
Model Predictive Analysis for Autonomic Workflow Management in Large-scale
Scientific Computing Environments

Steve Nordstrom Abhishek Dubey Turker Keskinpala Rahul Datta
Sandeep Neema Ted Bapty

Institute for Software Integrated Systems
Vanderbilt University
Box 1829, Station B
Nashville, TN 37235

{steve-o, dabhishe, tkeskinpala, rdatta, sandeep, bapty}@isis.vanderbilt.edu

Abstract

In large scale scientific computing, proper planning and
management of computational resources lead to higher sys-
tem utilizations and increased scientific productivity. Scien-
tists are increasingly leveraging the use of business process
management techniques and workflow management tools to
balance the needs of the scientific analyses with the avail-
ability of computational resources. However, the advance-
ments in productivity from execution of workflows in a large
scale computing environments are often thwarted by run-
time resource failures. This paper presents our initial work
toward autonomic model based fault analysis in workflow
based environments.

1. Introduction

Large-scale computation systems used by the scientific
community to analyze data are typically composed of thou-
sands of computational nodes connected by state-of-the-art,
high bandwidth interconnects. The correct planning and
execution of analyses are crucial to the production of new
scientific results. Such planning is typically done through
collaborations between scientists and engineers to ensure
that that the scientific needs can be met by the analysis sys-
tems. Execution is performed via automation of the resul-
tant workflows.

1.1. Workflows

A workflow is a specification of a set of tasks or jobs to
be performed, their execution order and their input/output
dependencies. Workflows are typically used in business and
information technology scenarios, where repetitive jobs are

composed of complex sets and orderings of tasks. Exam-
ples of such scenarios might include business production
streams, information flow automation and telecommunica-
tion systems. Workflow specifications are used to drive the
scheduling and deployment of tasks across a variety of re-
sources, both computational and human.

1.2. Workflow needs of the scientific com-
puting community

To reduce the complexity inherent in analysis, planning
and deployment, the scientific community is increasingly
using workflow management techniques [17] [14] to handle
complex data processing flows. While many workflow man-
agement systems are geared toward business environments,
there are several new developments in bringing these tech-
nologies to the scientific community. Engineers and com-
puter scientists who build systems to perform analysis of
high energy physics data are investigating how to supple-
ment workflow based tools and techniques to alleviate the
complexities of job control and scheduling, and data depen-
dency. They are also very concerned with quality of ser-
vice (QoS) and fault tolerance. Scientific experiment anal-
yses are run on high performance computing clusters with
state-of-the-art interconnectivity. Typically, the allocation
of cluster resources are handled by a job scheduling frame-
work such as Portable Batch System (PBS) or Maui [3].
These systems are primarily concerned with achieving high
resource utilization, typically assuming reliable hardware.

Temporal and persistent failure of certain cluster compo-
nents both at the local and shared level are a fact of life, as
cluster sizes increase and as hardware pushes performance
to the limit. Having failure-prone components as integral
parts of a workflow can lead to workflows which either can
not be executed, or spend significant time in a stalled state.

Fourth IEEE International Workshop on Engineering of Autonomic and Autonomous Systems (EASe'07)
0-7695-2809-0/07 $20.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on October 30, 2009 at 22:16 from IEEE Xplore. Restrictions apply.

Typically, these failures and workflow stalls must be manu-
ally detected and resolved. Again, as cluster sizes increase,
this manual intervention becomes infeasible.

Thus there is a desire for workflow based systems to
automatically detect faults and mitigate errors as they oc-
cur. Such accommodations may include alteration of a
workflow, restarting workflow segments, or suspension of
a current workflow in favor of a workflow which can be
completed with more limited resources. If properly im-
plemented, this autonomic behavior can greatly enhance
the productivity of scientific computing clusters and make
scale-up of these clusters feasible. This paper discusses
model based tools and techniques which are currently be-
ing developed to construct workflow environments which
suit the needs of the large-scale scientific computing com-
munity.

