
Reliable Multihop Bulk Transfer Service for Wireless Sensor Networks

Péter Völgyesi, András Nádas, Ákos Lédeczi
Institute for Software Integrated Systems, Vanderbilt University

Nashville, TN, USA
{peter.volgyesi, andras.nadas, akos.ledeczi}@vanderbilt.edu

Károly Molnár
Embedded Information Technology Research Group,

Hungarian Academy of Sciences – Budapest University of Technology and Economics
Budapest, Hungary

kmolnar@mit.bme.hu

Abstract

Multihop message routing is a well studied and widely
documented area of research in wireless sensor networks
(WSN), where the dynamic and lossy nature of the wireless
medium and severe resource constraints pose major chal-
lenges. The vast majority of related research focuses on re-
liable and power-efficient transfer of small amounts of data,
such as low frequency sensor readings or event detections.
However, in a few but notable WSN applications, reliable
transfer of mass data is essential. The paper describes an
efficient multihop bulk transfer service along with a com-
plete sensor network application utilizing it for on-demand
image transfers. The paper focuses on the unique problems
of the service, such as resource allocation, flow control and
mobility throughout the modeling, simulation and imple-
mentation phases. Models of the protocol have been built
and simulated in a probabilistic wireless network simulator.
The prototype implementation targets TinyOS, a well-known
WSN operating system.

1. Introduction

Classic wireless sensor network applications usually in-
volve many-to-one periodic [4] or event-triggered [9] data
collection services. These services focus on the power-
efficient and reliable transfer of relatively small amount of
data through unreliable wireless links and nodes with severe
resource constraints. Duty cycling, smart scheduling and
in-network data aggregation are well known techniques to
improve power efficiency, while redundant links and packet
retransmissions can increase the reliability of such services.

However, there are a few but interesting sensor applica-
tions which depend on a mass data transfer service. No-
table examples are imaging sensors that can easily capture
large amount of data, acoustic beamforming applications,
where raw samples need to be transmitted to a centralized
station. Even in those applications where the sensors can lo-
cally process and can extract features from the captured data
the capability of transferring unprocessed sensor readings is
essential in the development and test phases [9]. There are
several unique problems that need to be addressed in a mass
data transfer service. Because of the limited and shared
communication bandwidth, redundant packets—from the
same node or along alternative paths—are prohibitive in
these scenarios. Instead, the protocol has to provide built-in
mechanisms to increase the probability of successful packet
transmissions. Potential solutions include resource (chan-
nel) arbitration and continuous link status estimation. The
limited storage capabilities of the intermediate nodes allow
to store only a tiny fraction of the data at a time, thus effec-
tive end-to-end and link-by-link flow control mechanisms
must be employed to prevent the accidental loss of data.

As the application context of our bulk transfer service
we consider a sensor network utilizing both imaging and
non-imaging sensors, sensorless router nodes and one or
more base stations as they are shown in Figure 1. Sen-
sors, routers and base stations can be dynamically added,
removed or moved within the network and these changes
should be detected and reported at the base stations with
limited delay (few seconds). Changes in the network topol-
ogy due to node failures or fading communication links
must be transparent to the user. Event detections originat-
ing at non-imaging sensors (PIR sensors, accelerometers,
magnetometers, microphones and pressure sensors) must be
forwarded to every base station in the network. Also, each



individual node should be accessible from each base sta-
tion all the time for modifying operational parameters and
to query the status of the sensor node. The operator at the
base station should be able to request moderately large (10-
30 kbytes) images from any of the imaging sensors and the
multihop network should forward these images to the the
base station with minimum delay and low packet loss. Dur-
ing the image transfer the mobility of the base station can
be constrained, however the station should be able to move
without any restrictions between transfers.

I2

NI2

R1

B1
I3

I1

NI1

NI3

R3

R5

R4

R2
B2

I

NI

R

B Base Station

Router

Imager

Non-imaging 
Sensor

Reliable Link

Figure 1. Wireless image sensor application.
Images are transferred to one or more base
stations on-demand through an ad-hoc wire-
less network.

