

Component-Based Development of Networked Embedded Applications

Péter Völgyesi and Ákos Lédeczi

Institute for Software Integrated Systems, Vanderbilt University
{peter.volgyesi, akos.ledeczi}@vanderbilt.edu

Abstract

 Networked Embedded Systems (NEST) are large-scale
distributed systems with resource limited processing
nodes tightly coupled to physical processes via sensors
and actuators. These strict resource constraints mandate
thin application-specific operating system and
middleware layers. Component-based development is an
enabling technology in this arena. We present a model-
based approach to the development of applications based
on TinyOS, an important NEST platform. OS and
application component interfaces along with their
interdependencies are captured in a graphical
environment and the glue code that ties together the
application and OS components are automatically
generated. A fully functional sophisticated modeling and
code generation environment was developed in one man-
month. This is due to the model integrated technology
applied in the tool development.

1. Introduction

 Networked Embedded Systems (NEST) are large-scale
distributed systems with resource limited processing
nodes tightly coupled to physical processes via sensors
and actuators. NEST systems are distributed, but the
nodes must achieve a centralized goal cooperatively.
Typical NEST applications include large-scale active
noise and vibration control, cooperative sensor networks,
micro-satellite constellations and smart structures.
 NEST nodes typically have limited computing power
and small amounts of memory. They must consume as
little power as possible. Communication is noisy and its
bandwidth is limited. The individual nodes and
communication channels are inherently unreliable, yet the
overall system needs to be robust. These requirements
mandate novel systems and software engineering
techniques.
 A typical NEST application running on each node can
be separated into the three layers depicted in Figure 1.
The local operating system manages the underlying
hardware infrastructure including interfacing with the
physical world through sensors and actuators. The
distributed nature of computation implies that each node
should be equipped with sophisticated middleware —a
kind of distributed operating system that provides global

services for the applications, such as message routing,
broadcast, consensus, group membership, etc. The actual
application code utilizes both the OS and the middleware
layers.
 What distinguishes a NEST application from a
traditional one is that neither the operating systems nor
the middleware can be the usual, heavyweight, monolithic
component that contains all services for all applications.
The strict resource constraints, especially the memory
limitations, mandate application-specific, thin operating
system and middleware layers.

Physical System

Middleware

Operating System

Application

Hardware

Figure 1. Layered Architecture

 A component-based approach to the problem is quite
natural. Specifically, the computational model of TinyOS,
a highly modular, customizable operating system for tiny
embedded devices developed at UC Berkeley
(http://tinyos.millennium.berkeley.edu), is an ideal fit for
the task at hand. However, the specification of component
interfaces, hierarchical component dependencies and
interactions using the current text-based environment is
cumbersome and error-prone. This paper introduces
GRATIS, a graphical development environment for
TinyOS that provides an intuitive visual interface and
automatic code generation capability for the development
of TinyOS-based applications.
 The rest of the paper is organized as follows. The next
section describes the software infrastructure used to
develop GRATIS. Next, a typical hardware platform for
NEST in general and TinyOS in particular is presented.
This is followed by a brief introduction to TinyOS.
Finally, GRATIS is described in detail along with a
simple case study.

2. Model Integrated Computing

The Graphical Development Environment for TinyOS
(GRATIS), which is in the focus of this paper, was
developed using Model Integrated Computing (MIC)
technology [1]. A brief summary of MIC follows.
 MIC employs domain-specific models to represent the
system being designed. These models are then used to
automatically synthesize the applications and/or to
generate inputs to analysis and/or simulation tools. This
approach speeds up the design cycle, facilitates the
evolution of the application, and helps system
maintenance, dramatically reducing costs during the
entire lifecycle of the system.
 MIC is implemented by the Generic Modeling
Environment (GME), a metaprogrammable toolkit for
creating domain-specific modeling environments [2].
GME employs metamodels that specify the modeling
paradigm of the application domain. The modeling
paradigm contains all the syntactic, semantic, and
presentation information regarding the domain – which
concepts will be used to construct models, what
relationships may exist among those concepts, how the
concepts may be organized and viewed by the modeler,
and rules governing the construction of models. The
modeling paradigm defines the family of models that can
be created using the resultant modeling environment. The
metamodels specifying the modeling paradigm are used to
automatically configure GME for the domain. An
interesting aspect of this approach is that GME itself is
used to build the metamodels themselves using a
formalism based on the UML class diagram notation [3].
 GME is used primarily for model-building. The
models take the form of graphical, multi-aspect, attributed
entity-relationship diagrams. The static semantics of a
model are specified by OCL constraints [4] that are part
of the metamodels. They are enforced by a built-in
constraint manager during model building time. The
dynamic semantics are applied by the model interpreters,
i.e. by the process of translating the models to source
code, configuration files, database schema or any other
artifact the given application domain calls for.
 This approach fits component-based software
development very nicely. The interface of the individual
components can be modeled along with a link to their
implementation. The model editor can enforce the
composition rules to make sure that only valid component
assemblies are allowed. Finally, model interpreters can
generate the glue code that ties the final system together.
These concepts are perfectly demonstrated by GRATIS
described later in the paper.

