
Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

SPECIFICATION AND IMPLEMENTATION OF AUTONOMIC FAULT-

MITIGATION BEHAVIORS FOR LARGE-SCALE REAL-TIME EMBEDDED

SYSTEMS

By

Di Yao

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

August, 2005

Nashville, Tennessee

Approved: Date:

__ ____________________

__ ___________________

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

ii

To My Parents

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

iii

ACKNOWLEDGEMENTS

 This research was sponsored by the National Science Foundation (NSF) in

conjunction with Fermi National Accelerator Laboratories, under the BTeV project, and

in association with the Real-Time Embedded Systems Group, RTES. This work has been

performed under NSF grant # ACI-0121658.

 To start with I would like to thank Dr. Ted Bapty, my graduate advisor for giving

me the opportunity to work on the BTeV project. His valuable ideas and guidance have

helped me in developing this research and thesis. I would also like to give thanks to Dr.

Sandeep Neema whose ideas opened new doorways during my research.

 To all my team members and everyone actively involved in this project who gave

their support and help to me when I needed it. To all the friends I made during graduate

school. To Brandon Eames for allowing me to bug and pester him when he was free and

when he was swamped.

Finally, I would like to give thanks to my parents for their contribution and

encouragement throughout the journey. Without their support and encouragement, I

would not have made it this far. I will always remember this quote that my mom has

recited to me ever since I was little “Where there is will, there is a way”.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

iv

TABLE OF CONTENTS

Page

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS... iv

LIST OF TABLES... vi

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS .. ix

Chapter

I. INTRODUCTION .. 1

Overview of BTeV Experiment .. 2
Autonomic Fault Mitigation Approach ... 5
Problem Statement ... 8

II. BACKGROUND AND LITERATURE SURVEY.. 9

Background.. 9
Model-Integrated Computing... 9
Software Implemented Fault Tolerance.. 10

Autonomic Computing ... 13
Agent Building and Learning Environment.. 14
AutoMate .. 15
vGrid ... 18
Summary... 20

III. MODELING LANGUAGES FOR THE BTEV ENVIRONMENT.................... 21

Data Type Modeling Language .. 21
Graphical User Interface Configuration Modeling Language 23
System Integration Modeling Language ... 25
Integration of Modeling Languages .. 27

IV. FAULT MITIGATION MODELING LANGUAGE ... 31

Domain-Specific Modeling Language .. 31
Behavioral Concepts .. 35

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

v

Extensions to Level 1 Fault Mitigation Research .. 40

V. MAPPING DOMAIN MODELS TO IMPLEMENTATION 42

Execution Platform Artifacts .. 42
Fault Manager Specification and Instantiation Script Generation.................... 43
Fault Managers Communication Gateway Generation 45
Fault Mitigation Behavior Generation .. 47

Mapping of Messages.. 47
Mapping of Behaviors ... 48

Summary.. 50

VI. CASE STUDY.. 52

Region Timing Violations During Data Filtering.. 58
Evaluation of Case Study ... 63

VII. CONCLUSIONS AND FUTURE WORK... 64

Conclusions.. 64
Future Work... 65

REFERENCES... 67

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

vi

LIST OF TABLES

Table Page

1. Event Legend for Data Stream Corruption Fault Scenario.....................................56

2. Event Legend for Regional Execution Time Violation Fault Scenario...................61

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

vii

LIST OF FIGURES

Figure Page

1. The BTeV Detector Setup...3

2. Design Process in Multi-Graph Architecture (MGA) ..10

3. Internal Structure of an ARMOR..12

4. Example of a DTML Message Model ...23

5. User Interface Model in GCML..25

6. System Model Expressed in SIML..26

7. Specification of Link in SIML ..28

8. Integration of Modeling Languages ..29

9. Metamodel of Structural Concepts..34

10. Location Specification of Fault Managers on a Local Node35

11. Metamodel of Mitigation Behavior Specification..37

12. Specification of Input and Output Events in Fault Managers.................................38

13. Mitigation Behavior Model in FMML ..40

14. Mapping Process and Resulting Artifacts..43

15. Mapping of Instantiation and Specification Scripts ...44

16. Message Translation Process Using Communication Gateways46

17. Mapping to Communication Gateway Source Files from Model48

18. Mapping to Behavior Source File from Model..50

19. Level 2/3 Prototype System Setup (courtesy of H. Cheung, Fermilab)53

20. Fault Management Architecture in the Prototype System......................................54

21. Mitigation Time Plot of Data Stream Corruption by Local Fault Manager57

22. Mitigation Behaviors of Local, Regional and Global Fault Managers59

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

viii

23. Mitigation Time Plot of Regional Execution Violation by Three Levels of Fault
Managers..62

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

ix

LIST OF ABBREVIATIONS

MIC – Model-Integrated Computing.

DSML – Domain-Specific Modeling Language.

HEP – High Energy Physics Experiment.

FSM – Finite State Machine.

GCML – Graphical User Interface Configuration Modeling Language.

DTML – Data Type Modeling Language.

FMML – Fault Mitigation Modeling Language.

SIML – System Integration Modeling Language.

SIFT – Software Implemented Fault Tolerance.

GME – Generic Modeling Environment.

OCL – Object Constraint Language.

API – Application Programming Interface.

ABLE – Agent Building and Learning Environment.

IP – Internet Protocol

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

1

CHAPTER I

INTRODUCTION

The rapid advancement of computing technology results in the proliferation of the

complexity and size of real-time embedded computer systems. The complexity of such

systems results from a large number of components and interactions among components

and with the environment. The mission-critical nature of the systems demands correct

outputs at correct time with very small margin for tolerating errors.

Failures can, and do occur in these systems due to problems in hardware,

software, or the environment. As consequences of failures are detrimental, faults must be

detected and corrected as soon as possible without disturbing system operations. A range

of fault-tolerance techniques exist, many of which are based on using redundant

components [27]. Due to constraints imposed by budget, power and size, these traditional

techniques may not always be feasible. Instead, these systems must be able to deal with

failures while minimizing the amount of extra resources. Since there is no single ‘perfect’

system response to failures, the way in which any particular system handles failures is

often dependent on the goals of the application and environment. These failure responses

must be definable by the system designers.

The work presented in this thesis is motivated by the fault-tolerance requirements

of a class of large-scale, real-time embedded systems used in high-energy physics

experiments (HEP) for data acquisition and processing. These systems require thousands

of processors to perform real-time computations and must be highly reliable. In order to

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

2

maintain reliability, effective fault-mitigation policies must be incorporated into the

system design.

 The work presented in this thesis is on the development of a tool for specifying

and implementing fault-mitigation behaviors for large scale real-time embedded systems

for HEP experiments using a model-based approach.

Overview of BTeV Experiment

HEP experiments use massive facilities to understand the properties and states of

the basic building blocks of matter. The experiment of interest for this research is called

the BTeV1 experiment that is under development at Fermi National Accelerator

Laboratory. BTeV’s goal is to study charge-particle violation, mixing and rare decays of

particles known as beauty and charm hadrons [2].

The experiment takes place in a particle accelerator, where enough energy is

applied to protons and anti-protons moving in opposite directions to achieve relativistic

speeds. The protons and anti-protons collide, breaking up into the most basic components

of matter. The collisions are recorded for examination of detached secondary vertices

from charm and beauty hadrons decays. The proposed BTeV detector layout is shown in

Figure 1.

The experiment is designed such that particle collision occur every 132

nanoseconds with raw data rate at more than 14.8 Gbytes/sec. The collisions in the

presence of a large magnetic field are recorded by the use of 30 planar pixel detectors,

placed at fixed distances, providing a three dimensional data set. The results are carried to

1 The BTeV experiment was cancelled recently. However, the work will be applied to other High Energy Physics

applications.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

3

localized processors that reconstruct the three-dimensional crossing data from the

detectors to examine the trajectories for detached secondary vertices.

Figure 1 The BTeV Detector Setup

While the aim of the experiment is to find new phenomena occurring during these

collisions, most of these collisions lead to already known collision behaviors and hence

can be discarded without any loss. Furthermore, the data sizes from interaction are on the

order of 2Kbytes per event with events occurring at a rate of 7.6MHz. The aggregate data

rate is clearly too high to be blindly recorded. Therefore, data-dependent decision

algorithms called Triggers must be executed online to dynamically compute an

accept/reject decision. The trigger has three levels, all involving computations of

collision data. The first level performs tracks reconstruction, primary vertex finding and

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

4

impact parameter computation [2]. All accepted event from first level are saved and

passed onto the second and third level. Algorithm used in the second and third level

reconstructs the event with better resolution and additional information to pick out events

with potentially interesting vertex topologies [2]. These algorithms necessarily must be

computed in real-time, although significant queuing is typically available.

