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Abstract 
 

 Networked Embedded Systems (NEST) are large-scale 
distributed systems with resource limited processing 
nodes tightly coupled to physical processes via sensors 
and actuators. These strict resource constraints mandate 
thin application-specific operating system and 
middleware layers. Component-based development is an 
enabling technology in this arena. We present a model-
based approach to the development of applications based 
on TinyOS, an important NEST platform. OS and 
application component interfaces along with their 
interdependencies are captured in a graphical 
environment and the glue code that ties together the 
application and OS components are automatically 
generated. A fully functional sophisticated modeling and 
code generation environment was developed in one man-
month. This is due to the model integrated technology 
applied in the tool development. 
 
1. Introduction 
 
 Networked Embedded Systems (NEST) are large-scale 
distributed systems with resource limited processing 
nodes tightly coupled to physical processes via sensors 
and actuators. NEST systems are distributed, but the 
nodes must achieve a centralized goal cooperatively. 
Typical NEST applications include large-scale active 
noise and vibration control, cooperative sensor networks, 
micro-satellite constellations and smart structures. 
 NEST nodes typically have limited computing power 
and small amounts of memory. They must consume as 
little power as possible. Communication is noisy and its 
bandwidth is limited. The individual nodes and 
communication channels are inherently unreliable, yet the 
overall system needs to be robust. These requirements 
mandate novel systems and software engineering 
techniques.  
 A typical NEST application running on each node can 
be separated into the three layers depicted in Figure 1. 
The local operating system manages the underlying 
hardware infrastructure including interfacing with the 
physical world through sensors and actuators. The 
distributed nature of computation implies that each node 
should be equipped with sophisticated middleware —a 
kind of distributed operating system that provides global 

services for the applications, such as message routing, 
broadcast, consensus, group membership, etc. The actual 
application code utilizes both the OS and the middleware 
layers.  
 What distinguishes a NEST application from a 
traditional one is that neither the operating systems nor 
the middleware can be the usual, heavyweight, monolithic 
component that contains all services for all applications. 
The strict resource constraints, especially the memory 
limitations, mandate application-specific, thin operating 
system and middleware layers. 
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Figure 1. Layered Architecture 

 A component-based approach to the problem is quite 
natural. Specifically, the computational model of TinyOS, 
a highly modular, customizable operating system for tiny 
embedded devices developed at UC Berkeley 
(http://tinyos.millennium.berkeley.edu), is an ideal fit for 
the task at hand. However, the specification of component 
interfaces, hierarchical component dependencies and 
interactions using the current text-based environment is 
cumbersome and error-prone. This paper introduces 
GRATIS, a graphical development environment for 
TinyOS that provides an intuitive visual interface and 
automatic code generation capability for the development 
of TinyOS-based applications. 
 The rest of the paper is organized as follows. The next 
section describes the software infrastructure used to 
develop GRATIS. Next, a typical hardware platform for 
NEST in general and TinyOS in particular is presented. 
This is followed by a brief introduction to TinyOS.  
Finally, GRATIS is described in detail along with a 
simple case study. 



2. Model Integrated Computing 
 
The Graphical Development Environment for TinyOS 
(GRATIS), which is in the focus of this paper, was 
developed using Model Integrated Computing (MIC) 
technology [1]. A brief summary of MIC follows. 
 MIC employs domain-specific models to represent the 
system being designed. These models are then used to 
automatically synthesize the applications and/or to 
generate inputs to analysis and/or simulation tools. This 
approach speeds up the design cycle, facilitates the 
evolution of the application, and helps system 
maintenance, dramatically reducing costs during the 
entire lifecycle of the system. 
 MIC is implemented by the Generic Modeling 
Environment (GME), a metaprogrammable toolkit for 
creating domain-specific modeling environments [2]. 
GME employs metamodels that specify the modeling 
paradigm of the application domain. The modeling 
paradigm contains all the syntactic, semantic, and 
presentation information regarding the domain – which 
concepts will be used to construct models, what 
relationships may exist among those concepts, how the 
concepts may be organized and viewed by the modeler, 
and rules governing the construction of models. The 
modeling paradigm defines the family of models that can 
be created using the resultant modeling environment. The 
metamodels specifying the modeling paradigm are used to 
automatically configure GME for the domain. An 
interesting aspect of this approach is that GME itself is 
used to build the metamodels themselves using a 
formalism based on the UML class diagram notation  [3]. 
 GME is used primarily for model-building. The 
models take the form of graphical, multi-aspect, attributed 
entity-relationship diagrams. The static semantics of a 
model are specified by OCL constraints [4] that are part 
of the metamodels. They are enforced by a built-in 
constraint manager during model building time. The 
dynamic semantics are applied by the model interpreters, 
i.e. by the process of translating the models to source 
code, configuration files, database schema or any other 
artifact the given application domain calls for. 
 This approach fits component-based software 
development very nicely. The interface of the individual 
components can be modeled along with a link to their 
implementation. The model editor can enforce the 
composition rules to make sure that only valid component 
assemblies are allowed. Finally, model interpreters can 
generate the glue code that ties the final system together. 
These concepts are perfectly demonstrated by GRATIS 
described later in the paper. 
 
