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Abstract

Developers of information systems have always utilized various visual formalisms during the
design process, albeit in an informal manner. Architecture diagrams, finite state machines,
and signal flow graphs are just a few examples. Model Integrated Computing (MIC) is an
approach that considers these design artifacts as first class models and uses them to generate
the system or subsystems automatically. Moreover, the same models can be used to analyze
the system and generate test cases and documentation. MIC advocates the formal definition of
these formalisms, called domain-specific modeling languages (DSML), via metamodeling and
the automatic configuration of modeling tools from the metamodels. However, current MIC
infrastructures are based on desktop applications that support a limited number of platforms,
discourage concurrent design collaboration and are not scalable. This paper presents WebGME,
a cloud- and web-based cyberinfrastructure to support the collaborative modeling, analysis, and
synthesis of complex, large-scale scientific and engineering information systems. It facilitates
interfacing with existing external tools, such as simulators and analysis tools, it provides custom
domain-specific visualization support and enables the creation of automatic code generators.

Keywords: model-based software, online collaboration, automatic code generation, web-based design
environment

1 Introduction

While models play a central role in almost all science and engineering disciplines, model-based
development of information systems is still the exception, rather than the rule. Note that in
the context of this paper, models mean such formalisms as finite state machines, flowcharts,
class diagrams, etc. Even when modeling is utilized during the development of an informa-
tion system, for example, by using the Unified Modeling Language (UML) [18] to describe
object-oriented design in the Model-Driven Development approach (MDD) [14], its primary
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purpose is to facilitate communication about the system among team members and to provide
documentation [19]. Software is still created overwhelmingly by writing source code manually.

In the early nineties, predating MDD, an approach to model-based design of software inten-
sive systems was developed independently at multiple places. As such, it is called by various
names: domain modeling [§](Honeywell), MetaCase [10](Metacase Consulting) and Model In-
tegrated Computing [24](Vanderbilt). For the rest of the paper, we shall refer to this approach
as MIC. The underlying idea behind MIC is to facilitate the design of domain-specific graphical
modeling languages (DSML) for various engineering, science, and other domains. The approach
was motivated by the fact that most disciplines already have their own mature formalisms and
it is better to adapt the design tools to match these than to force domain experts to use a
“universal” language. MIC tools provide facilities to formally define the DSML with metamod-
els and to automatically configure a tool suite to support the language. The tools come with
multiple APIs to enable system analysis, simulation, and code generation and to interface with
existing tools.

MIC has numerous advantages. The DSML abstracts the commonalities in the domain,
while the models capture the information specific to the given system being modeled. A well-
designed DSML will be inherently familiar and natural to users, the domain experts. The
same set of models can be used to analyze the system, provide input to simulators, generate
test cases, create documentation, and synthesize (parts of) the system. Hence, the technique
provides guaranteed consistency, because every tool utilizes the same set of shared models.
Maintenance and evolution of information systems are much easier with MIC, as many times
only the system models need to be updated without the need to change the underlying software.

MIC has enjoyed considerable success. Metacase has been in business for two decades
selling their tools and providing consulting services for companies that use them. Many new
environments have been created such as the Eclipse Modeling Framework (EMF) [22]. The
open source MIC toolsuite built around the Generic Modeling Environment (GME) [I1I] has
been applied successfully in many different domains [12] T3] 201 [, 5] [6] 21].

In spite of the many advantages MIC brings to system development, however, the various
MIC tools have numerous drawbacks as well. Scalability is probably the single most important
issue as the desktop-based tools were never designed for the development of very complex
languages and huge models built by geographically distributed teams. Model and DSML version
control is another missing, yet very important feature for domain evolution support. GME has
been often criticized for limited extensibility as far as model visualization and the user interface
was concerned. During the 15 years of its widespread application, feature creep has set in. It
was time to return to the drawing board and rethink how MIC tools should be architected from
the ground up.