3. Target Hardware Platform

 One of the NEST experimental target platforms is a
network of tiny devices, called the motes. Each mote is
about 2 inches by 4 inches. It is powered by a pair of AA
batteries. The heart of the device is the ATmega 103L 8-
bit micro-controller. It has 128 Kbytes of flash
(instruction) memory and 4 Kbytes of SRAM (data
memory) on-chip. The micro-controller has 8 A/D
channels and an UART built-in.

Figure 2. A Berkeley mote

 A coprocessor provides access to the on-board 4-Mbit
EEPROM that can be used for data-logging or even for
reprogramming the CPU on-the-fly. This can be done via
the radio unit that runs at 900 MHz and has a maximum
transfer rate of 50 Kbits/sec. The radio has a
programmable gain. It’s maximum range is about 30 feet.
The unit also sports 3 LEDs for debugging and
demonstration purposes. A simple programming board
can be used to download programs via a standard PC
parallel port and/or to communicate with a mote via the
serial port.

4. The TinyOS Operating System

 The unique characteristics of these motes lead to the
development of TinyOS, a component-based, highly
configurable embedded operating system with a very
small footprint [5]. A TinyOS instance consists of a set of
interconnected components scheduled by a tiny, FIFO-
based scheduler. Components communicate with each
other through commands and events. Commands
propagate downward; they are issued by higher level
components to lower level ones. Events propagate

upward; they are signaled by lower level components and
handled by higher level ones as shown in Figure 3. The
lowest level of events are generated by the hardware itself
in the form of interrupts.
 A component consists of a set of tasks, event- and
command handlers and a frame, a statically allocated
piece of memory that stores the state of the component
[5]. TinyOS does not support dynamic memory
allocation, a significant restriction, but one that buys
efficiency and simplicity. The hardware does not provide
much memory to allocate in any case.

HANDLED
EVENTS

SIGNALED
EVENTS

HANDLED
COMMANDS

ISSUED
COMMANDS

FRAME TASKS

Figure 3. TinyOS concepts

 Commands are typically handled by modifying the
state of the component, possibly posting a task for later
execution and possibly issuing commands to lower level
components. An event handler can also modify the state
of the component, signal higher level events or call lower
level commands. Note that commands cannot signal
events to avoid cycles. Tasks are the worker bees of
TinyOS. They can issue commands, signal events and
post other tasks. Tasks are intended to do a short amount
of processing and return. They can only be preempted by
events. This task model enables TinyOS to have a single
stack.
 Possibly the best feature of TinyOS is its component-
based configurability enabling the creation of highly
application-specific operating systems. In addition to its C
implementation, each component has a special file
(.comp) that declares what commands and events it
handles and also what commands it issues and events it
signals. Furthermore, the interdependencies of
components, i.e. the command and event “wiring,” are
also specified in a separate file (.desc). Hierarchical
composition of components is also allowed.
 The application code as well as the middleware layer
must be written using the same model. Before
compilation, a preprocessor assembles the necessary
system and user-defined components from the appropriate
comp and desc files.