 
 

3. Target Hardware Platform 
 
 One of the NEST experimental target platforms is a 
network of tiny devices, called the motes. Each mote is 
about 2 inches by 4 inches. It is powered by a pair of AA 
batteries. The heart of the device is the ATmega 103L 8-
bit micro-controller. It has 128 Kbytes of flash 
(instruction) memory and 4 Kbytes of SRAM (data 
memory) on-chip. The micro-controller has 8 A/D 
channels and an UART built-in. 
 

 
 

Figure 2. A Berkeley mote 

 A coprocessor provides access to the on-board 4-Mbit 
EEPROM that can be used for data-logging or even for 
reprogramming the CPU on-the-fly. This can be done via 
the radio unit that runs at 900 MHz and has a maximum 
transfer rate of 50 Kbits/sec. The radio has a 
programmable gain. It’s maximum range is about 30 feet. 
The unit also sports 3 LEDs for debugging and 
demonstration purposes. A simple programming board 
can be used to download programs via a standard PC 
parallel port and/or to communicate with a mote via the 
serial port.  
 
4. The TinyOS Operating System 
 
 The unique characteristics of these motes lead to the 
development of TinyOS, a component-based, highly 
configurable embedded operating system with a very 
small footprint [5]. A TinyOS instance consists of a set of 
interconnected components scheduled by a tiny, FIFO-
based scheduler. Components communicate with each 
other through commands and events. Commands 
propagate downward; they are issued by higher level 
components to lower level ones. Events propagate 



upward; they are signaled by lower level components and 
handled by higher level ones as shown in Figure 3. The 
lowest level of events are generated by the hardware itself 
in the form of interrupts. 
 A component consists of a set of tasks, event- and 
command handlers and a frame, a statically allocated 
piece of memory that stores the state of the component 
[5]. TinyOS does not support dynamic memory 
allocation, a significant restriction, but one that buys 
efficiency and simplicity. The hardware does not provide 
much memory to allocate in any case. 
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Figure 3. TinyOS concepts 

 Commands are typically handled by modifying the 
state of the component, possibly posting a task for later 
execution and possibly issuing commands to lower level 
components. An event handler can also modify the state 
of the component, signal higher level events or call lower 
level commands. Note that commands cannot signal 
events to avoid cycles. Tasks are the worker bees of 
TinyOS. They can issue commands, signal events and 
post other tasks. Tasks are intended to do a short amount 
of processing and return. They can only be preempted by 
events. This task model enables TinyOS to have a single 
stack. 
 Possibly the best feature of TinyOS is its component-
based configurability enabling the creation of highly 
application-specific operating systems. In addition to its C 
implementation, each component has a special file 
(.comp) that declares what commands and events it 
handles and also what commands it issues and events it 
signals. Furthermore, the interdependencies of  
components, i.e. the command and event “wiring,” are 
also specified in a separate file (.desc). Hierarchical 
composition of components is also allowed. 
 The application code as well as the middleware layer 
must be written using the same model. Before 
compilation, a preprocessor assembles the necessary 
system and user-defined components from the appropriate 
comp and desc files.  
 