This paper introduces WebGME, the cornerstone of a new generation of MIC tools. The
main design drivers were scalability, version control and collaboration support. WebGME sup-
ports the design of domain-specific modeling languages via metamodeling. The metamodels
and system models are tightly integrated and stored in a version controlled database in the
cloud. Online collaboration is transparently supported. Clients are web browser-based, result-
ing in platform independence and seamless client updates. The user interface supports multiple
built-in visualization techniques as well as tools to create highly domain-specific views/editors.
Multiple APIs are provided to interface with existing external tools, such as other modeling
environments, databases, simulators, and analysis tools, as well as to enable the development
of code generators.

This paper provides a description of the design of the WebGME environment along with
our initial impressions using the first prototype.
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2 DSML Design

Figure [1| shows the classical four-layer meta/modeling architecture [16]. At the top, the meta-

metamodel defines the metamodeling language using the metamodeling language itself. In

the figure, we have used the UML class diagram notation for the metamodeling language. The

metamodels specify the DSML, in this case a simple Finite State Machine (FSM) language. The
domain models are created using the DSML and they define the target information system.

Typically, only certain aspects of the tar-

get system are captured in the domain mod-
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! all when designing a DSML is the appropriate
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Metamodeling Language Transition State captured the state machine logic of a commu-
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These typically include composition, inheri-
tance, aggregation, various associations, and
attributes. Which ones to include, how to
combine them, and what editing operations to support are the most important design decisions
that will ultimately decide the expressiveness of the DSMLs one can create and the usability of
the modeling environment itself.

Domain Modeling Language
’

‘ Specify

Figure 1: Four-layer metamodeling

Composition is the principal model organization principle in WebGME. The lifecycle of
the objects contained within a model, that is, its children, is tied to that of the container.
Copying, moving, or deleting a model will copy, move, or delete its children recursively down
the composition hierarchy. A unique concept in GME, and WebGME as well, is prototypical
inheritance. Each domain model, that is, a component at any point in the composition hierarchy,
is a prototype that can be derived to create an instance model. An instance is a deep copy, i.e.,
a copy of the entire composition hierarchy rooted at the model, but it establishes a dependency
relationship between the original objects and their corresponding new instances. Of course,
instances can be used again as prototypes to create an inheritance tree. Any changes in the
prototype automatically propagate down this tree. Similarly to the composition hierarchy,
deleting a model deletes the entire inheritance tree rooted at the given model.

In WebGME, we have applied this inheritance concept to merge the top three layers in
Figure[l] Traditionally, the meta-metamodel, the metamodel, and the models are well separated
layers. For example, GME takes the metamodels and generates a domain specification document
that a new instance of GME reads in and configures itself to support the new DSML. This
strict separation makes it cumbersome to evolve the DSML or to refine/specialize the DSML
for certain subsets of the models or for certain users. For example, a system integrator may
want to force a team member to work with a prebuilt component library only. With current
tools, this is not possible.

On the other hand, WebGME blurs the line where metamodeling ends and domain mod-

3



Online Collaborative Environment Maréti et al.

eling begins by utilizing inheritance to capture the metamodel/model relationship. In this
scheme, when the user creates a new project, she only has the built-in meta-metamodel to work
with. The user then creates subtypes of various meta-metamodel components to create the
metamodel and hence, define the DSML. A subtype of any metamodel component then auto-
matically becomes a domain model. It inherits all of the rules and constraints that define its
own “sublanguage,” and it can further refine it by adding additional metamodel components.
The advantages of this approach are numerous. Metamodel changes propagate automatically
and immediately to every impacted model supporting seamless DSML evolution. A metamodel
can be specialized anywhere in the inheritance hierarchy and, consequently, any domain model
can become a first class language concept to serve as a building block for other models.

In addition to these two fundamental model organization principles, composition and inheri-
tance, there are other modeling concepts that need to be supported. These include associations
such as a pointer or reference (one to one); an object with a source and destination pointer (one
to two; typically visualized as a connection); and aggregation (one to many). Attributes are
also fundamental concepts to capture textual and numerical data or to tie models to external
entities. WebGME has very flexible support for these modeling primitives as well.