The sensor application utilizes TinyOS, a well-known
WSN operating system [3] running on MicaZ nodes [8]
with low power (1 mW) IEEE 802.15.4 compliant radios
operating in the 2.4Ghz ISM frequency band. Imaging
and non-imaging sensor functions are implemented on sen-
sorboard add-ons connected to the MicaZ node through
a UART communication interface. XBow Stargate single
board computers—also equipped with MicaZ nodes—carry
out the base station tasks and connect the MicaZ network to
WiFi-enabled PDAs.

In this paper, we explore the unique problems of a
bulk transfer service throughout the modeling, simulation
and implementation phases. In Section 2 we give a brief
overview of related work. Section 3 presents the mech-
anisms and architecture of the bulk transfer service. We
also investigate an efficient link estimator and neighborhood
management service, which is essential to the bulk transfer
protocol. As a first step towards implementation in Sec-

tion 4 we build and evaluate a simulation model of the ser-
vice using Prowler, a probabilistic wireless network simu-
lator. Section 5 presents our TinyOS-based implementation
and briefly describes the most important network manage-
ment and non-imaging data services. We evaluate the per-
formance and reliability of the service in Section 6.

2. Related Work

There are several well studied and documented routing
schemes and media access protocols exist in wireless sen-
sor networks. One of the most influential results on our
work was published by Woo et al. [13], which aims at an
accurate link estimation method in dynamically changing
ad-hoc topologies. Our connectivity measures build on this
method, however—as it is discussed later in the paper—we
decided to employ active ping messages for neighborhood
monitoring. In their work they also explore different rout-
ing policies (shortest path, minimum transmission, broad-
cast, destination sequenced distance vector) on top of the
link estimator service, but their focus is on a many-to-one,
periodic data collection scenario.

In the TinyOS community [12] is one of the most promi-
nent and early study on media access mechanisms and trans-
mission control. They propose an adaptive rate-control
mechanism for energy efficient media access with fair band-
width allocation. Again, their work aims at relatively sparse
network traffic. In a closely related paper Polastre et al.
[7] describe B-MAC, the prevailing media access scheme
in TinyOS. They argue that a flexible and on-the-fly recon-
figurable media access protocol—providing bidirectional
application interfaces—can result in better overall perfor-
mance. The prototype implementation of our bulk transfer
service was built on top of this infrastructure, where the ad-
vantages of their approach were apparent.

Some alternative MAC protocol offerings have been
based on the RTS-CTS scheme inspired by IEEE 802.11
wireless LANs [2]. S-MAC [14] provides this mechanism
as a general purpose MAC layer, although it is more sen-
sitive to changing network conditions and relies on more
complicated mechanisms (eg.: synchronization, schedul-
ing) then B-MAC.

PSFQ (Pump Slowly,Fetch Quickly) is a reliable trans-
port protocol with hop-by-hop acknowledgements suitable
for sensor network reprogramming. However, in this appli-
cation the packets are originated at the base station and dis-
seminated to all the nodes in the network. Straw (Scalable
Thin and Rapid Amassment Without loss) is a reliable data
collection service developed at UC Berkeley. Straw was
built on Drip and Drain [11] and it draws the complexity to
the receiver (PC), while senders (wireless nodes) are kept
simple and light-weight. Although the service is available
in the TinyOS source tree, the results are not yet published.



3. Bulk Transfer Service

One of the most significant differences between sparse
message routing and bulk transfer is the cost of redundant
messages. These messages can greatly improve the reliabil-
ity of the former one without any significant performance
loss, but can drastically degrade the throughput in the latter
case. On the other hand, administrative and control mes-
sages are superfluous to protect few data packets, but fairly
lightweight for longer packet bursts. For the above reasons
we decided to employ a Request-to-Send (RST) Clear-to-
Send (CTS) control scheme as it is shown in Figure 2. This
is a simplified version of a the approach in 802.11 wireless
LANs [2]. For similar reasons WiFi networks selectively
employ this handshaking mechanism for protecting longer
bursts or larger packets. According to the scheme, large
data files are packetized, then the packets are sent through
the network in bursts, where the size of a burst depends
on the storage capabilities of the nodes. A network node
can either be idling, collecting packets in a burst from an-
other node or from the sensorboard, or transmitting previ-
ously collected packets towards the base station. A node
never accepts packets from more than one bursts at a time,
however, multiple concurrent transfers can pass through the
node on a burst-by-burst basis. Before the node enters the
transmit state, it has to send a request packet (RTS) to the
next node in the routing path and wait for an explicit ac-
knowledgement (CTS). If the CTS packet does not arrive—
for several possible reasons: the original RTS packet was
lost, the receiver was already in collect or transmit states,
or the CTS packet was lost—the sender node tries to re-
transmit its request for a few times with random backoff
delays. Also, if another potential sender node overhears
an RTS or CTS or burst data packet from or to another
sender, it automatically delays its RTS request or discards
a positive CTS acknowledgement. This handshaking proto-
col provides simple but efficient flow-control on a link-by-
link basis, detects asymmetric or weak links and effectively
avoids hidden terminal problems. Also, as it is shown in
Figure 2, if the underlying MAC layer supports it—as it is
the case in the B-MAC implementation in TinyOS[7]—the
initial backoff time can and should be lowered (or elimi-
nated) within the burst. Since we expected very low packet
loss within the handshake protected bursts and did not want
to interfere with the rapid bursts, we decided to employ a
negative acknowledgement-based end-to-end protocol for
requesting missing/lost packets.

