in the implementation of
consequences, which is generated by the Effector.

• Effector: Consequences, such as object creation, deletion, and creation or
deletion of relationships are implemented by the Effector class. This class
also responsible for printing out the Attribute mapping code and creating
output packets from those pattern objects which are connected to the output
ports of the related rule.

The generated code compiles without any custom modifications, and it is also ISO
Standard C++ compliant, consequently platform independent.

4.8 Related work

The PROGRES environment developed at Aachen University of Technology solves
the pattern matching efficiency problem with the help of a simple heuristic
optimization algorithm, which is based on the implementation of a sophisticated cost
model. PROGRES, similarly to GReAT, introduces various language elements to
restrict the number of possible search paths, like node and edge types and edge
cardinality assertions [18]. PROGRES also offers an interpreter and a cross-compiler,
the later of which generates efficient Modula-2 or C code for PROGRES
specifications [7].

OPTIMIX is a flexible optimizer generator developed by Uwe Aßman at
University of Karsruhe. Its input language is based on Datalog and graph rewriting
systems such as edge addition rewrite systems (EARS) and stratified graph rewrite
systems (stratified GRS). The transformation can manage data models specified in
heterogeneous syntax formats like Java, AST and CoSy-fSDL. OPTIMIX is capable
of generating C or JAVA code based on the type of the input data models [17].

CLEAN, created by the Software Technology department of the University of
Nijmegen, is a functional programming language with explicit graph rewriting
semantics. A CLEAN program basically consists of a number of graph rewrite rules

Towards Generation of High-performance Transformations 17

with the common graph transformation semantics, but the left-hand side graph being
required to be a tree. CLEAN is not primarily designed to be a sophisticated graph
transformation specification language. Rather it is a modular and general purpose
programming language offering I/O libraries and diverse type systems [19].

Whereas GReAT, PROGRES and OPTIMIX generate code in other programming
languages and use external general-language compilers to generate executables,
CLEAN provides its own compiler and code generator, producing efficient native
object code optimized for graph rewriting programs.

5 Comparison of CG with GRE

In this section we will present some a comparison of the execution time of the GRE
and the Code Generator. Two transformation problems have been chosen for the
comparison. These transformations are:

1. Df Fdf: Transform Hierarchical dataflow to its equivalent Flat dataflow
representation.

2. Hsm Fsm: Transform Hierarchical Concurrent State Machine (HCSM)
to its equivalent Finite State Machine (FSM).

(a) Normalized performance (b) Code Generator speedup

Fig. 13 Performance graphs for Df Fdf

To evaluate the performance of CG in comparison with GRE, the Df Fdf
transformation was executed on 7 different input graphs. The size of these graphs
varied from 24 vertices to 914 vertices. Execution times of GRE and CG were
measured for all the inputs. Fig. 13(a) is a plot of the input graph size (n) vs.
normalized execution time for both GRE and CG. Matlab’s polyfit function was used
to find the closest fitting polynomial or exponential to the results and the second order
polynomial yielded the best results. For this reason the n2 plot is also shown in Fig.
13. From the graph we can see that the order complexity of the transformation doesn’t
change significantly between GRE and CG and is governed by the complexity of the
transformation algorithm. Experimentally we have seen that the transformation
algorithms complexity is ~ . Fig. 13(b) shows the graph of n vs. speedup
achieved by the code generator. The dashed line in the graph represents the average

)(2nO

18 Attila Vizhanyo, Aditya Agrawal, Feng Shi

speedup of 9.3x. From the graph we can see that the speedup varies within a bound
ranging from 4x to 18x.

(a) Normalized performance (b) Code Generator speedup

Fig. 14 Performance graphs for Hsm Fsm

For Hsm Fsm, 4 input graphs were used. These graphs only had parallel states
and varied from 11 vertices to 27 vertices. Execution times of GRE and CG were
measured for all the inputs. Fig. 14(a) is a plot of the input graph size (n) vs.
normalized execution time for both GRE and CG. The polyfit function was again used
and this time an exponential to the base 10 yielded the closest results. For this reason
Fig. 14 also shows the 10n plot. From the graph we can see that the order complexity
of the transformation doesn’t change between GRE and CG and is governed by the
complexity of the transformation algorithm. In this case we see that that
transformation algorithms complexity approaches ~ . Fig. 14(b) shows the
graph of n vs. speedup achieved by the code generator. The dashed line in the graph
represents the average speedup of 83.3x. From the graph we can see that the speedup
varies within a bound ranging from 14x to 119x. The 14x speed up was observed for
very small models and could be because of a constant runtime overhead. A speedup of
~100x was observed consistently for larger models.

)10(nO

From the experiments we see that the user is able to specify transformations with
polynomial characteristics, this can be attributed to the language features provided in
GReAT. On the other hand exponential algorithms can also be specified as in the case
of Hsm Fsm.

The second conclusion is that the order complexity of the transformation remains
the same for both GRE and CG. This is an expected result because the code generator
doesn’t not perform any modifications that can provide a gain in order complexity.

The speedup doesn’t seem to have a definitive trend with respect to the input size
but vary a lot from one kind of transformation to another. Df Fdf, an
transformation yielded an average speedup of ~9x while the Hsm Fsm, an

transformation yielded an average speedup of ~85x. These results make us
believe that the speedup is dependent on the complexity of the transformation. For
higher complexity transformations the speedup is also higher.