While the actual accepted events occur infrequently, the high cost of operation of

the experiment (facility, personnel, energy, etc.) and the large demand for the facility

requires the system to 1) operate with excellent reliability, 2) sustain high computational

performance and 3) maintain functional integrity over long periods of time [1] [3]. At the

same time, the system cost must be minimized, precluding fault tolerant approaches that

use redundancy such as triple-mode redundancy. Thus, the goals for fault mitigation are

the following:

• Maintain the maximal application functionality for any set of component

failures.

• Recover from failures as completely and rapidly as possible.

• Minimize the system cost.

The solution requires a certain degree of “self-awareness” in the system to

accurately identify problems and tolerate failures. As faults will occur during operation,

they must be corrected in the shortest possible time with as little human intervention as

possible. The system must possess capabilities to execute automated recovery procedures,

to make compensations for potentially changing resources by shifting loads or changing

system thresholds, to reconfigure existing detection and recovery procedures, and to

create new procedures.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

5

These constraints and requirements are what drive the research and development

of toolsets at the Institute for Software Integrated Systems, Vanderbilt University to

design fault-tolerant large-scale real-time embedded systems. This thesis describes the

work done to support the creation and deployment of such fault mitigating systems.

Autonomic Fault Mitigation Approach

The key features of the fault-mitigation approach in order to satisfy the

requirements of the trigger and address the dependability problems associated with it is a

hierarchical fault management framework that provides fault-mitigation behaviors

customized for specific faults to systems. This framework uses software entities called

fault managers which have mitigation knowledge from mitigation strategies embedded

within them [4].

This fault-mitigation approach distinguishes two aspects of fault-mitigation:

Structural and Behavioral.

• Structural refers to the location and relationship between fault

management entities.

• Behavioral refers to the internal operation of the fault manager entities.

In large-scale systems, it is impractical for a single fault manager to manage all

mitigation activities. A single manager will result in unpredictably large reaction times.

The reaction time to any specific fault will depend on pending faults from the entire

system, an indeterminate number. With an unpredictably large reaction time, a fault has

the chance to propagate to other components, potentially inducing a cascade of failures.

A single fault manager is also susceptible to single-point of failure where failure of this

single fault manager disables the entire system’s fault handling capabilities.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

6

Due to these concerns, distributed fault managers, with distinctive fault-mitigation

knowledge, should be employed. Specialized fault managers enable division of fault

handling tasks so that mitigation actions could occur rapidly and concurrently, resulting

in short reaction time. One or more fault managers are deployed to reside on each node in

the system to provide protection to the running applications using their fault-mitigation

knowledge.

Moreover, fault managers are composed in a hierarchical fashion in the system to

form a management network that has a tree structure. Each manager has a specific control

zone over which it has authority to take mitigation actions. Faults are handled by

managers at the lowest level of occurrence in order to minimize propagation time. If a

fault can not be resolved at a level, a request is propagated up to the immediate superior

manager until it can be resolved. System-wide mitigation commands are typically

broadcast down the hierarchy by the manager at the highest level (i.e. the root node in the

tree structure).

For the HEP application space, we have defined three logical levels of hierarchy:

Local, Regional, and Global levels.

• Local Managers perform basic fault actions that occur on local nodes in

the system.

• Regional Managers deal with successively larger groups of nodes. Note

that there can be multiple levels of regional managers.

• Global Managers have the authority to order system wide mitigation

actions and responding to mitigation requests from Local and Regional

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

7

Managers. Note that there can be multiple global managers, serving as

backups.

The fault managers operate concurrently along with the rest of the system.

Responding to faults as they occur asynchronously, automatically making fault-

mitigation decisions for faults in their zones only so they minimally perturb the system.

The managers on each level only communicate with its subordinate or superior managers

at a higher or lower level to coordinate fault-mitigation decisions.

Reaction time improves since mitigation decisions can be made closer to the fault

source. Scalability also improves because new fault managers can be added easily at the

appropriate hierarchy level without causing disruption to the existing fault-mitigation

network as system size increases [20]. For example, if several new nodes are introduced

in the system, they can either be added as individual nodes to the Local management

level or they can be added as an entire region to the Regional management level.

Implementing fault managers with custom fault-mitigation knowledge and

deploying them across the system require extensive knowledge of the runtime

environment. While we can expect a computer engineer/scientist to work within the

details of implementation, the domain knowledge to define system recovery actions is

more with the application designer and users, in this case, the physicists. In addition, as

mitigation behaviors progressively become more complex, it will become harder and

harder to manage and evolve them. Therefore, a high-level tool that abstracts the runtime

environment and facilitates the creation and management of the framework is needed.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

8

Problem Statement

The goal of the research described in this thesis is to develop model-based tools

for achieving autonomic fault-mitigation in large-scale real-time distributed systems and

to demonstrate the applicability of the tools on examples from the BTeV application.

Developing such a tool involves the following:

1. Developing a domain-specific modeling environment for specifying

autonomic fault-mitigation behaviors in the system. The modeling

environment uses a domain-specific modeling language called Fault

Mitigation Modeling Language (FMML) to model mitigation behaviors

for fault managing entities and interactions with other components in the

system.

2. Developing a translator to map high-level specifications to lower-level

artifacts that is used by an execution platform to instantiate a hierarchical

fault management framework that runs concurrently along with the system

to mitigation failures.

This thesis describes the tool architecture, specification, and implementation. The

tool is evaluated via a case study implementing a HEP application using this tool. The

organization of the thesis document is as follows: Chapter II presents a survey of some of

the existing tools in designing autonomic systems and fault-mitigation execution

platform. Chapter III describes various other modeling tools developed for the BTeV

system. Chapter IV and Chapter V give details about FMML and the translator. Chapter

VI presents a case study demonstrating tool applicability using BTeV application as an

example. Conclusions are drawn in Chapter VII.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

9

CHAPTER II

BACKGROUND AND LITERATURE SURVEY

Background

Model-Integrated Computing

Model Integrated Computing (MIC) is a design methodology used for building

embedded software systems [5]. Its key objective is to provide a way to design an

embedded system by capturing its requirements and manage its evolution. Domain

specific model is the key element in this approach. Using MIC technology one can

capture the requirements, actual architecture, and the environment of a system in the form

of high-level models. These models act as a repository of information that is needed for

analyzing and generating the system.

The MultiGraph Architecture (MGA) provides a unified software architecture and

framework for designing and building systems using the MIC approach. The MGA

design process is comprised of three levels as shown in Figure 2. Synthesized, adaptable

software applications are transformed from system models built in the Model-Integrated

Programming Synthesis (MIPS) using model translators. The MIPS provides a Domain

Specific Modeling Language (DSML) that governs how a system can be modeled. The

formal semantics, syntax and visualization rules of a DSML are specified through a

metaprogramming interface at the Meta-Level in the form of meta-models.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

10

Meta-Level
Translation

Model
Interpretation

Model Builder

Model Interpreters

Models

MIPS
Environment

Metaprogramming
Interface

Formal Specifications

Application
Domain

App.
1

App.
2

App.
3

Application
Evolution

Environment
Evolution

Meta-Level
Translation

Model
Interpretation

Model
Interpretation

Model Builder

Model InterpretersModel Interpreters

ModelsModels

MIPS
Environment

Metaprogramming
Interface

Formal SpecificationsFormal Specifications

Application
Domain

App.
1

App.
2

App.
3

Application
Evolution

Environment
Evolution

Figure 2 Design Process in Multi-Graph Architecture (MGA)

A toolkit called Generic Modeling Environment (GME) provides an environment

for creating DSML and model translators. GME metamodeling environment provides a

graphical interface similar to UML class diagrams [8]. In the metamodel, the user

specifies the set of entities, their associations, groups and ordering that can be created in

the domain models. The semantics of domain models are enforced in two ways. First,

constraints specified by Object Constraint Language (OCL) are applied to models to

enforce static semantics [9]. Second, dynamic semantics are enforced through model-

interpreter that parses the models to generate source code, configuration or analysis files.

 Software Implemented Fault Tolerance

Software Implemented Fault Tolerance is a dedicated software infrastructure

capable of providing fault tolerance to user applications in a distributed environment.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

11

Chameleon is a SIFT infrastructure developed at University of Illinois at Urbana-

Champaign [10] that explicitly provides fault-tolerant services through a range of error

detection and recovery mechanisms for applications. This section will give details about

Chameleon since it is used as the execution platform for the fault management

framework.