We chose a simple spanning tree protocol for building
routing paths, which avoids redundant links and obtains
short routes with low hop counts. To provide a robust rout-
ing service and to support mobility requirements, base sta-
tions build up unique single-use routing trees for each im-
age request. Since the request itself has to be propagated

Sender

Receiver Time

RTS

CTS

Data Data

t1
t2 t2

Figure 2. Request-to-Send/Clear-to-Send
handshake protects longer packet bursts

throughout the network anyway, this does not cause sig-
nificant performance loss. The base station starts the tree
building process by broadcasting a routing beacon with the
hop count set to zero and advertising the base station as
the immediate parent. Any node overhearing this beacon
message stores the new information in its routing table and
retransmits the beacon after increasing the hop count and
designating itself as the new parent. To support multiple
base stations and concurrent transfers, each beacon message
contains a tree identifier generated by the root (base sta-
tion). Later on, incoming packet bursts and the associated
RTS/CTS messages will refer to the same tree identifier. A
simplified routing table is shown in Table 1. This table de-
scribes three routes (identified as 0x56, 0x88 and 0x89). In
the first tree (0x56) the address of the intermediate parent is
13 and the current node is 2 hops away from the base sta-
tion with address 1. The Lock attribute is set if the current
node received or transmitted data packets in the given tree
recently, thereby protecting active trees from being evicted
from the table.

Tree ID Root Parent Hop Count Lock
0x56 1 13 2 0
0x88 2 21 4 0
0x89 2 22 5 1

Table 1. Routing table with spanning tree in-
formation

Although spanning trees provide a simple and efficient
routing infrastructure, one should carefully consider their
weaknesses in low-power wireless environments with inher-
ently lossy and asymmetric communication channels. The
previously described handshake protocol can detect weak
links in an existing tree, but cannot prevent such a tree
from forming. Therefore, we have enhanced the original
tree building protocol to accept a potential parent only if
the link between the current node and the new parent is
”reliable”. This simple addition to the spanning tree pro-



tocol needs a new network service that maintains the neigh-
borhood connectivity information. We decided to collect
link statistics with active ping messages. Every node peri-
odically transmits a short broadcast message and waits for
replies. The initial frequency of these messages—in the first
minute after power on or reset—is relatively high to pro-
vide fast startup. Also, the intervals between the ping mes-
sages are randomized to avoid unfair schedules. Each node
maintains a neighborhood statistics table (see Table 2) and
increases the Reply Count attribute upon receiving a reply
from one of its neighbors (new neighbors are added to the
table on-demand).

Neighbor Reply Count Score
13 9 80
21 7 74
22 8 95
12 2 15

Table 2. Link reliability database

After several (N) rounds the node updates the link relia-
bility scores by incorporating and resetting the Reply Count
values in the previous score using and exponentially aver-
aging low-pass filter:

score[k] = α∗score[k−1]+(1−α)∗ 100 ∗ reply count

N
(1)

In this manner the link monitor service assigns a reliabil-
ity score (0-100) to all of the neighbors, which can further
be used to decide if a potential parent should be accepted
in the spanning tree—eg. if its score is above an arbitrar-
ily chosen minimum score threshold. Note, that our metric
is solely based on the count of successful packet transmis-
sions, since techniques based on signal strength measure-
ments may result in inferior link quality indicators [1].