2. Background and related work

2.1. Model based design

Model-based design has gained momentum in recent
years as a sound methodology of applying computer-based
modeling methods to a variety of problem domains. Model-
integrated computing (MIC) [19], in particular, incorporates
the creation of domain-specific modeling languages which
capture relevant aspects of a complex computer-based sys-
tem. These models can then be queried or transformed to
produce a variety of domain specific artifacts. Examples
of MIC applications are the generation of real-time sched-
ules from software dataflow models, the creation of config-
uration files from system models to configure a distributed
system, or the generation of source code from behavioral
models which can be integrated into an existing software
framework.

The creation of modeling abstractions which are specific
to a given problem domain is the cornerstone of MIC. This
process relies heavily on the use of domain-specific mod-
eling languages (DSMLs) to capture relevant characteris-
tics of an object or system of objects. The Generic Mod-
eling Environment (GME) [13] is a configurable, domain-
independent, and freely available [8] tool which provides a
platform upon which to perform MIC design and develop-
ment.

2.2. Workflow environments

There are many different research efforts on workflows
in grid environments. In [5], Deelman et al. lay out the
issues with workflow management in the Grid, in general.
They mention the important aspects of workflow generation
and planning. In [7], Deelman et al. focus on the auto-
matic generation of workflows for the Grid. The generated

workflows show how individual application components are
brought together for the execution of a complex applica-
tion. They identify mapping application requirements to an
abstract workflow and mapping the abstract workflow onto
the Grid as two main steps. Deelman et al. also describe
the Pegasus tool that can map complex workflows onto the
Grid in [6]. In [20], Linden et al. present GridAssist which
is a tool Grid-based workflow management tool. GridAs-
sist helps the user to execute workflows in a Grid environ-
ment without requiring the user to know the internal details.
In [2], Amin et al. present another workflow management
system called GridAnt which lets users manage complex
workflows and specify complex workflow dependencies in
XML. In [4], Cao et al. propose a Grid workflow manage-
ment framework called GridFlow for grid computing. The
system provides support for both global grid workflow man-
agement, and local grid sub-workflow scheduling.

In [11], Krishnan et al. investigate leveraging the exist-
ing Web services workflow technologies for Grid services.
For this purpose, they survey different workflow specifica-
tion languages for Web services and identify specific needs
of Grid services. They present their own language called
Grid Services Flow Language that addresses the needs of
the Grid services. Another workflow specification language
is described in [9] by Fahringer et al. The Abstract Grid
Workflow Language (AGFL) presented in their paper, pro-
vides a way to specify Grid workflows in a high level of
abstraction by hiding the implementation details of the Grid
technology from the user.

In effort to enable autonomic applications on the Grid,
in [1], Agarwal et al. present an autonomic component
framework for Grid applications called AutoMate. In this
work, the issue of autonomic application development by
dynamically composing autonomic components is investi-
gated. In [16], Nichols et al. recognize the importance of
autonomic characteristic of self-healing to ensure execution
of critical workflows on the grid platform. For this purpose,
they propose embedding a model for dynamic fault toler-
ance in a mobile agent workflow management system. It is
explained that this way the system can optimally configure
its fault tolerance mechanisms. In a similar effort, in [15],
Liu et al. present the Accord autonomic service architec-
ture. Using Accord, autonomic services can be developed
and autonomic applications can be formed by composing
these autonomic services. Moreover, Accord enables the
applications to adapt to the uncertainties of the Grid envi-
ronment. In [10], Heinis et al. present an autonomic work-
flow engine which tackles the problem of deploying systems
in optimal configuration. The autonomic properties of their
workflow engine enable alteration of the workflow configu-
rations with respect to the workload variations without any
user intervention. In addition, the engine enables recovery
of the workflow execution state.

Fourth IEEE International Workshop on Engineering of Autonomic and Autonomous Systems (EASe'07)
0-7695-2809-0/07 $20.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on October 30, 2009 at 22:16 from IEEE Xplore. Restrictions apply.

3. Autonomic Workflow Management

Recent efforts toward autonomic workflow environments
have been shown to exhibit various qualities of autonomic
systems which require less user intervention in the success-
ful execution of a workflow. However, there is still a strong
desire in the scientific computing community to have more
control over the corrective actions taken by the workflow
management system when components begin to fail.