Chameleon provides fault-tolerant services through Adaptive Reconfigurable

Mobile Objects of Reliability (ARMOR) [11]. ARMORs are processes that can be

installed on multiple nodes to provide application specific fault-tolerance services. The

Chameleon infrastructure is essentially a network of ARMOR entities residing on a single

or multiple nodes linked together through a specialized messaging system.

Since fault-tolerant requirements may change from application to application, the

ARMOR architecture has been structured such that it can be reconfigured to

accommodate changing requirements. The ARMOR architecture may be reconfigured

from a structural and a behavior level. The structural level refers to the number and type

of ARMORs that run on nodes across a system. The behavior level refers to the

functionality of individual ARMORs. These two levels of reconfigurability are further

explored in the following paragraphs.

Three types of ARMORs have been developed: Manager, Daemon, and Common

ARMORs. A detailed description of each type is given below [11]:

1. Manager ARMOR is the most authoritative object in the ARMOR

hierarchy. They execute fault-tolerance strategies which allow the failure

detection and recovery of subordinate ARMORs.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

12

2. Daemon ARMORs are installed on every node participating in the

Chameleon environment and provide a communication gateway for local

ARMORs to ARMORs on remote nodes. They execute fault-tolerant

strategies that allow error detection and recovery of other local ARMORs.

3. Specialized Common ARMORs execute different fault-tolerant strategies

to provide for application dependability.

The functionality of an ARMOR is determined by a composition of building

blocks called Elements. A set of core infrastructure Elements have already been defined

and are stored in a behavior library that comes with the installation of Chameleon.

ARMORs from the three types defined previously have a predefined set of core

functionalities. The Elements of an ARMOR are executed by a microkernel inside the

ARMOR.

ARMOR MicrokernelARMOR Microkernel

Msg tableMsg table

Named pipeNamed pipe

Msg routingMsg routing

Process mgmtProcess mgmt

App id mgmtApp id mgmt

Crash detectionCrash detection

Infrastructure
Elements

Elvin/Armor msg converterElvin/Armor msg converter

Hang detectionHang detection

Node status reportNode status report

Filter crash reportFilter crash report

Bad data reportBad data report

Execution time reportExecution time report

Custom
Elements

Memory leak reportMemory leak report

Computing
Node

ARMOR

App 1 App 2 App 3

ARMOR MicrokernelARMOR Microkernel

Msg tableMsg table

Named pipeNamed pipe

Msg routingMsg routing

Process mgmtProcess mgmt

App id mgmtApp id mgmt

Crash detectionCrash detection

Infrastructure
Elements

Elvin/Armor msg converterElvin/Armor msg converter

Hang detectionHang detection

Node status reportNode status report

Filter crash reportFilter crash report

Bad data reportBad data report

Execution time reportExecution time report

Custom
Elements

Memory leak reportMemory leak report

Computing
Node

ARMOR

App 1 App 2 App 3

Computing
Node

ARMOR

App 1 App 2 App 3

Figure 3 Internal Structure of an ARMOR

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

13

Due to the composable nature of ARMORs, behavioral level reconfiguration can

be achieved by modifying the Element composition of ARMORs as well as implementing

custom Elements. Modification to the Element composition can be achieved by adding or

removing Elements from an ARMOR through a Element composition file. Custom

Elements have specialized behaviors and can be added to an ARMOR through the

composition file. However, they must conform to the common publish/subscribe

messaging interface available in all Elements to be able to use ARMOR’s internal

messaging scheme. Figure 3 illustrates the makeup of an ARMOR.

Autonomic Computing

An immediate consequence of the increase in complexity and size of computing

systems in the recent years is the rise in cost and difficulty in managing and maintaining

such systems. Autonomic computing technologies and tools that enable automatic

management of operations with minimal human intervention are being developed as a

solution to this problem. By applying these technologies and tools, the resulting system

will be able to regulate its functions in response to the environment in the same way that

the human nervous system regulates body functions without conscious input [13].

An autonomic system must satisfy the following four key characteristics:

1. Self-Configuring – adapting to conditions in its environment by

configuring system parameters

2. Self-Healing – discovering and diagnosing problems and using alternate

ways to function without disruption

3. Self-Optimizing – using available resources and adjusting workloads to

yield the maximum performance

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

14

4. Self-Protecting – anticipating, detecting, identifying, and protecting itself

from possible threats

An autonomic system will be able to function well under unexpected conditions.

Fault-tolerance based upon an autonomic approach can be cheaper, eliminating expensive

redundancies characteristic of traditional fault-tolerance techniques [14]. This section will

review some of the available technologies and tools for designing autonomic systems and

applications and examine their capabilities in providing fault-tolerance.

Agent Building and Learning Environment

The Agent Building and Learning Environment (ABLE) is a Java-based toolkit

for developing and deploying intelligent agent applications developed by IBM [15]. The

framework provides a lightweight Java agent framework, a library of intelligent software

components, a set of development and test tools, and an agent platform.

The ABLE agent framework is a software architecture that is built on the standard

JavaBeans model. It allows algorithms to be packaged into JavaBeans called AbleBeans

with a common interface. These AbleBeans can be connected to one another to form

AbleAgents who can obtain information and perform actions with respect to applications

they are responsible for. AbleAgents can be formed from other AbleAgents, in addition

to AbleBeans.

ABLE provides a library of core AbleBeans for data access, machine learning

algorithms, machine reasoning and interface engines. In addition, library provides a

common data model composed of a set of data type classes for Boolean, Categorical,

Discrete, Numeric and String literals, variables and fields. In addition to these core beans,

users can wrap new or existing algorithms to create customized beans. Any new beans

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

15

must be wrapped by an AbleBean instance, associated with a BeanInfo file that specifies

an members to be externalized, and a GUI Customizer class to allow users to set any

algorithm attributes.

ABLE offers an interactive development and test environment. AbleAgents can

be graphically constructed using the core AbleBeans library and other AbleAgents.

AbleAgents can also be hand-coded and tested in this environment in the form of JAR

files.

ABLE agent platform provides a set of services including agent life-cycle

transitions and directory facilitators and agent communication functions that allow

AbleAgents to form multiagent systems. The platform can support agents on multiple

physical systems using Java Remote Method Invocation for communication.

ABLE toolkit can be used to add autonomic properties to applications by allowing

users to create specialized agents who can monitor the external environment, plan reflex

actions, learn behaviors, and take actions when problems occur. ABLE provides an

architecture for construction of intelligent software components and agents using core

beans that provide core functionality while allowing custom beans to be created for more

specialized behaviors.

AutoMate

Grid computing attempts to use resources of many separated computers across a

network to solve large-scale computation problems. AutoMate is a framework for

enabling development of autonomic Grid applications that are capable of self-

configuring, self-composing, self-optimizing and self-adapting. The idea is to construct

autonomic applications as dynamic composition of autonomic components [16].

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

16

The framework consists of two key components: an autonomic component

framework called Accord and an agent-based middleware infrastructure called Rudder.

The Accord framework consists of four concepts [17].

1. Application Context – Defines a common semantic basis for components

and applications. The semantic basis for describing application

namespaces, component interfaces, sensors and actuators. Accord uses an

XML-based language for describing functional and non-functional aspects

of components.

2. Autonomic Component – Defines autonomic components as basic

building blocks for autonomic applications. An autonomic component is a

self-contained software module with specified interfaces and context

dependent. A component has rules, constraints, and mechanisms for self-

management and interacts with other components and systems via three

ports to export information about their behavior, resource requirements,

performance, interactivity and adaptability. An embedded rule agent

monitors component state, controls execution of rules and cooperate with

other agents to fulfill overall application objectives.

3. Rule Definition – Management and dynamic composition of autonomic

components are guided by rules. Rules are If-Then expressions where the

conditional part is a logical combination of component/environment

sensors and events. The action part of a rule is a sequence of

component/environment sensor/actuator invocations. There are rules for

defining runtime functional behaviors of autonomic components and

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

17

interactions between components, their environment, and within an

autonomic application.

4. Rule Enforcement – Rules are injected into components at run time to

enable self-managing behaviors in applications. Rules for runtime

functional behaviors are executed by an embedded rule agent. Rules for

component interactions are dynamically injected into the interacting

components.

Rudder is an agent-based middleware infrastructure to provide core capabilities

for supporting autonomic composition, adaptations, and optimizations [16]. Self

configuration is enabled through dynamic discovery and composition of new components

and reconfiguration at run time. Self optimization enabled through dynamic switching of

workflows and components. Self healing is achieved by restarting or replacing failed

components. Self protection is enabled through reactive behaviors. The Rudder has two

parts:

1. The agent framework of Rudder provides three types of peer agents:

Component Agent (CA), System Agent (SA), and Composition Agent

(CSA). Component Agents define interaction rules for component

interaction/communication behaviors and mechanisms. System Agents

monitor, schedule, and adaptively optimize physical resource utilization.