5. GRATIS

 Working with comp and desc files while developing
non-trivial TinyOS applications could quickly become an
error-prone and tedious process. Function-like entities
(events, commands) have two or more different names in
the final application: some on the caller side (e.g.
command) and some on the called side (e.g. command
handler). This characteristic is inherent in the flexible
design enabling the creation of countless different
applications without touching the implementation of the
individual components. However, as a side effect, it has
notable impact on the maintainability of the applications.
Introducing a new command or event or renaming an
existing one involves the modification of several separate
files while having to keep the interface and wiring
information in synch.
 Even with a simple application, a more expressive
representation of the components and the interconnections
between them can help design better applications and
increase their readability. With more sophisticated
components and especially with hierarchical composition
this becomes an absolute requirement. The textual
representation does not serve this purpose well enough.
For example, the information is spread through several
files. Visualizing a componentized application while
reading multiple text files simultaneously is less than
intuitive.
 The rules of the wiring are simple; commands and
events cannot be connected to each other and the
signature (parameter list and return type) of the connected
functions on the caller and the called side must be
identical. While in most cases these rules are sufficient,
some components might impose additional restrictions on
their usage. There can be components that are mutually
exclusive because they are using the same hardware
resources. Some other components can have constraints
on the fan-out of their interface points. Unfortunately,
these additional requirements cannot be captured using
the current methodology.
 Model Integrated Computing in general and GME in
particular can meet most of these challenges. We have
designed a modeling paradigm for GRATIS and
configured GME accordingly. The graphical
representation provides a solid and intuitive interface for
designing and maintaining complex applications. Using
this well-defined modeling paradigm the wiring rules and
the synchronization between the function names are
handled by the modeling environment transparently. The
constraint management capabilities of GME allow the
specification of the necessary constraints for the
components and for the usage of their interfaces.
 Our initial goal with GRATIS was to replace the
textual representation of the interface and configuration
information with a graphical environment, where the desc
and comp files are generated automatically and serve just

as an intermediate step between the environment and the
compiled application. Since all practical applications use
system components from the TinyOS distribution, we also
had to provide a mapping from the existing large code
base to the graphical environment. Therefore, our
interpreter not only generates text files from graphical
models, but it is also capable of parsing existing files and
building the corresponding GME models from them. The
main use of this parsing feature is to automatically
generate the graphical equivalent of the TinyOS system
components and to provide them as a library to the user in
the GRATIS environment. We have chosen Python as the
implementation language because of its superb text
processing capabilities and its solid support for accessing
and implementing Microsoft COM objects, the
component technology GME is built on.
 In any new application domain for GME, such as
TinyOS-based application development, important
decisions are made during the initial metamodeling
process, i.e. the modeling paradigm definition phase. The
means by which one captures domain concepts heavily
influence the usability and extensibility of the final
environment. One might be inclined to map the ideas
found in TinyOS directly, namely the separation of
application/component wiring (.desc) and the component
interface definition (.comp) specifications, where
applications contain components and connections while
components contain interface points. Instead, we
introduced only one modeling concept, the assembly. To
justify this decision we have to understand how
hierarchical decomposition works in TinyOS.
 With TinyOS, one can introduce subcomponents in
two slightly different ways. In the first scenario a
component can be specified having dependencies on other
(lower level) components. Using this composite
component in any application results in the implicit
linking of all required components. One can describe
these dependencies by a reference to a desc file in the
component description (.comp) using the JOINTLY_
IMPLEMENTED_BY keyword. The referenced
description file specifies the required subcomponents and
the wiring between them and the original component.
Note two important issues here.
 One is that the comp file, originally a pure interface
description, now contains implementation related
information. Second, a desc file can describe not just the
whole application but also a composite component.
 Moreover, there is yet another type of the hierarchical
structure, the proxy-like component, which does not have
actual implementation, but provides access points to
contained subcomponents. They are defined similarly to
composite components, but there is no implementation
file and the desc file is referred to using the
IMPLEMENTED_BY keyword in the component. These
subtle relationships between the comp and desc files lead
us to a unified modeling concept, the assembly. The

interpretation of an assembly is determined by its content
and attributes. Let us summarize these properties and the
possible interpretations. The assembly describes an:
• application, if it does not contain any interface
primitives and does not have a source (.c) file1, but it does
contain references to other assemblies and connections
between them (only a desc file will be generated),
• simple component, if it does contain access points but
does not contain references to other assemblies and it
does have a source file (comp and an initial .c files will be
generated),
• composite component, if it meets the requirements of
the simple component, but it contains references to other
assemblies (comp, desc and an initial .c files will be
generated), or
• proxy component, if it meets the requirements of the
simple component, but it does not have a source file
(comp and desc files will be generated).
 Although these rules sound complicated at first, the
user does not have to keep them in mind while developing
new TinyOS applications. The parser and the code
generator apply these rules internally and provide a very
intuitive environment for the application designer.
 As mentioned earlier the constraint checking
capabilities of GME enable us to build a more robust
domain-specific environment. The previously described
rules are formalized as modeling constraints, and GME
guarantees that invalid assemblies cannot be built.
Additional constraints restrict the application designer to
connect access points only in valid formations.
 Both the code generation and the parsing logic are
implemented in a single Python file, since they share
significant amount of common code (e.g. COM interface
to the GME application) and constant values, and because
this simplifies the usage and distribution of the GRATIS
environment. The parsing process (used to generate a
GME library from the TinyOS source tree) can be
initiated from the command line and can be controlled by
command line parameters (e.g. directory to be parsed,
verbose messages, etc.). The parser recursively traverses
the specified directory structure while it creates a
matching folder hierarchy in a new GME project. In each
directory for each comp file it creates a new assembly
with the appropriate interface primitives and sets the
source file attribute of the assembly if a .c file with the
same name can be found. In addition, it records all
components that have references to desc files, they will
become composite or proxy assemblies. In the second
phase it processes these referenced description files,
creating references to other assemblies and establishing
the connections between them. All the remaining, non-
referenced desc files are processed in the last stage and
application assemblies are generated.