The self-* tenets of autonomic computing [18] serve to
characterize the introspective qualities of systems which
can be considered autonomic. In considering an autonomic
workflow environment, an important quality which is to be
desired is that of self-management. Clearly, the manage-
ment of jobs and resources is pivotal to the successful com-
pletion of a workflow. For the scientific community, the
number of jobs and the variety of resources make the task of
managing the workflow difficult for humans. It is therefore
desirable that the tools used to specify and execute a work-
flow display the autonomic property of self-management.

In the following sections we will present an initial design
of a workflow modeling language and analysis techniques
which integrate the specification of a scientific workflow
with simulation and fault analysis.

3.1. WorkflowML: a workflow modeling lan-
guage

The WorkflowML modeling language was created using
GME and the MetaGME modeling framework. The lan-
guage supports three main features which address the needs
of the scientific computing community:

• Modeling of jobs, data stores, and desirable outputs

• Synchronization of jobs without regard to data depen-
dencies

• Supports model based analysis techniques

It is our aim to produce a language which is capable of
satisfying these criteria. In addition, we intend to extend our
existing languages for scientific computing (GHOSTML
and SIML) with workflow modeling capabilities. In the fol-
lowing section we will introduce our initial efforts toward
this goal.

WorkFlowML is based around principles of synchronous
dataflow (SDF) languages with a few additions, and mod-
els expressed in this language can be mapped to a directed
acyclic graph (DAG). The choice to use acyclic graphs is
based on simplicity; as this work progresses the language
may be extended to include support for cyclic graphs. Ex-
ternal Data Stores and Internal Data Stores are added the
SDF base to allow the modeler to capture data dependen-
cies between jobs and services which supply data for the

job. Synchronizers are used to place an arbitrary synchro-
nization constraint on the scheduling of jobs that are not
necessarily data dependent.

A Job is represented as an octagon and is annotated with
an integer attribute to capture the typical execution time of
the job and a boolean value which indicates whether or not
the job is desired. The desirability of a given job is an in-
dication that the result obtained by executing a job is some-
how interesting to the designer of the workflow. This in-
formation is useful in determining the completion status of
a suspended workflow, or for determining whether a faulty
workflow should continue to be executed.

Jobs are considered to be in one of four states, Initial,
Running, Finished, Faulty. Jobs are initially in the Initial
state. Jobs whose input, output, and scheduling dependen-
cies are satisfied are then moved to the running state, where
they execute until finished. Failed jobs are those which can-
not continue due to software or resource problems. Jobs
are annotated as being desired or undesired, which indicates
whether the designer values the output of the job or not. The
usefulness of this metric is detailed later in this chapter.

Data Stores represent external or internal data stores
upon which data can be consumed or produced by Jobs. The
data stores are annotated with a unique resource identifier
(URI).

There exist three distinct types of dependencies which
can be expressed in a WorkflowML model:

• Data: Jobs which have an inbound connection from
either a data store or another job are said to be data
dependent upon that store or job.

• Sequential: A job A is said to precede another job B if
there exists a data path of any size through the edges
of the graph from A to B. A job can not be scheduled
until all jobs which precede it have completed.

• Synchronous: All jobs which have an inbound asso-
ciation with a synchronizer may be scheduled if and
only if all jobs which have an outbound relation to that
synchronizer are finished.

Formally, the domain constructs can be defined as sets
and the above mentioned dependencies as relations on those
sets. These definitions are stated in the following sections.

3.2. Sets

• J : Set of jobs that are part of the workflow.

• S: Set of synchronizers that are part of the workflow.

• D: Set of data stores, both external and internal that
are part of the workflow.

Fourth IEEE International Workshop on Engineering of Autonomic and Autonomous Systems (EASe'07)
0-7695-2809-0/07 $20.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on October 30, 2009 at 22:16 from IEEE Xplore. Restrictions apply.