CA and SA exist as system services. CSA are transient, generated to

satisfy application requirements. Application and system dynamics an

uncertainties are addressed by rules that enable applications to

dynamically change flows, components, and component interactions [16].

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

18

2. Reactive tuple space – Tuple space provides coordination service for

distributed agents and mechanisms for rule definition, deployment and

enforcement. It executes runtime adaptive policies to allow coordinated

application execution and optimized computational resource allocation

and utilization. Programmable reactive behaviors defined using a tuple

consisting of a Condition, Guard, and Reaction are supported dynamically.

Condition associated triggering events with reactions. Guard defines

execution semantics of the behavior. Reaction specifies the computation

for the behavior.

vGrid

vGrid is a middleware architecture that sits on top of the existing Grid

middleware, intelligently managing and executing autonomic applications with huge

computational requirements over limited Grid resource [18]. It is an extension of

AutoMate. vGrid is made up of three layers.

The first layer is called Autonomic Problem Solving Environment (Autonomic

PSE). It provides application developers with a software development environment to

design and construct scientific or engineering applications. The idea is to develop an

autonomic application as a dynamic and opportunistic composition of autonomic

components [18]. Individual modules of code are encapsulated into Fine Computation

Unit (FCU) with information on data, operational rules, knowledge about its neighbors

along with input and output ports for communication.

A group FCUs are managed in a collection called Virtual Computation Unit

(VCU) with common properties. A VCU is given to a single Grid resource. A set of VCU

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

19

makes up the complete parallel application. The autonomic properties reside at the VCU

level. A vGrid manager (VGM) uses information and policies about a VCU’s behavior,

resource requirements, performance, and interactivity and adaptively to autonomously

change the VCU’s configuration when needed.

Layer 2 is the vGrid Infrastructure Services enhances existing Grid middleware

and runtime services to support autonomic Grid Applications [18]. The main components

of the vGrid architecture include vGrid Manager (VGM), vGrid Resources, Open Grid

Services, and Distributed Communication Service. The VGM itself is composed of

Monitoring Engine (ME), Analysis Engine (AE), Planning Engine (PE), Knowledge

Engine (KE) and Execution Engine (EE) for setting up and configuring application

execution environment manages and controls all autonomic requirements.

KE stores all high level policies as implementation rules regarding different

scenarios. Example rules are estimated/projected execution times, effect on overall

performance, load on resource unit and etc. The PE uses these rules to plan appropriate

strategy for particular scenario. Local AE computes actual value of an application

characteristic (i.e. execution time) with the estimated value. If actual value exceeds

accepted value, then Local PE is notified and plans adjustments. The adjustments are

made by the corresponding Local EE. If adjustments can not be fulfilled on a local

domain, then requests are propagated up to the global ME, AE and PE for determining a

new domain for execution. The local engines do not have authority in making decisions

outside their own Grid domain.

A distributed communication infrastructure with white board for coordinating all

communications in the infrastructure among the engines and components. Layer 3 is

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

20

called the Autonomic Grid Application Execution Environment for monitoring and

controlling actual execution of an application. It exists in each Grid resource domain. Its

main components consist of Local VGM, local KE, ME, AE, PE, and EE. It sends VGM

information about the VCUs being executed using the whiteboard.

Summary

The tools listed above have been applied to Grid applications or applications

related to server diagnostics, administration and e-commerce whose requirements are

different from HEP experiments. Significant amount of time and effort is required to

customize and apply these tools to the Trigger system. Furthermore, if a manual

development process is used, implementing the software for the tools can incur

significant additional development cost as thorough knowledge of the tool and the

specific implementation language is required.

Moreover, research in the field describes characteristics of autonomic systems and

specific examples or middleware, but there is not a standardized mechanism for

constructing these systems. The challenges include defining autonomic fault-mitigation

behaviors, implementing these behaviors in software, integrating these with the

application, and providing the middleware and underlying operating system. Moreover,

coordinating the responses across a distributed system further complicates the design.

Therefore, automated tools are needed to help manage the complexity associated

with designing and implementing autonomic response systems. The work described in

this thesis is one such tools for designing fault mitigation behavior that aims to meet the

requirements and challenges of HEP experiments using a model-based approach.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

21

CHAPTER III

MODELING LANGUAGES FOR THE BTEV ENVIRONMENT

The Trigger system consists of several different aspects, ranging from hardware

topology, communication architecture, software component configuration, fault-tolerance

policy specification, data and message-types, message passing interfaces, run control,

logging, online diagnosis, and deployment. These aspects of the system interact in

varying degrees and are evolving on different timelines. In addition, there is a need to

version-control the evolution of designs and design artifacts.

A set of narrowly-focused Domain Specific Modeling Languages (DSML),

integrated through a high-level language, has been developed to address these concerns

[19]. The topic of this thesis, the Fault-Mitigation Modeling Language, is one of the

narrowly focused DSMLs for specifying fault-mitigation policies in the system. Details

of this modeling language can be found in Chapter 4. This chapter gives an overview of

the other modeling languages for the Trigger system in the BTeV environment to provide

the background to show how the DSMLs integrate together.

Data Type Modeling Language

The systems running High-energy physics experiments are composed of

thousands of distributed processors. Due to the size of the system and nature of the

experiment, large amounts of data and message transfer takes place, both locally as well

as between processors across the network. A publish-subscribe mechanism called Elvin

[28] is used in the system for this purpose. Like other publish-subscribe message systems,

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

22

messages are routed to clients across the network based on subscriptions of message

contents. Clients can both publish and subscribe to messages by invoking specific APIs

provided by Elvin.

To reduce the complexity of the Elvin communication mechanism and match the

messaging APIs to the tool requirements, an abstraction layer is developed over the Elvin

APIs. This communication layer provides a standard way to marshal and de-marshal

messages using the Elvin protocol while hiding the implementation details of the Elvin

APIs. To further reduce burden on the user, the marshalling and de-marshalling code for

messages are automatically from Data Type Modeling Language (DTML) models [19].

Users model the structure of messages used in the system using the Data Type

Modeling Language. A message can contain message fields who represent simple data of

type floats and integers to specify representation size (i.e. number of bits used) as well as

composite data that can contain other composite data and simple data. Additional

information such as array size or signed/unsigned representation can be specified through

attributes of the message fields.

Figure 4 shows an example message model expressed in DTML. This particular

message contains a composite data and two simple data. The composite data represents

the header of a message which contains three simple data (node_id, region_id, and

message_category). As mentioned in the previously, the marshalling and de-marshalling

code for this message is automatically generated for the user based on the message

structure specified in the DTML model.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

23

Figure 4 Example of a DTML Message Model

Graphical User Interface Configuration Modeling Language

Being able to monitor a system is essential to ensure that a system is functioning

correctly. As a system evolves, its user interface needs to be reconfigured to reflect the

changes in system requirements. Furthermore, configurable user interfaces would enable

the physicists to dynamically view data and error conditions in ways that aid in system

analysis. They would also allow users to dynamically configure and control the state of

the system. The Graphical User Interface Configuration Modeling Language (GCML) is

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

24

a modeling language that provides an intuitive environment for users to configure user

interfaces [21].

Graphical User Interface Configuration Modeling Language allows users to create

multiple user interface panels as well as specify the displays and controls that are a part

of these panels. The types of displays include Cartesian plot, histogram plot,

checkerboards, and text box. The types of controls include pushbuttons, slider bars and

editable text box. There are two aspects for the display and control objects, the Display

aspect and the Dataflow aspect. The Display aspect is used to specify structural properties

of display and control objects such as their physical location inside a user interface panel.

The Dataflow aspect displays the data from the system that is to be displayed or

controlled on a panel [21]. Figure 4 shows an example user interface with these two

aspects. An additional component is provided in the Dataflow aspect called Computation

Blocks that connect to incoming data to perform computation on the data before

displaying. In Figure 5, data from a SystemStatus message is connected to a Computation

Block for processing before they are displayed on a Checkerboard display in the

MainControl panel.