)(2nO

)10(nO

One possible reason for such a result can be based on the percentage of the total
execution time spent in the pattern matching as opposed to the packet passing and
other housekeeping work. Since a higher order complexity algorithm will spend more

Towards Generation of High-performance Transformations 19

time in the pattern matcher, and the code generator partially evaluates the pattern
matcher, a better speedup is observed. When the time complexity of the algorithm is
small and the size of the models is large. The packet-passing/housekeeping overhead
is a large percentage of the total execution time and the speedup observed is less.

6 Conclusion and future work

Specification of Graph transformations using high-level transformation languages
has many advantages in Model Driven Architecture (MDA), tool integration and other
areas in software engineering. The major bottleneck associated with graph rewriting
systems is poor runtime performance. Performance issues need to be tackled at all
levels of the transformation system, ranging from the language to low-level
implementations. There are two major categories of optimizations: (1) language and
algorithmic, that may yield an improvement in the order complexity and (2) partial
evaluation and implementation optimization that produce a constant time
improvement.

Three language-level optimizations have been described in the paper – (a) typed
patterns, (b) Pivoted pattern matching and (c) Reusing previously found objects.
These optimizations on an average can produce a significant speedup in the execution
time of the transformations. As shown in the comparison section, the Df Fdf
transformation had an order complexity of only n2 for both GRE and CG.

Although the reduced development time attributable to the graph specific language
semantics is an obvious benefit, efficiency drawback in the execution time can still
prevent the application of graph transformations in many real systems. We have
described how partial evaluation and other implementation techniques can
considerably speed up the transformations. In the case of Hsm Fsm transformation
the CG provided a speedup of ~100x over the generic graph rewrite engine.

Though many solutions have been presented in this paper to address the
performance needs, there are still some transformations that are exponential. In these
case though we cannot change the order complexity of the transformation we should
be able to further optimize the implementations such that they produce much better
results in the average case. Until the generated code does not do better than its hand
coded counterpart in speed of execution, there will be always room for improvement.
The generator can factor out repetitive transformations and reuse parts of the pattern
matching code.

7 Acknowledgement

The DARPA/IXO MOBIES program, Air Force Research Laboratory under
agreement number F30602-00-1-0580 and NSF ITR on "Foundations of Hybrid and
Embedded Software Systems" programs have supported, in part, the activities
described in this paper.

20 Attila Vizhanyo, Aditya Agrawal, Feng Shi

8 References

[1] J. Sztipanovits, and G. Karsai, “Model-Integrated Computing”, Computer, Apr. 1997, pp.
110-112.

[2] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling Language Reference
Manual”, Addison-Wesley, 1998.

[3] “The Model Driven Architecture”, http://www.omg.org/mda/, OMG, Needham, MA,
2002.

[4] “Request For Proposal: MOF 2.0 Query/Views/Transformations”, OMG Document:
ad/2002-04-10, 2002, OMG, Needham, MA.

[5] Grzegorz Rozenberg, “Handbook of Graph Grammars and Computing by Graph
Transformation”, World Scientific Publishing Co. Pte. Ltd., 1997.

[6] Blostein D., Schürr A., “Computing with Graphs and Graph Rewriting”, Technical Report
AIB 97-8, Fachgruppe Informatik, RWTH Aachen, Germany.

[7] A. Schürr, “PROGRES for Beginners”, Technical Report, Lehrstuhl für Informatik III,
RWTH Aachen, Germany.

[8] H. Gottler, “Attributed graph grammars for graphics”, H. Ehrig, M. Nagl, and G.
Rosenberg, editors, Graph Grammars and their Application lo Computer Science, LNCS
153, pages 130-142, Springer-Verlag, 1982.

[9] J. Loyall and S. Kaplan, "Visual Concurrent Programming with Delta-Grammars," Journal
of Visual Languages and Computing, Vol 3, 1992, pp. 107-133.

[10] G. Engels, H. Ehrig, G. Rozenberg (eds.), “Special Issue on Graph Transformation
Systems”, Fundamenta Informaticae, Vol. 26, No. 3/4 (1996), No. 1/2, IOS Press (1995).

[11] H.Ehrig, M. Pfender, H. J. Schneider, “Graph-grammars: an algebraic approach”,
Proceedings IEEE Conference on Automata and Switching Theory, pages 167-180 (1973).

[12] Agrawal A., Karsai G., Shi F., “A UML-based Graph Transformation Approach for
Implementing Domain-Specific Model Transformations”, Technical report, (ISIS),
Vanderbilt University, Nashville, TN, 2003.

[13] Agrawal A., Karsai G., Ledeczi A., “An End-to-End Domain-Driven Software
Development Framework”, 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), Anaheim, California,
October 26, 2003.

[14] Karsai G., Agrawal A., Shi F., Sprinkle J., “On the Use of Graph Transformations for the
Formal Specification of Model Interpreters”, JUCS, November 2003.

[15] Magyari E., Bakay A., Lang A., Paka T., Vizhanyo A., Agrawal A., Karsai G., “UDM: An
Infrastructure for Implementing Domain-Specific Modeling Languages”, The 3rd
OOPSLA Workshop on Domain-Specific Modeling, OOPSLA 2003, Anahiem, California,
October 26, 2003.

[16] Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns”, Addison-Wesley, 1995.
[17] Aue Aßmann, “OPTIMIX, A Tool for Rewriting and Optimizing Programs”, Technical

Report, University of Karslruhe, Germany, 1998.
[18] Albert Zundorf: “Graph Pattern Matching in PROGRES”, Graph Grammars and Their

Application to Computer Science, 5h International Workshop, Williamsburg, VA, USA
1994.

[19] “CLEAN: Version 2.0 Language Report”, Software Technology department, University of
Nijmegen, The Netherlands,

http://www.omg.org/mda/