1 Assemblies have a boolean attribute representing this information. We
set this attribute in the parser if the appropriate .c file is found.

 In most cases, we have tried to implement our parsing
and wiring logic as close to the original TinyOS
implementation as possible. However, we have made one
notable modification in the wiring logic. According to the
TinyOS implementation, all lines in the desc file
containing one or more common interface points are
concatenated and handled as one fully connected network.
Unfortunately, some topologies cannot be realized with
this logic. For example, if one source, A, is connected to
multiple destination ports, and another source, B, is
connected to only one of them, then B will end up begin
connected to all of them anyway. In order to avoid this
problem, GRATIS processes all lines in the desc files
separately.
 In the final phase of parsing, some additional work is
performed on the GME project to make the generated
library more usable: cleanup and auto placement. During
the parsing phases we might encounter problems,
inconsistencies in the text files. In these cases the parser
tries to handle these errors as gracefully as possible, and it
builds the remaining part of the assemblies while marking
them. After the parsing process the marked assemblies are
deleted along with the empty folders, if the appropriate
command line options are set. Otherwise, a warning
message is inserted into the erroneous assembly. The auto
placement feature moves command handlers and signals
to the left side and event handlers and commands to the
right side of the assembly, and it also tries to place the
contained assembly references evenly. Implementing a
more sophisticated heuristic algorithm remains to be
done.
 An indisputable benefit of the parsing and model
building process is an exhaustive testing, since the parser
builds and validates all components and applications
found in the source tree. In the current TinyOS
distribution (0.6) it finds several minor errors that are not
caught by the original TinyOS tools.
 The code generation procedure is a relatively
straightforward process. In this case the Python code is
invoked as a COM component from the GME
environment. The code generator analyzes the currently
opened assembly; it determines what kind of files should
be generated according to the rules described earlier, and
dumps all the interface and wiring information into the
target files. If the assembly has to have an implementation
it generates a skeleton .c file if it does not exist already.
We are planning to handle existing implementation files
in the near future.
 Managing changes in the assemblies and maintaining
applications across different TinyOS releases are
important issues. Since we do not require modifying
generated comp and desc files manually, parsing and
modifying .c implementation files can resolve the first
problem. Although, we have not implemented it yet, this
can be achieved with the help of special comments in the
implementation files similarly to the technology used in

the Visual C++ application and class wizards. To support
upgrading applications and components to newer TinyOS
releases we need to extend the parser with a special
parsing mode, when the comp and desc files are processed
with a preloaded GME library, and references are looked
up in this library instead of being regenerated.

6. Case study

 For demonstrating the benefits of the graphical
approach let us study a very simple TinyOS application,
one with a single user-defined component and three
system components. Note that the real advantages of the
visual environment can be recognized more easily with
complex applications.
 Our sample application, called BLINK, is part of the
TinyOS release. It does not provide tremendous
functionality: it blinks one of the LEDs at a given
frequency. The desc file of the BLINK application
specifies the included components and the wiring between
the interface primitives.

include modules {
 MAIN;
 BLINK;
 CLOCK;
 LEDS;
};

BLINK:BLINK_INIT MAIN:MAIN_SUB_INIT
BLINK:BLINK_START MAIN:MAIN_SUB_START
BLINK:BLINK_LEDy_on LEDS:YELLOW_LED_ON
BLINK:BLINK_LEDy_off LEDS:YELLOW_LED_OFF
BLINK:BLINK_LEDr_on LEDS:RED_LED_ON
BLINK:BLINK_LEDr_off LEDS:RED_LED_OFF
BLINK:BLINK_LEDg_on LEDS:GREEN_LED_ON
BLINK:BLINK_LEDg_off LEDS:GREEN_LED_OFF
BLINK:BLINK_SUB_INIT CLOCK:CLOCK_INIT
BLINK:BLINK_CLK_EVENT CLOCK:CLOCK_FIRE_EVENT