Once the user has modeled the system user interface using the language provided,

the tool is capable of generating the artifacts necessary to create the user interface. The

artifacts include structural files for specifying the location of display and control objects

in a panel and dataflow code for receiving monitoring messages and sending control

messages. Currently, the tool generates software that is executed by Matlab to create the

user interfaces.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

25

Dataflow Aspect

Display Aspect

Dataflow Aspect

Display Aspect

Dataflow Aspect

Display Aspect

Figure 5 User Interface Model in GCML

System Integration Modeling Language

The System Integration Modeling Language (SIML) is a system level modeling

language used for specifying general dataflow within the system, as well as the structural

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

26

and communication layout of the system. Typical objects represented in SIML are

regions or partitions in the system, hardware components, software components, dataflow

connections, node identification, and message routers. The information captured on

system components, component hierarchy and interactions within the system in a SIML

model are relevant for constructing system configuration files used in deploying the

system.

Figure 6 System Model Expressed in SIML

Figure 6 shows a system configuration model expressed in the System Integration

Modeling Language for a prototype HEP experiment from a global view. This model

defines a GlobalManager component (GRCManager), several Region components

(Region1, 2 and 3), and several LocalNodes. Each Region component represents a logical

partition of the system and contains a RegionalManager and several LocalNodes.

LocalNode components can be further decomposed to show a LocalManager component

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

27

and two HEP application components. Processors are identified by their IP address using

the NodeIdentification object shown in Figure 6. Data paths between the components at

global level are captured by solid black lines to represent point-to-point communication,

and Routers represent access points to publish-subscribe communication services.

Integration of Modeling Languages

A set of Domain Specific Modeling Languages has been developed for the

Trigger system, each specifying a relevant aspect of the system. They are briefly

summarized below:

1. The Data Type Modeling Language describes the data and message

types used in the Trigger system.

2. The Graphical User Interface Configuration Modeling Language

specifies the logging and online diagnosis interface to the system.

3. The System Integration Modeling Language determines the hardware

topology, communication architecture, and software component

configuration of the system.

4. The modeling language used for specifying custom fault-mitigation

behaviors of the system, Fault Mitigation Modeling Language

(FMML), is described in detail in Chapter 4.

These different languages are integrated together to form a complete description

of the system. The System Integration Modeling Language serves as the high level

language through which models of other DSMLs can be accessed, allowing integration of

the modeling languages. This integration of the modeling languages is achieved using the

concept of a Link type. A Link can be seen as a bridge between two graphical modeling

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

28

languages. A Link has attributes to identify the modeling language of the linked object,

and file path of the linked object (relative to a CVS working-directory), and provides a

concise interaction between different modeling languages [21].

Link SpecificationLink Specification

Figure 7 Specification of Link in SIML

A Link has specialized tools to facilitate the process of Link creation and Link

navigation, as the creation of a Link is non-trivial and may require an intricate mapping

between concepts in different modeling languages [19]. These tools relieve the system

designers from the onus of Link creation and reduce the possibility of error occurring

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

29

during Link creation and navigation processes. As a result of this integration, SIML

component can be decomposed to a model expressed in one of the many other languages

in the tool suite through a Link type.

The MonitorGUIComponent in Figure 7 is one component that can be

decomposed to a user interface model created using GCML. The Link attributes

associated with this component are link type, name of the modeling language, the

filename of the user interface model, and object type. Other components in the SIML that

are associated with models of other languages via a Link are Global, Regional, and Local

fault managers.

ImportImport

SIML

Language
Links

FMMLGCML DTML
ImportImportImportImport

SIML

Language
Links

FMMLFMMLGCMLGCML DTMLDTML

Figure 8 Integration of Modeling Languages

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

30

Data types and messages from Data Type Modeling Language models can be

imported into the Graphical User Interface Modeling Language models and Fault

Mitigation Modeling Language models. During the import process, data types and

messages from DTML models are copied into the GCML and FMML models that use

these to specify the information to be extracted or filled during system execution. Figure

8 Illustrates how the modeling languages integrate with each other [21].

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

31

CHAPTER IV

FAULT MITIGATION MODELING LANGUAGE

Chapter 1 presented a fault mitigation approach using a hierarchical fault

management framework where fault managers on multiple hierarchy levels can

individually or cooperatively make mitigation decisions. Recall that this mitigation

approach distinguishes two aspects: Structural and Behavioral. Structural refers to the

placement of specialized fault managers within a system. Behavioral refers to the

collective set of fault mitigation behaviors for all the fault managers in the framework.

Together, they form the foundation for system-wide fault mitigation.

A high-level tool called the Fault Mitigation Modeling Tool has been developed

for defining and instantiating a fault management framework with customized fault

detection, mitigation and recovery capabilities. The Domain Specific Modeling Language

of the tool, Fault Mitigation Modeling Language (FMML), provides an environment for

creating fault mitigation behaviors and recovery policies for the system under fault

conditions. FMML also allows capturing information pertaining to the structural makeup

of the fault mitigation framework. This chapter presents the concepts behind the FMML.

Domain-Specific Modeling Language

A Domain Specific Modeling Language allows a system designer to describe a

system in terms of a domain. It enables system designers who have domain knowledge

but not necessarily the implementation knowledge to design a system through use of

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

32

models with a strict set of concepts from a domain. The models can be analyzed to verify

required properties of the design and used to generate the final system.

DSMLs are declarative, have precise semantics and use domain-specific symbols

[7]. A DSML is specified by the five-tuple of concrete syntax (C), abstract syntax (A),

semantic domain (S), and semantic and syntactic mapping (MS and MC)

L=<C, A, S, MS, MC> (1)

The purpose of an abstract syntax, A, is to define the data structures that can

represent models via concepts, relationships, and integrity constraints using Unified

Modeling Language (UML) class diagrams and Object Constraint Language as

metalanguage. The concrete syntax, C, can be seen as a mapping of abstract syntax onto a

specific domain of rendering [7]. Modelers can directly interact with the concrete syntax

by manipulation of graphical objects that are renderings of the underlying objects of

abstract syntax. The purpose of semantics is to define the meaning of models that we

create using the DSML. Semantics can be broken down into two parts: semantic domain

and semantic mapping. The semantic domain, S, is defined by mathematical formalisms.

Syntax mapping, MC, is mapping of A C, whereby syntactic constructs are assigned to

elements of the abstract syntax. Semantic mapping, MS, is a mapping of A S where

syntactic concepts are related to concepts in the semantic domain.

The syntax and static semantics of a DSML can be specified using a technique

called metamodeling. The Generic Modeling Environment (GME) provides an

environment for creating metamodels to describe the entities, their attributes, and their

relationships that are available in the target DSML using UML class diagrams and OCL

syntax. Once a metamodel has been created, the DSML can be generated using a meta-

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

33

translator. Fault Mitigation Modeling Language is defined by a metamodeling language

using the Generic Modeling Environment tool. The metalanguage defines the structural

and behavioral aspects of a hierarchical fault management framework.

Structural Concepts

Fault managers reside on all nodes within a system, each providing some

specialized fault-mitigation services. There are four general types of fault managers that

can be instantiated for a fault-mitigation framework. The metamodel in Figure 9 shows

the four types of fault managers available in the modeling language using a language

similar to UML class diagrams. Note that fault managers are called ARMORs in the

Chameleon execution platform. Therefore, the four types of fault managers are called

ManagerArmor, LibraryArmor, DaemonArmor and CustomArmor in the metamodel. A

brief description of each type of fault managers is as follows:

1. ManagerArmor – Monitors other fault managers in the systems. It keeps

location and type information of all the existing fault managers in the

system. (A)

2. LibraryArmor – Provides specific predefined behaviors to applications.

(B)

3. DaemonArmor – Exchanges heartbeat and registration information with

ManagerArmor and other fault managers. (C)

4. CustomArmor – It has behavior of one of the other three types of fault

manager, specified via a reference (D), with additional custom mitigation

behaviors.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

34

The first three types are composed of predefined behaviors available from a

behavior library. The fourth type is intended for customization by the system designer.

Custom fault managers can contain any number of arbitrary fault-mitigation behaviors in

addition to behaviors from the behavior library.

A B C

DEF

G

A B C

DEF

G

Figure 9 Metamodel of Structural Concepts

Behaviors can be seen as basic elements that can be plugged into a fault manager.

Two types of behaviors are available for plugging into a CustomArmor fault manager:

custom behaviors that are called CustomElements (E), and predefined behaviors from the

behavior library that are called StandardElement (F). The relationship between the

behaviors and custom fault managers are constructed using containment relationship. A

CustomElement object contains a behavior reference to a custom mitigation behavior

model (G) that opens the behavior model it refers to when double clicked.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

35

The global view of fault managers’ placements within a system is captured using

the System Integration Modeling Language where fault managers reside on LocalNode,

RegionNode, and GlobalNode components in the system. Fault managers’ behavior

models are integrated into a SIML model using Links. Figure 10 shows that a LocalNode

contains a LocalARMOR component that has a Link to a FMML model. The FMML

model specifies a Custom type fault manager and a Daemon type fault manager.