3 Architecture

The architecture of WebGME is based on the AJAX paradigm, where most of the business logic
and all of the visualization logic is executed in the browser. The server provides scalable access
to the model database, coordinates the collaboration of clients and manages the execution of
data intensive jobs. This architecture enables responsive and highly interactive user interfaces
on the client, excellent scalability on the server, and facilitates the graceful handling of network
disconnects and even offline editing of models. Figure [2]illustrates the architecture of the tool.
The server side of WebGME
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The primary reason to build domain-specific models is to execute various analysis, simu-
lation, verification, code generation and model transformation tasks on the models stored in
the database. Some of these tasks are automatically triggered and executed by certain changes
in the model on the client side, but most are executed as batch jobs on the server since they
typically need to traverse the whole model hierarchy. Sometimes these jobs can take a long
time to execute, but they work on a fixed consistent snapshot of the models, and hence, they
are not affected by users making concurrent updates to the model database.

Based on our observation of the evolution of many DSML tools in the past, we believe that
at least two different APT levels need to be supported. A high-level domain-specific API is the
most powerful tool in any domain designer’s hands, since it uses the concepts of the domain.
On the other hand, a low-level generic API is also needed for developing domain independent
tools. Currently WebGME provides only the lower-level API through standard web interfaces,
but we are working on automatically generating the domain-specific API from the metamodels.

The low-level generic API allows the scalable manipulation of the abstract model tree
stored in the model database, handles versioning, concurrent updates and conflict detection.
It is implemented as an asynchronous JavaScript library that communicates with the server
database via WebSockets. The same high performance code is executed both in the browser
and on the server side in a Node.js container, so we do not have to maintain different versions
of the same functionality in different languages. WebGME also provides a highly accessible and
language neutral REST API to access the models.

4 Example Domain

To describe a programmable graphical design environment, such as WebGME, in the limited
space available here, it is best to go through an example. We picked a simplified hierarchical
Finite State Machine (FSM) domain to present the main ideas of the approach. Figure shows
a screenshot of the WebGME tool hosted on the Amazon cloud at http://webgme.org. The
picture shows the metamodel of the simple FSM language and an example model in the two
main windows.

The metamodel on the right hand size is visualized with a notation based on UML class
diagrams. The FSM language has three components: FCO, State and Transition. FCO stands
for First Class Object and it is the root of the inheritance hierarchy. Any model object created in
WebGME is part of the single inheritance tree rooted at FCO. When a new project is created, it
comes populated with a model called Root which is the root of the single containment hierarchy,
and inside it, there is FCO. Neither Root, nor FCO can be deleted.

In the metamodel, inheritance relationships are shown with a red line ending in a small
triangle at the base class (that is, prototype model). The models State and Transition are
instances of FCO. The black lines ending in diamonds show composition (containment). More
precisely, they specify rules stating that States can contain Transitions and other States, in this
particular example. Finally, blue arrows specify pointer relationships. In this case, Transitions
have two pointers, named src and dst, such that each points at States. Again, this is a rule
saying that each instance of Transition will have an src and a dst pointer that can point to any
instances of the State. The src-dst pointer pair has a special meaning: the WebGME built-in
default visualizer will display objects having this pair of pointers as connections. (Pointers can
be specified with any other name as well, but they are visualized with a simple icon. Double
clicking it takes the user to the target of the pointer.)

Consider the left side of Figure |3| showing an example FSM model (called Example) with
four States (A, B, C, D) and Transitions between pairs of them. The right side of the figure
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Figure 3: Example domain: Hierarchical Finite State Machines