3.3. Relations

• RDJ ⊆ D × J ∪ J ×D: Data dependency between a
job and a data store s.t. (∀j ∈ J)(∀d ∈ D)((d, j) ∈
RDJ ⇒ j depends on d for input). If (j, d) ∈ RDJ ,
then j depends on d for output storage.

• RJJ ⊆ J × J : Sequential dependency relation be-
tween two jobs s.t. (∀j1, j2 ∈ J)((j1, j2) ∈ RJJ ⇒
j2 depends on j1). It should be noted that Sequen-
tial dependency is transitive i.e. (j1, j2) ∈ RJJ ∧
(j2, j3) ∈ RJJ ⇒ (j1, j3) ∈ RJJ . Moreover, indi-
rect dependency between any two jobs via data depen-
dency or synchronous dependency implies sequential
dependency. For example let j1, j2 ∈ J be two jobs
and s ∈ S be a synchronizer, (j1, s) ∈ RSJ ∧ (s, j2) ∈
RSJ ⇒ (j1, j2) ∈ RJJ

• RSJ ⊆ S × J ∪ J × S: Dependency between a job
and a synchronizer s.t. (∀j ∈ J)(∀s ∈ S)((j, s) ∈
RSJ ⇒ s need j to finish before it can launch any
other job k ∈ J s.t. (s, k) ∈ RSJ).

Typical workflow execution engines may provide some
simple levels of fault mitigation, such as process migration
or rescheduling. However, there exist certain types of re-
source failures such as network or database outages, ther-
mal failures in racks of machines, or persistent software
crashes which may hinder the eventual completion of the
workflow. In these cases, it is necessary to determine the
extent to which a workflow can be executed and provide
reports to the operator so that she may make a decision to
continue or stall the workflow.

To determine the extent to which a workflow can be ex-
ecuted, we construct a simple workflow execution engine
simulator within the modeling environment which can be
run in parallel with the actual system. The model is as-
sumed to accurately represent the current state of the work-
flow. This can be achieved through the use of a synchro-
nizer or observer which is monitoring the progress of the
workflow execution. When a fault occurs, all available au-
tonomic reflexes are exhausted in an attempt to mitigate this
fault at the local level before the workflow prediction is per-
formed. If the fault is unable to be mitigated by a reflex, the
model is updated and a simple simulation algorithm begins
in order to determine the future states of the workflow given
no external intervention and no future faults.

Since jobs within the model are annotated as being de-
sired or undesired, we can use this as a metric to determine
the relative desirability of a partially completed workflow.
If the workflow progresses to a state where no desirable jobs
complete, it may become an easy decision to suspend the
workflow.

To demonstrate the use of these features an example
model is shown which is derived from an example workflow

execution scenario proposed by Jim Kowalkowski and Lu-
ciano Piccoli and the Lattice Gauge Theory Computational
Facility [12] at Fermi National Accelerator Laboratory.

4. Analysis

The model given is that of a simplified workflow with
synchronization, sequence, and data dependency. The input
to the predictive algorithm requires the DAG for the work-
flow. In order to make the definition of the algorithm com-
plete, let us summarize the various sets and relations that
are part of the DAG.

Figure 1. Initial workflow model expressed in
WorkflowML.

The initial model shown in Figure 1 depicts a workflow
utilizing a variety of jobs, synchronizers, and both internal
and external data stores. The job labeled StoreOutput is the
only desired job in this example. When a Faulty state is
observed in job L4, the lookahead simulation begins. The
initial state of the workflow simulation is shown in Figure
2. Note that jobs L1, and L2, are currently in the Running
state, while jobs FetchData and L3 are in the Finished state.
All remaining jobs are in the Initial state.

Figure 2. A faulty WorkflowML model upon
which the analysis is performed, showing
two jobs in the Finished state, two in the Run-
ning state, and one in the Faulty state.

Given that a fault has occurred, a predictive simulation
is conducted in parallel with the running system by apply-
ing the lookahead algorithm given in Algorithm 1 to a copy

Fourth IEEE International Workshop on Engineering of Autonomic and Autonomous Systems (EASe'07)
0-7695-2809-0/07 $20.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on October 30, 2009 at 22:16 from IEEE Xplore. Restrictions apply.