LinkLink

Figure 10 Location Specification of Fault Managers on a Local Node

Behavioral Concepts

The State machine-based formal specification methodologies have long been used

to design and specify reactive systems. The FMML uses Statechart [23] notation for

describing the fault-mitigation behavior of fault managers. Using FMML, failure states

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

36

and progression of behavior under failure can be defined as well as interactions between

fault managers and with other components of the system.

The features of the behavioral specification are as follows:

• State defines the status of a computing node at a particular instant in time.

• Transitions implement the change of states. These occur with a particular

event (application failure, status or recovery reports, etc).

• Transition objects are annotated with Trigger, Guard, and Action. The

Guard is a condition that must be true for a transition to occur. The Action

is a specific action that is executed when a transition is taken (e.g. reset

event variables, data variables, decrementing event counts, etc).

• Transition objects contain Messages objects that act as triggering events to

activate transitions.

• Lines connect States and Transition objects represent transitions between

States, capturing the progression of States.

Each mitigation behavior is specified using a hierarchical state machine. Figure

11 shows the metamodel that define the syntax and semantics of the behavior state

machines. The Machine acts as a container that encapsulates mitigation behaviors, one

container per behavior described using hierarchical state machine concepts. States of the

system are defined by a set of State objects. Each State object can be further decomposed

to two or more concurrent substates or mutually exclusive disjoint substates like

Statechart. Initial denotes the default state a system is in through an InitialConn type

connection to the default state. Each behavior state machine contains a set of Data for use

in keeping track of current and next states, system information, thresholds, and error

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

37

counts. Transition denotes progression of states due to a triggering event. Trigger, Guard,

and Action are attributes of a Transition object to specify the triggering event, guard and

action to be performed as a result of transitioning to the next state. Note that unless the

Guard attribute is fulfilled, a state transition will not take place and actions specified in

the Action attribute will not take place. User-defined actions could be computing

parameters for reconfiguration or statistics for tracking trends in the system. The user can

also create and send new events as messages to other components or fault managers in

the system.

Figure 11 Metamodel of Mitigation Behavior Specification

As stated previously, events in the form of messages act as inputs and outputs

events to the behavior state machines. The input events are used to trigger a state

transition while the output events are sent due to a state transition. Events can carry

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

38

system information from another component or it can be a command message from a

superior fault manager or user interface. Events between fault managers and components

in the system are exchanged via the Elvin publish/subscribe mechanism.

The metamodel in Figure 12 shows the specification of input and output

messages. A Transition object can contain Message objects through UML containment

relationship (A). Message objects can contain message fields that are of type Int8, Int16,

Int32, Int64, or Real64 (B). These types are the exact same types used by the DTML.

This is because the messages specified in DTML models are copied into the

MessageImport folder (C) of FMML models using a helper tool called a plug-in. By

copying the message structures from a central message model, we can be sure that the

messages used by all modeling languages have the same structures.

A

B

C

DE

A

B

C

DE

Figure 12 Specification of Input and Output Events in Fault Managers

Sources of messages can be divided into two groups, either an internal or external

channel. Internal channel messages are from the same fault manager. External channel

message are from a different fault manager or other system components. Likewise,

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

39

messages are sent via an internal or an external channel. Figure 12 shows these key

concepts using a metamodel. Input events are denoted by connecting a SubscribeChannel

object (D) to a Message via a ChannelConn type connection. Output events are denoted

by connecting PublishChannel object (E) to a Message object. The Type attribute

indicates the type of source or destination a message is from or intended for; whether

message is for another mitigation behavior of the same fault manager or another system

component.

Figure 13 shows a behavior model expressed in FMML [20]. In this model, there

are two possible system states, NOMINAL and FAULT, with NOMINAL being the

default state. Arrival of an AsteroidData message triggers Transition1 to be evaluated.

The guard condition is checked first. In this model, the guard condition is verifying

whether a state variable called “parameter” is below a threshold value. The value of the

parameter variable comes from the AsteroidData message. If the guard condition

evaluates to true, a RequestData message is sent to another component that has

knowledge of how to handle such message and state moves from NOMINAL to FAULT.

If the guard condition evaluates to false, no state transition takes place. Likewise, another

AsteroidData message triggers evaluation of Transition2 and transition executes

depending upon evaluation of the guard condition.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

40

Figure 13 Mitigation Behavior Model in FMML

Extensions to Level 1 Fault Mitigation Research

The current fault-mitigation language focuses on the requirements of Level 2/3

data filtering of the BTeV Trigger system. It is built upon prior work done for the Level 1

data filtering of the Trigger system. Details of the Level 1 fault-mitigation language can

be found in [24][25]. The current language uses Statechart notations to specify mitigation

behaviors like the Level 1 tool but with some extensions.

The current language allows temporal behavior by using temporal events to

trigger transitions and temporal guard conditions. A behavior can be activated

periodically by a message that is sent at a user-define rate. This feature can be useful for

behaviors that are required to update the user interface at a constant rate or monitoring of

important tasks that require frequent verification. Determination of whether to remain or

switch to a different state can be dependent upon how long it has been since entrance into

the state by checking the elapsed time in the guard condition. This can be used to

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

41

determine if an error is intermittent or persistent. An example scenario would be to

transition into a probation state when an error has occurred. If the same error repeatedly

occurs within a certain time period then that could be an indication of a serious error and

calls for thorough examination of the error. Then the system administrator would be

notified. There are many other variations of this scheme.

The current language is also integrated with another modeling language, the Data

Type Modeling Language. Due to the number of nodes in the system and the large

amount of messages exchanged among these nodes, it is important to ensure the

consistency in the messages used by all the components. This feature is achieved by

using a utility program that imports messages from DTML into the FMML models. The

message fields of the imported messages are represented as ports allowing direct copy

and paste of messages and assigning/retrieving data to/from the messages.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

42

CHAPTER V

MAPPING DOMAIN MODELS TO IMPLEMENTATION

With the Fault Mitigation Modeling Language defined, users can create models of

fault managers along with their mitigation behaviors. Through the use of a model

translator, these models can be mapped to artifacts used by an underlying execution

platform to instantiate a fault-mitigation framework, thereby, bridging the gap between

high level mitigation behavior designs to low level source code [7].

Execution Platform Artifacts

Currently, Chameleon is the execution platform for the BTeV prototype system.

A detailed description of it can be found in Chapter 2. Chameleon possesses several key

capabilities for executing a hierarchical fault management framework. These capabilities

are listed below:

1. Fault Manager Specification and Instantiation - In Chameleon, fault

managers are called Adaptive Reconfigurable Mobile Objects of

Reliability (ARMOR).

2. Mitigation Behavior Instantiation - Fault-mitigation behaviors can be

added and removed from fault managers. ARMORs in Chameleon support

multiple mitigation behaviors in the form of pluggable building blocks

called Elements, each implementing a custom behavior.

3. Communication - It provides mechanism for reliable communication

between fault managers and within the fault managers.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

43

Artifacts for creating and instantiating fault managers, specifying custom

mitigation behavior, and communicating with other system components and fault

managers are generated from Fault Mitigation Modeling Language models. Figure 14

shows the translation process from FMML models to artifacts.

Chameleon

ARMOR Microkernel

Mitigation
Behavior
Element

Communication
Gateway
Element

Translator

Chameleon

ARMOR Microkernel

Mitigation
Behavior
Element

Communication
Gateway
Element

Translator

Chameleon

ARMOR Microkernel

Mitigation
Behavior
Element

Chameleon

ARMOR Microkernel

Mitigation
Behavior
Element

Communication
Gateway
Element

Translator

Figure 14 Mapping Process and Resulting Artifacts

Fault Manager Specification and Instantiation Script Generation

A microkernel in the Chameleon environment is responsible for instantiating fault

managers. The instantiation process is invoked through a shell script that supplies the

microkernel with a manager id and name of a Tcl script file. Every manager in the system

must have a unique id for identification. The id and Tcl file name come from attributes

associated with the fault manager object in the FMML model.