5. GRATIS 
 
 Working with comp and desc files while developing 
non-trivial TinyOS applications could quickly become an 
error-prone and tedious process. Function-like entities 
(events, commands) have two or more different names in 
the final application: some on the caller side (e.g. 
command) and some on the called side (e.g. command 
handler). This characteristic is inherent in the flexible 
design enabling the creation of countless different 
applications without touching the implementation of the 
individual components. However, as a side effect, it has 
notable impact on the maintainability of the applications. 
Introducing a new command or event or renaming an 
existing one involves the modification of several separate 
files while having to keep the interface and wiring 
information in synch.  
 Even with a simple application, a more expressive 
representation of the components and the interconnections 
between them can help design better applications and 
increase their readability. With more sophisticated 
components and especially with hierarchical composition 
this becomes an absolute requirement. The textual 
representation does not serve this purpose well enough. 
For example, the information is spread through several 
files. Visualizing a componentized application while 
reading multiple text files simultaneously is less than 
intuitive. 
 The rules of the wiring are simple; commands and 
events cannot be connected to each other and the 
signature (parameter list and return type) of the connected 
functions on the caller and the called side must be 
identical. While in most cases these rules are sufficient, 
some components might impose additional restrictions on 
their usage. There can be components that are mutually 
exclusive because they are using the same hardware 
resources. Some other components can have constraints 
on the fan-out of their interface points. Unfortunately, 
these additional requirements cannot be captured using 
the current methodology. 
 Model Integrated Computing in general and GME in 
particular can meet most of these challenges. We have 
designed a modeling paradigm for GRATIS and 
configured GME accordingly. The graphical 
representation provides a solid and intuitive interface for 
designing and maintaining complex applications. Using 
this well-defined modeling paradigm the wiring rules and 
the synchronization between the function names are 
handled by the modeling environment transparently. The 
constraint management capabilities of GME allow the 
specification of the necessary constraints for the 
components and for the usage of their interfaces. 
 Our initial goal with GRATIS was to replace the 
textual representation of the interface and configuration 
information with a graphical environment, where the desc 
and comp files are generated automatically and serve just  



as an intermediate step between the environment and the 
compiled application. Since all practical applications use 
system components from the TinyOS distribution, we also 
had to provide a mapping from the existing large code 
base to the graphical environment. Therefore, our 
interpreter not only generates text files from graphical 
models, but it is also capable of parsing existing files and 
building the corresponding GME models from them. The 
main use of this parsing feature is to automatically 
generate the graphical equivalent of the TinyOS system 
components and to provide them as a library to the user in 
the GRATIS environment. We have chosen Python as the 
implementation language because of its superb text 
processing capabilities and its solid support for accessing 
and implementing Microsoft COM objects, the 
component technology GME is built on. 
  In any new application domain for GME, such as  
TinyOS-based application development, important 
decisions are made during the initial metamodeling 
process, i.e. the modeling paradigm definition phase. The 
means by which one captures domain concepts heavily 
influence the usability and extensibility of the final 
environment. One might be inclined to map the ideas 
found in TinyOS directly, namely the separation of 
application/component wiring (.desc) and the component  
interface definition (.comp) specifications, where 
applications contain components and connections while 
components contain interface points. Instead, we 
introduced only one modeling concept, the assembly. To 
justify this decision we have to understand how 
hierarchical decomposition works in TinyOS. 
 With TinyOS, one can introduce subcomponents in 
two slightly different ways. In the first scenario a 
component can be specified having dependencies on other 
(lower level) components. Using this composite 
component in any application results in the implicit 
linking of all required components. One can describe 
these dependencies by a reference to a desc file in the 
component description (.comp) using the JOINTLY_ 
IMPLEMENTED_BY keyword. The referenced 
description file specifies the required subcomponents and 
the wiring between them and the original component. 
Note two important issues here. 
 One is that the comp file, originally a pure interface 
description, now contains implementation related 
information. Second, a desc file can describe not just the 
whole application but also a composite component. 
 Moreover, there is yet another type of the hierarchical 
structure, the proxy-like component, which does not have 
actual implementation, but provides access points to 
contained subcomponents. They are defined similarly to 
composite components, but there is no implementation 
file and the desc file is referred to using the 
IMPLEMENTED_BY keyword in the component. These 
subtle relationships between the comp and desc files lead 
us to a unified modeling concept, the assembly. The 