Our link estimator can detect asymmetric (because it
builds statistics from reply messages) and weak links. Al-
though active ping messages cause additional network traf-
fic, they can identify and discard overloaded nodes as par-
ents (because of dropped packets in the radio stack) even if
the physical radio link is reliable towards them. Passive link
monitors cannot provide such features.

4. Protocol Modeling and Simulation

Before implementing the protocol and related services in
nesC on the motes, we evaluated them in simulation utiliz-
ing realistic radio models. The probabilistic wireless net-
work simulator (Prowler) [10] is an event-driven tool that
simulates the nondeterministic nature of the communica-
tion channel and the low-level communication protocol of

the wireless sensor nodes. To produce replicable results
while testing the application, Prowler can be set to oper-
ate in deterministic mode also. It can incorporate arbitrary
number of nodes on arbitrary and even dynamic topology.
Prowler models all the important aspects of the communica-
tion channel and the application. The tool is implemented in
MATLAB, thus it provides a fast and easy way to prototype
applications, and has nice visualization capabilities.

The nondeterministic nature of the radio propagation is
characterized by a probabilistic radio channel model. A
simplified, but accurate model is used to describe the op-
eration of the Medium Access Control (MAC) layer. The
applications interact with the MAC layer through a set of
events and commands just like in actual TinyOS applica-
tions.

The radio propagation model determines the RF signal
strength at a particular point in the space for all transmitters
in the system. Based on this information the signal recep-
tion conditions at the receivers can be evaluated and colli-
sions can be detected. The signal strength from the trans-
mitter to a receiver is determined by a deterministic propa-
gation function (modeling the decay of signal strength with
distance), and by random disturbances (modeling the fad-
ing effect, the time-varying nature of the signal strength,
and other miscellaneous transmission effects.)

The MAC layer communication is modeled by a simpli-
fied event channel. When the application initiates a packet
transmission, the MAC layer checks if the channel is idle
after a random time interval. If not, it continues the idle
checking until the channel becomes idle. Before each check
it waits for random backoff time. When the channel is found
idle, the transmission begins and after a constant time pe-
riod simulating the transmission time, the application re-
ceives an event indicating that the packet has been sent. Af-
ter the reception of a packet on the receivers side, the appli-
cation receives another event signaling packet reception or
collision depending on the success of the transmission.

Similarly to the real TinyOS framework, Prowler appli-
cations are event-based. The simulator signals important
events for the application code, such as initialization com-
pleted, packet sent, packet received, packet collided and
clock ticked. The application in turn can initiate actions
such as set clock and send packet. These can cause further
events. Several debugging/visualization tools are also avail-
able, including switching mote LEDs on/off, drawing lines
and arrows, and printing text messages.

Since Prowler was originally targeted at Berkeley Mica
and Mica2 motes, we had to extend the radio propagation
and MAC layer behavioral models with the characteristics
of the the Chipcon CC2420 radio chip employed by Mi-
caZs. We conducted several real-world measurements in
different environments (indoor, outdoor, unobstructed and
multipath) to infer reasonable values for the fading para-



meters. The signal strength (Prx) from the transmitter to a
receiver is modeled by the following random function:

Prx(i, j) =
Ptx(i, j)
1 + dγ

∗ [1 + α(d)] ∗ [1 + β(t)] (2)

where Ptx is the transmit power and d is the distance. Dis-
turbances in distance (eg. multipath effects) and time are
modeled by random variables α and β with standard distri-
bution. We consider the packet transmission successful, if
the Signal to Interference and Noise ratio (SINR) is above
a minimum threshold:

SINR =
Prx(i, j)

σ2 +
∑

k 6=j Prx(i, k)
(3)

where σ is an arbitrary noise variance parameter. Table 3
contains the empirically chosen values for the parameters
in this radio model. MicaZ specific MAC parameter values
(bit time, backoff intervals, etc.) were also added to the
model.

Parameter Value Parameter Value
α (fading) 0.3 β (multipath) 0.02
σ (rx noise) 0.05 SINRmin 2.0
γ (decay) 2.0

Table 3. Radio propagation parameters in
Prowler for MicaZ radios

After preparing Prowler for simulating MicaZ-based net-
works, we created a prototype implementation of the image
transfer application in MATLAB, focusing primarily on the
bulk transfer and closely related services. One of the most
important lessons that we have learnt here was the impor-
tance of redundant (automatically repeated) spanning tree
beacons for increasing the reliability of the spanning tree
formation process.