Listing 1. BLINK.desc

 The MAIN component is contained in every
application and its sole role is to initialize and start the
application. We have wired these startup functions to our
BLINK component. Since our component requires access
to the LEDs, we have made the appropriate links the
LEDS system component. After initializing the CLOCK
component it will generate events periodically. These
events are routed to the BLINK component where the
event handling routine will toggle the LED.
 The interface of our BLINK component can be easily
defined now. From the wiring we know what kind of
commands and events must be handled in our component
and what other commands will be used by it.
Unfortunately, the signature of these interface primitives
must be looked up from the comp files in the TinyOS
distribution.
 The graphical equivalent of the previous configuration
files is shown in Figure 4. It contains four references to
four assemblies, three of them are dragged into the
application from the TinyOS library and the fourth one

(BLINK) was implemented as a user-defined assembly.
The visual representation of the wiring is undeniably
easier to understand, for example, the directions of the
links are unambiguous to the application designer. If later
we decide to rename one of our functions, we will have to
modify it in one place only, in the proper assembly.

TOS_MODULE BLINK;
ACCEPTS {
 char BLINK_INIT(void);
 char BLINK_START(void);
};

HANDLES {
 void BLINK_CLK_EVENT(void);
};

USES {
 char BLINK_SUB_INIT(char ival, char sc);
 char BLINK_LEDr_on();
 char BLINK_LEDr_off();
 char BLINK_LEDy_on();
 char BLINK_LEDy_off();
 char BLINK_LEDg_on();
 char BLINK_LEDg_off();
};

SIGNALS {
};

Listing 2. BLINK.comp

 Because the TinyOS distribution contains the BLINK
application as an example, the model shown in Figure 4
was not built by hand, but generated by our parser tool.

Figure 4. BLINK assembly

7. Conclusions

 There are two important points we would like to
emphasize. First, we claim that domain-specific modeling
and code generation environments are a natural fit for
component-based software development. Second, even
though the development of these environments from
scratch is expensive, our solution of applying a
metaprogrammable environment makes them quite

feasible even for relatively narrow domains such as
TinyOS-based embedded system development.
 GRATIS is a fully functional sophisticated
environment for TinyOS application development. The
effort to create the toolset was exactly one man-month
excluding an initial week of learning the ins and outs of
TinyOS, since we never used it before. Furthermore, 75%
percent of the effort was the development of the Python
parsing code that builds up the model library from the
TinyOS source. This clearly demonstrates the significant
productivity increase in tool development that can be
achieved with Model Integrated Computing in general
and GME in particular. Note, however, that we are expert
users of our own tools and their learning curve is quite
steep, so a novice GME user cannot expect this level of
productivity initially. However, experience shows that
after a relatively short training period, users can be
become quite productive very rapidly.
 On the actual domain-specific tool side, there is no
experimental data yet on how much productivity increase
can be achieved by GRATIS over traditional text-based
development. However, the features of no redundant
information specification, error checking, constraint
enforcement, increased readability of the visual
representation, assured consistency across components
and automatic code generation are undoubtedly
significant advantages beyond the expected measurable
productivity gain.
 Both GME and GRATIS are freely available from
http://www.isis.vanderbilt.edu/projects/ in the gme and
nest subdirectories respectively.

8. Acknowledgement

The DARPA/ITO NEST program (F33615-01-C-1903)
has supported, in part, the activities described in this
paper.

9. References

[1] J. Sztipanovits, G. Karsai, “Model-Integrated Computing,”
Computer, April, 1997. pp. 110-112
[2] A. Ledeczi et al.: “Composing Domain-Specific Design
Environments,” Computer, November, 2001. pp. 44-51
[3] J. Rumbaugh, I. Jacobson, G. Booch: “The Unified Modeling
Language Reference Manual,” Addison-Wesley, 1998
[4] J. B. Warmer, A. G. Kleppe: “The Object Constraint
Language : Precise Modeling With Uml,” Addison-Wesley,
March 1999
[5] J. Hill et al.: “System Architecture Directions for Networked
Sensors,” Proceedings of ASPLOS, 2000