interpretation of an assembly is determined by its content 
and attributes. Let us summarize these properties and the 
possible interpretations. The assembly describes an: 
• application, if it does not contain any interface 
primitives and does not have a source (.c) file1, but it does 
contain references to other assemblies and connections 
between them (only a desc file will be generated), 
• simple component, if it does contain access points but 
does not contain references to other assemblies and it 
does have a source file (comp and an initial .c files will be 
generated), 
• composite component, if it meets the requirements of 
the simple component, but it contains references to other 
assemblies (comp, desc and an initial .c files will be 
generated), or 
• proxy component, if it meets the requirements of the 
simple component, but it does not have a source file 
(comp and desc files will be generated). 
 Although these rules sound complicated at first, the 
user does not have to keep them in mind while developing 
new TinyOS applications. The parser and the code 
generator apply these rules internally and provide a very 
intuitive environment for the application designer. 
 As mentioned earlier the constraint checking 
capabilities of GME enable us to build a more robust 
domain-specific environment. The previously described 
rules are formalized as modeling constraints, and GME 
guarantees that invalid assemblies cannot be built. 
Additional constraints restrict the application designer to 
connect access points only in valid formations. 
 Both the code generation and the parsing logic are 
implemented in a single Python file, since they share 
significant amount of common code (e.g. COM interface 
to the GME application) and constant values, and because 
this simplifies the usage and distribution of the GRATIS 
environment. The parsing process (used to generate a 
GME library from the TinyOS source tree) can be 
initiated from the command line and can be controlled by 
command line parameters (e.g. directory to be parsed, 
verbose messages, etc.). The parser recursively traverses 
the specified directory structure while it creates a 
matching folder hierarchy in a new GME project. In each 
directory for each comp file it creates a new assembly 
with the appropriate interface primitives and sets the 
source file attribute of the assembly if a .c file with the 
same name can be found. In addition, it records all 
components that have references to desc files, they will 
become composite or proxy assemblies. In the second 
phase it processes these referenced description files, 
creating references to other assemblies and establishing 
the connections between them. All the remaining, non-
referenced desc files are processed in the last stage and 
application assemblies are generated. 

                                                           
1 Assemblies have a boolean attribute representing this information. We 
set this attribute in the parser if the appropriate .c file is found. 



 In most cases, we have tried to implement our parsing 
and wiring logic as close to the original TinyOS 
implementation as possible.  However, we have made one 
notable modification in the wiring logic. According to the 
TinyOS implementation, all lines in the desc file 
containing one or more common interface points are 
concatenated and handled as one fully connected network. 
Unfortunately, some topologies cannot be realized with 
this logic. For example, if one source, A, is connected to 
multiple destination ports, and another source, B, is 
connected to only one of them, then B will end up begin 
connected to all of them anyway. In order to avoid this 
problem, GRATIS processes all lines in the desc files 
separately. 
 In the final phase of parsing, some additional work is 
performed on the GME project to make the generated 
library more usable: cleanup and auto placement. During 
the parsing phases we might encounter problems, 
inconsistencies in the text files. In these cases the parser 
tries to handle these errors as gracefully as possible, and it 
builds the remaining part of the assemblies while marking 
them. After the parsing process the marked assemblies are 
deleted along with the empty folders, if the appropriate 
command line options are set. Otherwise, a warning 
message is inserted into the erroneous assembly. The auto 
placement feature moves command handlers and signals 
to the left side and event handlers and commands to the 
right side of the assembly, and it also tries to place the 
contained assembly references evenly. Implementing a 
more sophisticated heuristic algorithm remains to be 
done. 
 An indisputable benefit of the parsing and model 
building process is an exhaustive testing, since the parser 
builds and validates all components and applications 
found in the source tree. In the current TinyOS 
distribution (0.6) it finds several minor errors that are not 
caught by the original TinyOS tools. 
 The code generation procedure is a relatively 
straightforward process. In this case the Python code is 
invoked as a COM component from the GME 
environment. The code generator analyzes the currently 
opened assembly; it determines what kind of files should 
be generated according to the rules described earlier, and 
dumps all the interface and wiring information into the 
target files. If the assembly has to have an implementation 
it generates a skeleton .c file if it does not exist already. 
We are planning to handle existing implementation files 
in the near future. 
 Managing changes in the assemblies and maintaining 
applications across different TinyOS releases are 
important issues. Since we do not require modifying 
generated comp and desc files manually, parsing and 
modifying .c implementation files can resolve the first 
problem. Although, we have not implemented it yet, this 
can be achieved with the help of special comments in the 
implementation files similarly to the technology used in 

the Visual C++ application and class wizards. To support 
upgrading applications and components to newer TinyOS 
releases we need to extend the parser with a special 
parsing mode, when the comp and desc files are processed 
with a preloaded GME library, and references are looked 
up in this library instead of being regenerated. 
 