shows the Object Browser window that presents the composition hierarchy of the project. It
can be seen that Transitions are objects just like States (for example, they could contain other
objects if it made sense in the domain and were allowed by the metamodel). They just happen
to be visualized with lines in the model editor. On the other hand, the lines in the metamodel
do not correspond to model objects: red lines represent inheritance relationships, black lines
represent, composition rules and blue lines represent pointer specifications. This simple example
already shows two different visualization techniques for models. WebGME comes with a few
more built-in, for example, a spreadsheet like table editor. Even more importantly, anybody can
provide custom visualizations for their domain since WebGME is open source and extensible.
The window in the lower left corner is the Part Browser. It shows the set of models that
can be inserted (more precisely, instantiated) into the currently open model. In this case, the
model Example can only accept States as children (since Transitions are connections, they are
not shown here; they are created by connecting two objects in the model editor.) When the
modeler drags State from the Part Browser and drops it in the model editor, it creates a new
instance of State. If we were to create a new instance of State called XYZ in the metamodel,
it would show up as a new box there connected with a red line to the State. It would inherit
everything from the State. What that means is that States would be able to contain XYZs,
XYZs would be able to contain States, and Transitions would be able to connect pairs of States
and XYZs (in any combination). Finally, XYZ would appear in the Part Browser alongside
State as a model that can be instantiated into States. Of course, additional rules should be
specified for XYZ by the domain designer in the metamodel to make it distinct from State.
Let us briefly outline a few more important concepts of WebGME:

e Sets. A pointer specifies a one-to-one relationship. WebGME also supports sets, that are
basically pointer lists, that define one-to-many relationships, for example, aggregation.
These can be specified with a different colored arrow in the metamodel.
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e Attributes. Models can have as many textual attributes as the modeler wishes. An
example is the guard condition of Transitions in the FSM example. It also illustrates
that attributes can be displayed on connections with a preference setting. Attribute
specification belongs to the metamodel. Attributes are inherited, but their values can be
overwritten in derived models.

e Aspects. Aspects provide a way to handle the complexity of models. They specify subsets
of children of a model to be shown together in a special view. For example, a model of
a car may have three separate aspects where the mechanical, electrical and hydraulic
components are shown. The default aspect shows all children of a model. Additional
aspects are specified in the metamodel.

e Crosscuts. Specifying and visualizing relationships (pointers, sets) that cut across the
composition hierarchy is difficult and typically non-intuitive. WebGME introduces the
concept of a crosscut that provides a way to show models from across the composition
hierarchy together in a shared window. Crosscuts show relationships directly and allows
the user to modify them or create new ones. What models show up in a crosscut is
controlled by the users: they can drag in models or specify one-time queries on the models
database to collect models together. Note that the meta editor is a special crosscut. Any
number of crosscuts can be created on-demand.

e APIs. The presented web-interface provides the means to specify the modeling language
and to create and view models. The main goal of any such environment is to use these
models to run various analyses and simulations and to generate test cases, documentation
and software. WebGME provides a native Javascript API and a generic REST API to
interface with external tools and to enable code generation. A high-level domain-specific
API (to be automatically generated from the metamodels) is in the works also.

The above FSM example was necessarily simple to be able to highlight the major concepts in
WebGME. For a quick illustration of the scalability of the approach, we selected the domain of
digital circuits because it is well known, non-trivial and has a widely accepted visual formalism.
Figure[ddepicts a part of the metamodel and an example circuit model. This example illustrates
nicely that even the metamodel can become complex, so WebGME allows the user to break it
up into multiple sheets. More precisely, there are multiple meta crosscuts in this project each
showing a user-selected subset of the metamodel. In the figure, the Gates meta crosscut is shown
with the tabs indicating that three additional ones are also defined (Meta, I0s, Connections).
Note that the exact same WebGME software is used here as for the FSM example. In the
digital circuit domain, however, another visualizer is used in the model editor as can be seen in
the figure.

5 Related work

The Unified Modeling Language [1§] is a widely accepted modeling language for software system
design. However, as a single standard language cannot fit all domains well, UML has two ex-
tensibility methods [9]: metamodeling (e.g. the Common Warehouse Metamodel (CWM) [15])
and UML profiles (e.g. SysML [I7] among many others). The first extensibility method usually
results in a very complicated metamodel, while the second solution retains too much of the
original UML to be truly customizable for each domain. In both cases, the main advantage of
UML—that is, being a standard with agreed upon semantics—is lost, and there is a separate

7



Online Collaborative Environment Maréti et al.