5. Implementation

According to the application requirements, we had to
address the reliable routing problem of non-imaging data
as well. Furthermore, these packets might need to be for-
warded to multiple base stations at the same time and the
routing service should rapidly adapt to changes in the net-
work topology. For the above reasons we decided to uti-
lize a broadcast-based flooding protocol for non-imaging
data. Although it may generate unnecessary traffic in cer-
tain areas of the network, it promptly adapts to the chang-
ing topology—since no routing information is maintained
by the nodes. Since these tradeoffs cannot be completely

evaluated and compared in the design and early implemen-
tation phases, we were prepared for possible policy changes
in this routing logic. Our previous work, the Directed Flood
Routing Framework (DFRF) [5] enabled us to develop in-
terchangeable policy alternatives without modifying other
parts of the application.

The general architecture of the routing framework is
shown in Figure 3. At the heart of the framework is the rout-
ing engine—responsible for message buffer maintenance
and automatic packet aggregation, for communicating with
the radio stack and the applications and for driving the
policy plug-ins. Policies are state machines that describe
which packets need to be rebroadcasted by the node and
when. We managed to reuse two existing policy plug-ins,
the broadcast policy for sparse non-imaging packets and
a gradient convergecast policy—where intermediate nodes
rebroadcast a data packet zero, one or more times until it
is received from a node ”closer” to the root—for network
management functions.

Policy Application

Flood Routing Engine

PolicyPolicyPolicyPolicyPolicy

Flood Routing Engine

g
et

R
an

k

ac
ce

p
t

se
n

t

re
ce

iv
ed

ag
ed

Application

Flood Routing Engine

ApplicationApplicationApplication

re
g

is
te

r

u
n

re
g

is
te

r

se
n

d

re
ce

iv
e

OS / Radio Stack

Flood Routing Engine

OS / Radio Stack

Figure 3. Flood-routing framework compo-
nents

It seemed to be an obvious choice to implement the bulk
transfer protocol as a policy plug-in for DFRF and indeed
the first incarnation of the service was implemented this
way. After the first rudimentary tests we realized that the
unique requirements and non-flooding behavior of the bulk
transfer service necessitates modifications to the DFRF in-
terfaces and to some of the internal buffer management al-
gorithms (most of these changes were needed to expose
the flow-control mechanism to the application level and
for conducting burst transmissions more efficiently). Since
many of these changes were not harmonious with the orig-
inal concepts of the flood routing framework, we finally
implemented the service as a standalone set of TinyOS
components (see Figure 4. The first of these components,
LinkMonitor collects, maintains and provides neighborhood
connectivity statistics. It maintains a table of up to 16 neigh-
bors and broadcasts ping messages in 20 second intervals
with up to 1 second randomization (in the initial rapid dis-



covery phase ping messages are sent in 250ms-500ms in-
tervals). After 10 ping messages it updates the neighbor-
hood scores according to Eq. 1. The RoutingTable compo-
nent is responsible for building and maintaining spanning
tree information. It can store up to 16 spanning tree en-
tries on each network node. Since reliable spanning tree
formation is vital for the bulk transfer service, each node
repeats the beacon message twice (with a random delay of
up to 125ms). A potential parent is accepted if its score—
provided by the LinkMonitor service—is above 75, an em-
pirically obtained threshold. The locking interval is set
to 2 seconds. The RTS/CTS handshake protocol was im-
plemented in FlowControl, a separate TinyOS component.
Overheard RTS, CTS or burst packets cause a random back-
off between 8ms − 24ms before entering into the trans-
mit state. If the channel is considered clear the compo-
nent sends an RTS packet and waits for an explicit CTS
acknowledgement with a 60ms timeout. The component
gives up on the request and signals failure after more then
5 backoff or 3 timeout events, whichever comes first. Fi-
nally, the BulkRouting component integrates the previous
modules, provides the application interface and maintains
the burst buffers. The current MicaZ-specific implementa-
tion handles data packets with the maximum length of 45
bytes while a single burst contains up to 18 packets.