6. Case study 
 
 For demonstrating the benefits of the graphical 
approach let us study a very simple TinyOS application, 
one with a single user-defined component and three 
system components. Note that the real advantages of the 
visual environment can be recognized more easily with 
complex applications. 
 Our sample application, called BLINK, is part of the 
TinyOS release. It does not provide tremendous 
functionality: it blinks one of the LEDs at a given 
frequency. The desc file of the BLINK application 
specifies the included components and the wiring between 
the interface primitives.  
 
include modules { 
 MAIN; 
 BLINK; 
 CLOCK; 
 LEDS; 
}; 
 
BLINK:BLINK_INIT MAIN:MAIN_SUB_INIT 
BLINK:BLINK_START MAIN:MAIN_SUB_START 
BLINK:BLINK_LEDy_on LEDS:YELLOW_LED_ON 
BLINK:BLINK_LEDy_off LEDS:YELLOW_LED_OFF 
BLINK:BLINK_LEDr_on LEDS:RED_LED_ON 
BLINK:BLINK_LEDr_off LEDS:RED_LED_OFF 
BLINK:BLINK_LEDg_on LEDS:GREEN_LED_ON 
BLINK:BLINK_LEDg_off LEDS:GREEN_LED_OFF 
BLINK:BLINK_SUB_INIT CLOCK:CLOCK_INIT 
BLINK:BLINK_CLK_EVENT CLOCK:CLOCK_FIRE_EVENT 

Listing 1. BLINK.desc 

 The MAIN component is contained in every 
application and its sole role is to initialize and start the 
application. We have wired these startup functions to our 
BLINK component. Since our component requires access 
to the LEDs, we have made the appropriate links the 
LEDS system component. After initializing the CLOCK 
component it will generate events periodically. These 
events are routed to the BLINK component where the 
event handling routine will toggle the LED. 
 The interface of our BLINK component can be easily 
defined now. From the wiring we know what kind of 
commands and events must be handled in our component 
and what other commands will be used by it. 
Unfortunately, the signature of these interface primitives 
must be looked up from the comp files in the TinyOS 
distribution. 
 The graphical equivalent of the previous configuration 
files is shown in Figure 4. It contains four references to 
four assemblies, three of them are dragged into the 
application from the TinyOS library and the fourth one 



(BLINK) was implemented as a user-defined assembly. 
The visual representation of the wiring is undeniably 
easier to understand, for example, the directions of the 
links are unambiguous to the application designer. If later 
we decide to rename one of our functions, we will have to 
modify it in one place only, in the proper assembly. 
 
TOS_MODULE BLINK; 
ACCEPTS { 
    char BLINK_INIT(void); 
    char BLINK_START(void); 
}; 
 
HANDLES { 
    void BLINK_CLK_EVENT(void); 
}; 
 
USES { 
    char BLINK_SUB_INIT(char ival, char sc); 
    char BLINK_LEDr_on(); 
    char BLINK_LEDr_off(); 
    char BLINK_LEDy_on(); 
    char BLINK_LEDy_off(); 
    char BLINK_LEDg_on(); 
    char BLINK_LEDg_off(); 
}; 
 
SIGNALS { 
}; 

Listing 2. BLINK.comp 

 Because the TinyOS distribution contains the BLINK 
application as an example, the model shown in Figure 4 
was not built by hand, but generated by our parser tool. 
 

 
Figure 4. BLINK assembly 

7. Conclusions 
 
 There are two important points we would like to 
emphasize. First, we claim that domain-specific modeling 
and code generation environments are a natural fit for 
component-based software development. Second, even 
though the development of these environments from 
scratch is expensive, our solution of applying a 
metaprogrammable environment makes them quite 

feasible even for relatively narrow domains such as 
TinyOS-based embedded system development.  
 GRATIS is a fully functional sophisticated 
environment for TinyOS application development. The 
effort to create the toolset was exactly one man-month 
excluding an initial week of learning the ins and outs of 
TinyOS, since we never used it before. Furthermore, 75% 
percent of the effort was the development of the Python 
parsing code that builds up the model library from the 
TinyOS source. This clearly demonstrates the significant 
productivity increase in tool development that can be 
achieved with Model Integrated Computing in general 
and GME in particular. Note, however, that we are expert 
users of our own tools and their learning curve is quite 
steep, so a novice GME user cannot expect this level of 
productivity initially. However, experience shows that 
after a relatively short training period, users can be 
become quite productive very rapidly. 
 On the actual domain-specific tool side, there is no 
experimental data yet on how much productivity increase 
can be achieved by GRATIS over traditional text-based 
development. However, the features of no redundant 
information specification, error checking, constraint 
enforcement, increased readability of the visual 
representation, assured consistency across components 
and automatic code generation are undoubtedly 
significant advantages beyond the expected measurable 
productivity gain. 
 Both GME and GRATIS are freely available from 
http://www.isis.vanderbilt.edu/projects/ in the gme and 
nest subdirectories respectively. 
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