9 = LogicGates @ master - * {__ ¥

&« C [} webgme.org Xl =
LogicGates @ master
A AW e NiLIE Efle| 2 ler|=2r = - & H AQ o 4 @
+ € % Meta Gates® 10s  Connections
0~ FILTER 4 ¥ ROOT
LOGICGATESDIAGRANS LOGICCIRCUIT & o 4 [ Example Diagrams
+ mmiBUTES | e | [ ammieuTEs Lal Complextodel
ST + CONSTRAINTS fencut g S|+ consrRanTs 14 JKFFNew
Qi [x ASPECTS + CONSTRAINTS + aspecTs % LogicGatesDiagrams
¥ + " spECTs &
Crosscut 14 multiplexer
E—— 1t simplemodel
Graph view o wu
e dious il Tuwositadder
s o ) 14t mydiag
SelRep  ATRIBUTES, ¥ ATTRIBUTES B Foo
omposition \ string + e I
Value sring CONSTRAINTS. o CONSTRAINTS - 14 LogicGatesMetalanguage
+ CORSTRAINTS ¥ hsrecTs +hseects
Weta + ASPECTS ‘
Set membership [
o o
Crosscut [ armisuTes ~ ATTRIBUTES
+ CONSTRAINTS + CONSTRAINTS
Graph view v aspECTS v ASPECTS
D ot © BUFFER O noR O xR @ wno 9 P S #HOR
+ ATTRIBUTES + ATTRIBUTES + ATTRIBUTES + ATTRIBUTES + ATTRIBUTES + ATTRIBUTES + ATTRIBUTES + ATTRIBUTES
ane “eoiisTRainTs | | eonstRANTS | |5 ConETRaiNTS “eoiistraints | |+ ConstRaiTs | |5 cousTRinTs | |+ éousRuTE | |+ ConsTRAT
+ mspecTs + aspECTS + RsPECTS + mseecTs + asPECTS + mspecTs ¥ aspeCTS + sPECTS
Im r23
D 5 <] an - Atiributes
Sutter TWOBITADDER ~ fanout
Iname @ TwoBitAdde
80 |lo - META
Clock Qo075 isAbstract NO
isPort NO
~ validPluging
~ Pointers
foukcCenit Itase LogicGircuit (i-14948
~ Preferences
DisplayFormat Sname
PortSVGIcon
Nand
SwWGlcon
\_\A decorator @ LogicGatesDect ¥

derbilt U

I e cowec OEWARGIS o [E

Figure 4: Example domain: Digital Logic Circuits

standardization process for every new language. Hence, we believe that there is no compelling
reason to build DSMLs on top of UML for many engineering and scientific disciplines.

Today, graphical model building tools are predominantly desktop applications. The best
known environment is the Eclipse framework [22] and many tools are implemented as Eclipse
plugins. While Eclipse runs on many platforms, installing and maintaining a complex Eclipse
environment is cambersome and does not solve collaboration. VisTrails [7] is another standalone
graphical tool for the domain of scientific workflow management that focuses on exploration,
visualization, and data analysis. It is extensible and maintains a history of changes, but does
not support collaboration other than an exchange service where users can share their workflows.
Web technologies, on the other hand, have advanced to the point where it is feasible to build
user-friendly and visually appealing user interfaces with good performance inside a web browser.
Lucid Charts [3], CircuitLab [I], or Creatly [2] are excellent examples of what is possible. Some
of them even support online collaboration. On the other hand, these tools employ relatively
simple, typically flat data models and are very specific to their respective domains. They do not
solve the challenges associated with evolutionary language design, configurability, branching,
and extensibility. AToOMPM [23], a web-based metamodeling and transformation tool for Multi-
Paradigm Modeling, is the most similar approach to our work.

8
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6 Conclusions

The paper presented a novel collaborative web-based software environment for the development
of domain-specific modeling languages and corresponding models. The current alpha release
of WebGME is available at http://webgme.org. It is already a fully functional environment.
However, there are quite a few additional features that we are working on to provide an even
more powerful tool for the community. While WebGME currently supports model versioning,
semi-automated merging of different versions of the same project is not yet available. Another
useful feature is the concept of model libraries. The idea is very similar to that of software
libraries: an entire project with a language and a set of models can be packaged as a library
and distributed for others to use. Note that both of these problems are much harder to support
for a rich hierarchical data model that includes inheritance than for flat data such as source
code and binaries.
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