Figure 3. A visual representation of the lookahead algorithm showing a) the primary prediction, b)
the secondary prediction, c) the third prediction, and d) the final stalled workflow.

Algorithm 1 Look Ahead Analysis
Input: DAG: Nodes ⊆ J ∪ S ∪D and Edges ⊆ RDJ ∪

RSJ ∪RJJ

Pre Condition: (∃j ∈ Nodes ∩ J)(Faulty(j))
Output: DAG: Nodes, Edges {A maximal analysis of all

the jobs that can not be completed.}
while (∃j ∈ Nodes ∩ (J ∪ S))(¬Faulty(j))(¬∃j′ ∈
Nodes ∩ (J ∪ S))((j′, j) ∈ Edges) do

Mark j as Running {This can be used to simulate the
running job}
Mark j as Finished
Nodes← Nodes− j
Edges← Edges− (j, ∗) {* can match any node}

end while

of the initial model depicted in Figure 2. The intermediate
transformed models are depicted in the subfigures a), b), c),
and d) of Figure 3.

Figure 3 a) shows that the jobs L1 and L2 have both been
moved the Finished state. Figures 3 b) and 3 c) show job
H2 progressing from the Running state to the Finished state.
Note that since there is no representation of the passage of
time in this simulation, the progression of state happens in

immediate succession for all jobs whose scheduling con-
ditions are satisfied. Finally, Figure 3 d) depicts the final
remaining state of the workflow, where job L4 remains in
the Faulty state while jobs H2, H3, and StoreOutput have
all remained in their Initial state.

The workflow in Figure 3 d) is considered stalled in that
the job H2 cannot be scheduled due to a synchronization de-
pendency on the completion of the faulty job L4. Further-
more, the job H3 cannot be scheduled due to both a syn-
chronization and data dependency on the completion of job
L4. Finally, the StoreOutput job (which is a desired job) re-
mains unscheduled due to its synchronization dependency
upon the completion of H2 and H3.

One can see that a determination regarding whether or
not to continue this workflow is in order. This decision gives
us a chance to preempt the workflow predicted to stall and
make way for the execution of some other existing work-
flow that is not predicted to stall given the current set of
failures. This leads to a trade-off between workflows that
can be completed versus those workflows which are des-
tined to fail.

Fourth IEEE International Workshop on Engineering of Autonomic and Autonomous Systems (EASe'07)
0-7695-2809-0/07 $20.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on October 30, 2009 at 22:16 from IEEE Xplore. Restrictions apply.

5. Conclusions and Future Work

This paper presents an ongoing development of con-
cepts for the integration of autonomic features into work-
flow specification and execution. When resources are fail-
ing in large scale computing environments, tools such as
these are necessary to provide scientists and system oper-
ators with decision aids, such as predictions of if their de-
sired computations can be completed. In this regard, predic-
tive analysis presents a key feature of autonomic workflow
management tools which aim to provide self-evaluation and
self-management.

Future work in this area include the integration of on line
predictive analysis results to automatically stall and check-
point workflows that may not be able to complete given the
failures in the system and the currently available resource
set. Also, additional checks are being investigated with the
workflow submission process that can give scientist imme-
diate feedback of the predicted completion of the workflow
before it is scheduled. Additionally, preplanned mitigation
actions can be integrated into the workflow, allowing an
application-specific handling of faults. Finally, this set of
tools can be abstracted to drive common cluster scheduling
systems which do not provide the level of autonomicity de-
sired by the community.

Acknowledgments

This work is supported by US Department of Energy
grant number DE-FC02-06ER41447. The authors would
like to thank Jim Kowalkowski for his concrete knowledge
of software systems and his rigorous adhesion to software
standards which continuously contributes to the quality of
the research presented in this paper.

References

[1] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty,
C. Schmidt, G. Zhang, L. Zhen, M. Parashar, B. Khargharia,
and S. Hariri. Automate: enabling autonomic applications
on the grid. Autonomic Computing Workshop, 2003, pages
48–57, 2003.