The Tcl script file contains various structural information about a fault manager,

ranging from id of the fault manager to the name of the mitigation behaviors this manager

possesses. The names of the behaviors come from name of StandardElement and

CustomElement objects that a fault manager contains.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

44

Specification Script
package require ea
package require dmn
package require conf
pkg_ea_init
...
set idDaemon [lindex $argv 0]
...
chm_ea_armor_setlog 0 -1 0 0

chm_ea_add_element 0 context_table 0
chm_ea_add_element 0 daemon_np_mgmt 0
chm_ea_add_element 0 daemon_proc_mgmt 0
chm_ea_add_element 0 daemon_armor_install 0
chm_ea_add_element 0 route_control 0
chm_ea_add_element 0 daemon_tcp_mgmt 0
chm_ea_add_element 0 daemon_init 0
chm_ea_add_element 0 daemon_armor_loc_cache 0
...

chm_ea_add_element 0 dtml_sender_GlobalArmor 0
chm_ea_add_element 0 dtml_rcver_GlobalArmor 0

chm_ea_add_element 0 Filter_ExecTime_Global 0
chm_ea_add_element 0 Global_Event_Status 0
....
chm_ea_armor_finalize

#!/bin/bash
source $HOME/demo_conf/env.rc
cd $SHARED_TCL;
chmtcl ftm_daemon.tcl 2;

Instantiation Script

Standard Daemon Behavior

Custom Behavior

Communication Gateway

Specification Script
package require ea
package require dmn
package require conf
pkg_ea_init
...
set idDaemon [lindex $argv 0]
...
chm_ea_armor_setlog 0 -1 0 0

chm_ea_add_element 0 context_table 0
chm_ea_add_element 0 daemon_np_mgmt 0
chm_ea_add_element 0 daemon_proc_mgmt 0
chm_ea_add_element 0 daemon_armor_install 0
chm_ea_add_element 0 route_control 0
chm_ea_add_element 0 daemon_tcp_mgmt 0
chm_ea_add_element 0 daemon_init 0
chm_ea_add_element 0 daemon_armor_loc_cache 0
...

chm_ea_add_element 0 dtml_sender_GlobalArmor 0
chm_ea_add_element 0 dtml_rcver_GlobalArmor 0

chm_ea_add_element 0 Filter_ExecTime_Global 0
chm_ea_add_element 0 Global_Event_Status 0
....
chm_ea_armor_finalize

Specification Script
package require ea
package require dmn
package require conf
pkg_ea_init
...
set idDaemon [lindex $argv 0]
...
chm_ea_armor_setlog 0 -1 0 0

chm_ea_add_element 0 context_table 0
chm_ea_add_element 0 daemon_np_mgmt 0
chm_ea_add_element 0 daemon_proc_mgmt 0
chm_ea_add_element 0 daemon_armor_install 0
chm_ea_add_element 0 route_control 0
chm_ea_add_element 0 daemon_tcp_mgmt 0
chm_ea_add_element 0 daemon_init 0
chm_ea_add_element 0 daemon_armor_loc_cache 0
...

chm_ea_add_element 0 dtml_sender_GlobalArmor 0
chm_ea_add_element 0 dtml_rcver_GlobalArmor 0

chm_ea_add_element 0 Filter_ExecTime_Global 0
chm_ea_add_element 0 Global_Event_Status 0
....
chm_ea_armor_finalize

#!/bin/bash
source $HOME/demo_conf/env.rc
cd $SHARED_TCL;
chmtcl ftm_daemon.tcl 2;

Instantiation Script
#!/bin/bash
source $HOME/demo_conf/env.rc
cd $SHARED_TCL;
chmtcl ftm_daemon.tcl 2;

Instantiation Script

Standard Daemon Behavior

Custom Behavior

Communication Gateway

Figure 15 Mapping of Instantiation and Specification Scripts

Figure 15 illustrates the mapping of a Tcl script and an instantiation script from a

CustomArmor object named Custom_Daemon in a FMML model. The Custom_Daemon

object contains two custom mitigation behaviors that maps to corresponding instantiation

code in the Tcl script. The instantiation code for the communication gateway is

automatically added to the Tcl script. The ArmorBase of the Custom_Daemon indicates

that it has the basic behavior of Daemon type fault managers in addition to the custom

behaviors. So the basic behavior instantiation code is also added to the Tcl script. The

instantiation script uses the ArmorID and Tcl FileName attributes for identifying the

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

45

unique id of the fault manager and the specification file when fault manager is

instantiated.

Fault Managers Communication Gateway Generation

Publishing an Elvin message involves creating a message by specifying its

various message fields and then broadcasting the message via an Elvin router.

Subscribing for an Elvin message involves creating an subscription expression, providing

a message callback function. Both processes involve calling marshalling and de-

marshalling APIs from a library of general APIs that uses the Elvin-specific APIs

internally.

Fault managers need to exchange messages with other components in the system

to monitor and track failures in the system. The messaging scheme used in the system is a

publish/subscribe mechanism through Elvin. Since ARMORs only recognizes ARMOR

messages, messages sent using the Elvin protocols must be translated into an equivalent

ARMOR message representation. Likewise, outgoing ARMOR messages must be

translated into an equivalent Elvin message representation.

The two way translation processes is encapsulated within two custom gateways of

a fault manager; one for sending and one for receiving Elvin messages. These two

gateways are implemented as C++ classes with some fixed functions for instantiation

themselves used by the ARMOR microkernel. The receiving gateway takes an Elvin

message and encapsulates it within an ARMOR message. Custom mitigation behaviors

can then proceed to process the ARMOR message. Likewise, any ARMOR message sent

by custom mitigation behaviors are stripped, with the resulting Elvin message sent by the

sending gateway via Elvin. Figure 16 illustrates the translation processes.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

46

Network

Fault
Manager

Node 3

Fault
Manager

Node 2

ARMOR Fault Manager

Receiver
Gateway

Sender
Gateway

Mitigation
Behavior

ARMOR Message

ARMOR Message
ELVIN Message

ELVIN
 M

ess
age

NetworkNetwork

Fault
Manager

Node 3

Fault
Manager

Node 2

Fault
Manager

Node 3

Fault
Manager

Node 2

ARMOR Fault Manager

Receiver
Gateway

Sender
Gateway

Mitigation
Behavior

ARMOR Message

ARMOR Message
ELVIN Message

ELVIN
 M

ess
age

Figure 16 Message Translation Process Using Communication Gateways

Since not all fault managers receive and send the same messages, the gateways

must be customized based the types of messages modeled in FMML. This information

comes from the Transition objects in the FMML model. Only the non-Daemon type of

fault managers will have the gateway behaviors.

Recall that Transition objects contain input and output messages associated with a

state transition. The model translator translates all messages connected to a

SubscribeChannel object with the type attribute equal to Elvin to a callback function and

associates the callback with a corresponding Elvin subscription expression in the receiver

gateway. The subscription expression comes from an attribute of a Message object.

The model translator translates all messages connected to a PublishChannel object

with the type attribute equal to Elvin to a function call to strip out the Elvin message from

an ARMOR message based on a defined message type in DTML and a publish API call

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

47

to publish message via Elvin. An ARMOR message’s associated DTML message type is

denoted by the Message_Type attribute of a message object.

Fault Mitigation Behavior Generation

The mitigation behaviors are modeled as hierarchical state machines in FMML.

Each behavior model is implemented as a C++ class with three core parts: a state

machine function, incoming message processing functions, and outgoing message

specification functions.

Mapping of Messages

The Data objects in the model are transformed to class variables by the translator.

Inside the incoming message processing functions, data of the incoming messages are

assigned to class variables. The assignment is specified by the message assignment in

FMML models. A similar mapping occurs for creating outgoing messages inside the

outgoing message specification functions from models. Figure 17 illustrates the mapping

from models to code.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

48

class callback0:public CallbackArmor<CurrentCrossin g>
{

public:
callback0(ControlsConnection *cc, void *p) :Callbac kArmor<CurrentCrossing>(cc,

p) { }
void invoke(CurrentCrossing* msg)
{

printf("Callback. Recieved CurrentCrossingmessage.\ n");
Receiver_Gateway *Rcver=(Receiver_Gateway*)this->el ement_ptr;
mc_message_ct *pmc = new mc_message_ct;
mc_bundle_ct *bundle= pmc->push_bundle();
…
bundle->idArmorDest = Rcver->get_armor_id();
pmc->push_op(bundle,MSG_CURRENT_CROSSING);
pmc->set_field(MV_MSG_CURRENT_CROSSING,msg,sizeof(C urrentCrossing));
Rcver->get_armor()->execute_context(pmc);
…
}

};
…
thread_return_ct Receiver_Gateway::elvin_subscribe(void *ar)
{
SubscriptionData sub00;

sub00.lang_option=equals;
sub00.field = "category";
sub00.ValueType =StringValue;
sub00.un_val.sval ="Current_Crossing_Number";
list0.push_back(sub00);
callback0 *p0 = new callback0(er->con, er);
er->con->subscribe(auto_ptr<callback0>(p0), list0) ;