OS / Radio Stack

BulkRouting

Application

LinkMonitor

OS / Radio Stack

FlowControl

RoutingTable

Figure 4. Component architecture of the Bulk
Transfer Service

Rich network management facilities proved to be es-
sential not only in the protocol development and test cy-
cles, but in the final application deployment as well. We
decided to implement these features early in the develop-
ment cycle—even before the managed services were ready.
We successfully utilized several of our existing TinyOS and
Java based utilities—which are part of the standard TinyOS
distribution—for network management. RemoteControl is
a generic service for sending simple commands and/or pa-
rameter values to other services or applications running on

the nodes. We integrated this tool into the bulk transfer ser-
vice components to provide access to key parameters and
data structures (eg. parent and root addresses in the span-
ning tree, backoff delays and timeout values). The DFRF
framework was also utilized with the convergecast Gradi-
ent Policy for downloading complete routing tables or link
statistic databases to the management station. Its perfor-
mance characteristics and complexity place this policy be-
tween the broadcast-based flooding and the spanning tree
based bulk transfer protocol, which makes it perfectly suit-
able for transferring moderately sized tables (3-4 network
packets each). Optimal timing parameters are the corner-
stones of the bulk transfer service. Therefore, these values
were inferred in real-world test scenarios. For these we used
an accurate and mature time synchronization and message
time stamping service [6]. The above services and tools are
integrated and coherently presented on the network man-
agement PC within the MessageCenter Java-based frame-
work.

Application

Flood Routing Engine

g
et

R
an

k

ac
ce

p
t

se
n

t

re
ce

iv
ed

ag
ed

re
g

is
te

r

u
n

re
g

is
te

r

se
n

d

re
ce

iv
e

OS / Radio Stack

RTS RECEIVE

IDLE

RADIO COLLECT

SOURCE COLLECT

RTS SEND

CTS WAIT

DATA SEND

BACKOFF

app packet / store

app packet / store

app send or buffer is full

activity detected

timeout (16ms)no activity / send RTStimeout (60ms)

to
o 

m
an

y 
(5

) r
et

ir
es

received CTS / lock tree
buffer is not empty /
send data packets

buffer is empty

packet received / store

timeout (30ms) or 
buffer is full

buffer empty / send CTS

RTS received and
no activity detected

Figure 5. State machine of the Bulk Transfer
Protocol



Although in the final application different types of real
sensors and PDA gateways were deployed, we had to create
an environment with simulated sensor and gateway func-
tions to start the software development before the hardware
devices were built and tested. These sensor and gateway
simulators were also implemented as MessageCenter plug-
ins and were running on PCs connected to one or more Mi-
caZ nodes through UART communication links. Because
in low hop-count networks the serial interface turned out to
be the real bottleneck, these simulators enabled us to real-
ize the importance of a solid flow-control mechanism very
early in the development and to notify the hardware devel-
opers in time to incorporate the flow-control mechanism in
the real sensors as well.

6. Conclusions

We have evaluated the performance of the bulk transfer
service in different deployments and traffic loads. The re-
sults in a particularly congested and severe multipath sce-
nario are shown in Figure 6. In this setup the nodes were
deployed on the ground with 5-10 meter spacing and mul-
tihop routing was assured by a small modification to the
RoutingTable component. Two different physical topolo-
gies were used: first the sensors were deployed on a sin-
gle line, next they were (almost) randomly scattered in a
larger room. Note, that software enforced spanning trees
may degrade the overall performance of the service, since
they result in denser topologies, then were actually needed
to route between the end points. We used the Java-based
imaging sensor and gateway simulators to transfer 10KB
jpeg image files (286 radio packets with 35 byte effective
payload) through multiple hops and did not employ any
packet aknowledgement/retransimission scheme for calcu-
lating the successful packet reception ratio. Within the first
three hops the protocol seemed to be extremely reliable and
it remained very usable to five hops. Above this hope count,
potential applications need to employ more sophisticated
retransmission protocols. The transmission time degraded
gracefully (each hop added 1-2 seconds delay) as we in-
creased the number of hops, especially if we consider that
the majority of the nodes were in the same collision domain.

The main lesson we learned from our experiences in
building a reliable bulk transfer service for wireless sensor
networks is that the simple collision avoidance provided by
the MAC layer is not enough. With the RTS/CTS handshak-
ing we effectively ”reserve” the channel for the duration of
a burst. On the other hand, this has significantly less over-
head and it is much more flexible than something like circuit
switching.