[2] K. Amin, G. von Laszewski, M. Hategan, N. J. Zaluzec,
S. Hampton, and A. Rossi. Gridant: a client-controllable
grid workflow system. System Sciences, 2004. Proceed-
ings of the 37th Annual Hawaii International Conference on,
pages 10 pp.+, 2004.

[3] B. Bode, D. Halstead, R. Kendall, and Z. Lei. The portable
batch scheduler and the maui scheduler on linux clusters.
Proceedings of the 4th Annual Linux Showcase and Confer-
ence, October 2000.

[4] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. Gridflow:
workflow management for grid computing. Cluster Com-
puting and the Grid, 2003. Proceedings. CCGrid 2003. 3rd

IEEE/ACM International Symposium on, pages 198–205,
2003.

[5] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman. Workflow
management in griphyn. Grid resource management: state
of the art and future trends, pages 99–116, 2004.

[6] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
S. Patil, M.-H. Su, K. Vahi, and M. Livny. Pegasus: Map-
ping scientific workflows onto the grid. Lecture Notes in
Computer Science : Grid Computing, pages 11–20, 2004.

[7] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, K. Blackburn, A. Lazzarini, A. Arbree, R. Ca-
vanaugh, and S. Koranda. Mapping abstract complex work-
flows onto grid environments. Journal of Grid Computing,
V1(1):25–39, March 2003.

[8] The ESCHER research institute. www.escherinstitute.org.
[9] T. Fahringer, J. Qin, and S. Hainzer. Specification of grid

workflow applications with agwl: an abstract grid workflow
language. Cluster Computing and the Grid, 2005. CCGrid
2005. IEEE International Symposium on, 2:676–685 Vol. 2,
2005.

[10] T. Heinis, C. Pautasso, and G. Alonso. Design and evalua-
tion of an autonomic workflow engine. Autonomic Comput-
ing, 2005. ICAC 2005. Proceedings. Second International
Conference on, pages 27–38, 2005.

[11] S. Krishnan, P. Wagstrom, and G. V. Laszewski. GSFL: A
workflow framework for grid services, Aug. 14 2002.

[12] The lattice gauge theory computational facility (LQCD).
http://lqcd.fnal.gov.

[13] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi.
Generic modeling environment. In WISP, volume IEEE In-
ternational Workshop on Intelligent Signal Processing, Bu-
dapest, Hungary, May 2001.

[14] Q. Li, Z. Shan, P. C. K. Hung, D. K. W. Chiu, and S. C. Che-
ung. Flows and views for scalable scientific process integra-
tion. In InfoScale ’06: Proceedings of the 1st international
conference on Scalable information systems, page 30, New
York, NY, USA, 2006. ACM Press.

[15] H. Liu, V. Bhat, M. Parashar, and S. Klasky. An auto-
nomic service architecture for self-managing grid applica-
tions. Grid Computing, 2005. The 6th IEEE/ACM Interna-
tional Workshop on, pages 8 pp.+, 2005.

[16] J. Nichols, H. Demirkan, and M. Goul. Autonomic workflow
execution in the grid. Systems, Man and Cybernetics, Part
C, IEEE Transactions on, 36(3):353–364, 2006.

[17] S. Shankar, A. Kini, D. DeWitt, and J. Naughton. Integrating
databases and workflow systems. SIGMOD Rec., 34(3):5–
11, 2005.

[18] R. Sterritt. Autonomic computing. Innovations in Sys-
tems and Software Engineering, A NASA Journal, 1(1), April
2005.

[19] J. Sztipanovits and G. Karsai. Model-integrated computing.
Computer, 30(4):110–111, 1997.

[20] M. ter Linden, H. de Wolf, and R. Grim. Gridassist, a user
friendly grid-based workflow management tool. Workshop
on Web and Grid Services for Scientific Data Analysis (34th
ICPP’2005), pages 5–10, June 2005.

Fourth IEEE International Workshop on Engineering of Autonomic and Autonomous Systems (EASe'07)
0-7695-2809-0/07 $20.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on October 30, 2009 at 22:16 from IEEE Xplore. Restrictions apply.