To be able to handle the unreliable and dynamic nature of
the wireless medium as well as to support mobility, the con-
tinuous link quality monitoring service and the on-demand

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8
Hop Count

Ti
m

e 
(s

ec
)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8
Hop Count

R
ec

ei
ve

d 
pa

ck
et

s 
(%

)

Figure 6. Successful packet transmission
ratio and transfer time with different hop
counts in a multipath and congested sce-
nario

rapid spanning tree formation are essential in minimizing
packet-loss. The final key component in achieving close to
100 % reliability is the NACK-based end-to-end flow con-
trol scheme. The protocol can adapt to dynamically chang-
ing ad-hoc topologies extremely well between transfer ses-
sions (spanning trees are built on-demand before each trans-
fer), however—in its current form—it cannot tolerate ex-
treme changes within the sessions. This poses an important
constraint on the maximum practical size of the bulk data.

As part of an experiment we ported the bulk transfer ser-
vice to Berkeley mica2 radios. Even though this needed the
replacement of the entire radio stack below the service, we
only had to modify the timing parameters, but the rest of
the source code remained exactly the same. We believe that
the service can be easily implemented on other platforms
and can provide an often neglected functionality in sensor
networks.

References

[1] D. S. J. De Couto, D. Aguayo, B. A. Chambers, and R. Mor-
ris. Performance of multihop wireless networks: Shortest
path is not enough. In Proceedings of the First Workshop on
Hot Topics in Networks (HotNets-I), Princeton, New Jersey,
October 2002. ACM SIGCOMM.



[2] M. Gast. 802.11 Wireless Networks: The Definitive Guide.
O’Reilly, 2005.

[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked sen-
sors. SIGOPS Oper. Syst. Rev., 34(5):93–104, 2000.

[4] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson. Wireless sensor networks for habitat moni-
toring. In ACM International Workshop on Wireless Sensor
Networks and Applications (WSNA’02), Atlanta, GA, Sept.
2002.

[5] M. Maroti. Directed flood-routing framework for wire-
less sensor networks. In Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middle-
ware, pages 99–114, New York, NY, USA, 2004. Springer-
Verlag New York, Inc.

[6] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding
time synchronization protocol. In SenSys ’04: Proceedings
of the 2nd international conference on Embedded networked
sensor systems, pages 39–49, New York, NY, USA, 2004.
ACM Press.

[7] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In SenSys ’04: Pro-
ceedings of the 2nd international conference on Embedded
networked sensor systems, pages 95–107, New York, NY,
USA, 2004. ACM Press.

[8] J. Polastre, R. Szewczyk, C. Sharp, and D. Culler. The mote
revolution: Low power wireless sensor network devices. In
Hot Chips 16: A Symposium on High Performance Chips,
Stanford, California, USA, Aug. 2004.

[9] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy,
A. Nadas, G. Pap, J. Sallai, and K. Frampton. Sensor
network-based countersniper system. In SenSys ’04: Pro-
ceedings of the 2nd international conference on Embed-
ded networked sensor systems, pages 1–12, New York, NY,
USA, 2004. ACM Press.

[10] G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi.
Simulation-based optimization of communication protocols
for large-scale wireless sensor networks. In IEEE Aerospace
Conference (CDROM), 2003.

[11] G. Tolle and D. Culler. Design of an application-cooperative
management system for wireless sensor networks. In EWSN
’05: Proceedings of the 2nd European Workshop on Wire-
less Sensor Networks, 2005.

[12] A. Woo and D. E. Culler. A transmission control scheme
for media access in sensor networks. In MobiCom ’01: Pro-
ceedings of the 7th annual international conference on Mo-
bile computing and networking, pages 221–235, New York,
NY, USA, 2001. ACM Press.

[13] A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks.
In SenSys ’03: Proceedings of the 1st international confer-
ence on Embedded networked sensor systems, pages 14–27,
New York, NY, USA, 2003. ACM Press.

[14] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac
protocol for wireless sensor networks. In Proceedings of
the IEEE Infocom, pages 1567–1576, New York, NY, USA,
June 2002. USC/Information Sciences Institute, IEEE.