…
}

Receiver Gateway Source File

void Sender_Gateway::msg_ChangeFilterConfig_handler (mc_message_ct *pmc)
{

printf("SENDING ChangeFilterConfig message\n");
ChangeFilterConfig *msg = (ChangeFilterConfig*)pmc- >

get_data(MV_MSG_CHANGE_FILTER_CONFIG);
msg->myHeader.region_id = this->region_id;
msg->myHeader.node_id=this->node_id;
con->publish(msg);

}

Sender Gateway Source File

class callback0:public CallbackArmor<CurrentCrossin g>
{

public:
callback0(ControlsConnection *cc, void *p) :Callbac kArmor<CurrentCrossing>(cc,

p) { }
void invoke(CurrentCrossing* msg)
{

printf("Callback. Recieved CurrentCrossingmessage.\ n");
Receiver_Gateway *Rcver=(Receiver_Gateway*)this->el ement_ptr;
mc_message_ct *pmc = new mc_message_ct;
mc_bundle_ct *bundle= pmc->push_bundle();
…
bundle->idArmorDest = Rcver->get_armor_id();
pmc->push_op(bundle,MSG_CURRENT_CROSSING);
pmc->set_field(MV_MSG_CURRENT_CROSSING,msg,sizeof(C urrentCrossing));
Rcver->get_armor()->execute_context(pmc);
…
}

};
…
thread_return_ct Receiver_Gateway::elvin_subscribe(void *ar)
{
SubscriptionData sub00;

sub00.lang_option=equals;
sub00.field = "category";
sub00.ValueType =StringValue;
sub00.un_val.sval ="Current_Crossing_Number";
list0.push_back(sub00);
callback0 *p0 = new callback0(er->con, er);
er->con->subscribe(auto_ptr<callback0>(p0), list0) ;

…
}

Receiver Gateway Source File

void Sender_Gateway::msg_ChangeFilterConfig_handler (mc_message_ct *pmc)
{

printf("SENDING ChangeFilterConfig message\n");
ChangeFilterConfig *msg = (ChangeFilterConfig*)pmc- >

get_data(MV_MSG_CHANGE_FILTER_CONFIG);
msg->myHeader.region_id = this->region_id;
msg->myHeader.node_id=this->node_id;
con->publish(msg);

}

Sender Gateway Source File
void Sender_Gateway::msg_ChangeFilterConfig_handler (mc_message_ct *pmc)
{

printf("SENDING ChangeFilterConfig message\n");
ChangeFilterConfig *msg = (ChangeFilterConfig*)pmc- >

get_data(MV_MSG_CHANGE_FILTER_CONFIG);
msg->myHeader.region_id = this->region_id;
msg->myHeader.node_id=this->node_id;
con->publish(msg);

}

Sender Gateway Source File

Figure 17 Mapping to Communication Gateway Source Files from Model

Mapping of Behaviors

The behavior model is mapped to a nested switch statement inside the state

machine function of the custom Element. Nested switch statement was chosen for its

simplicity, small memory footprint, and modularity. Other typical implementations of

state machines include state table, state design pattern, or a combination of the other

implementations [29]. Figure 18 illustrates the mapping process. The various mappings

are listed below:

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

49

1. A set of defined states is collected from the model. An enum construct

defining the states is created as a class variable in the custom Element

class.

2. For each state, a case segment is created.

3. For each state, its outgoing transitions’ guard condition is transformed to if

and else if clauses under the corresponding case label. The action code of

transitions are inserted inside the if and else if clauses. Action code is

based on the action attributes of the transition objects from the behavior

model.

4. For each outgoing message in a transition object in the model, a call to the

corresponding outgoing message processing function is added inside the if

or else if clause.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

50

void Filter_ExecTime_Global_ct::run_statemachine
(mc_message_ct *pmc)
{

cur_time_=time(NULL);
switch(cur_state_)
{
case REQUEST:

if(msg_current_crossing_flag)
{

printf("Current State= REQUEST\n");
config_param_=cur_crossing_+N;
next_state_=COMMAND;
send_changefilterconfig(pmc); }

break;
}

…
cur_state_ = next_state_;

}

…
void Filter_ExecTime_Global_ct::msg_current_crossin g_handler
(mc_message_ct *pmc)
{

printf("msg_current_crossing_handler Handler\n ");
msg_current_crossing_flag = true;
CurrentCrossing *msg = (CurrentCrossing*)pmc->

get_data(MV_MSG_CURRENT_CROSSING);
cur_crossing_ = msg->current_crossing;
run_statemachine(pmc);
msg_current_crossing_flag = false;

}
…

void Filter_ExecTime_Global_ct::send_changefilterco nfig
(mc_message_ct *pmc)
{

printf("send_changefilterconfig \n");
ChangeFilterConfig *msg = new ChangeFilterConfig;
msg->myHeader.category = "Change_All_Filter_Config" ;
msg->config_param = config_param_;
mc_bundle_ct *bundle = pmc->push_bundle();
bundle->idArmorDest = get_armor_id();
pmc->push_op(bundle, MSG_CHANGE_FILTER_CONFIG);
pmc->set_field(MV_MSG_CHANGE_FILTER_CONFIG, msg,

sizeof(ChangeFilterConfig));
delete msg;

}

…

Behavior Source File
void Filter_ExecTime_Global_ct::run_statemachine
(mc_message_ct *pmc)
{

cur_time_=time(NULL);
switch(cur_state_)
{
case REQUEST:

if(msg_current_crossing_flag)
{

printf("Current State= REQUEST\n");
config_param_=cur_crossing_+N;
next_state_=COMMAND;
send_changefilterconfig(pmc); }

break;
}

…
cur_state_ = next_state_;

}

…
void Filter_ExecTime_Global_ct::msg_current_crossin g_handler
(mc_message_ct *pmc)
{

printf("msg_current_crossing_handler Handler\n ");
msg_current_crossing_flag = true;
CurrentCrossing *msg = (CurrentCrossing*)pmc->

get_data(MV_MSG_CURRENT_CROSSING);
cur_crossing_ = msg->current_crossing;
run_statemachine(pmc);
msg_current_crossing_flag = false;

}
…

void Filter_ExecTime_Global_ct::send_changefilterco nfig
(mc_message_ct *pmc)
{

printf("send_changefilterconfig \n");
ChangeFilterConfig *msg = new ChangeFilterConfig;
msg->myHeader.category = "Change_All_Filter_Config" ;
msg->config_param = config_param_;
mc_bundle_ct *bundle = pmc->push_bundle();
bundle->idArmorDest = get_armor_id();
pmc->push_op(bundle, MSG_CHANGE_FILTER_CONFIG);
pmc->set_field(MV_MSG_CHANGE_FILTER_CONFIG, msg,

sizeof(ChangeFilterConfig));
delete msg;

}

…

Behavior Source File
void Filter_ExecTime_Global_ct::run_statemachine
(mc_message_ct *pmc)
{

cur_time_=time(NULL);
switch(cur_state_)
{
case REQUEST:

if(msg_current_crossing_flag)
{

printf("Current State= REQUEST\n");
config_param_=cur_crossing_+N;
next_state_=COMMAND;
send_changefilterconfig(pmc); }

break;
}

…
cur_state_ = next_state_;

}

…
void Filter_ExecTime_Global_ct::msg_current_crossin g_handler
(mc_message_ct *pmc)
{

printf("msg_current_crossing_handler Handler\n ");
msg_current_crossing_flag = true;
CurrentCrossing *msg = (CurrentCrossing*)pmc->

get_data(MV_MSG_CURRENT_CROSSING);
cur_crossing_ = msg->current_crossing;
run_statemachine(pmc);
msg_current_crossing_flag = false;

}
…

void Filter_ExecTime_Global_ct::send_changefilterco nfig
(mc_message_ct *pmc)
{

printf("send_changefilterconfig \n");
ChangeFilterConfig *msg = new ChangeFilterConfig;
msg->myHeader.category = "Change_All_Filter_Config" ;
msg->config_param = config_param_;
mc_bundle_ct *bundle = pmc->push_bundle();
bundle->idArmorDest = get_armor_id();
pmc->push_op(bundle, MSG_CHANGE_FILTER_CONFIG);
pmc->set_field(MV_MSG_CHANGE_FILTER_CONFIG, msg,

sizeof(ChangeFilterConfig));
delete msg;

}

…

Behavior Source File

Figure 18 Mapping to Behavior Source File from Model

Summary

Through the model translation process, four types of artifacts are generated from

Fault Mitigation Modeling Language models. Automatically generating these artifacts

shields the designers of mitigation behaviors and fault management framework from the

implementation details of Chameleon, which would require thorough knowledge in

several programming languages and understanding of Chameleon execution environment.

As system fault-tolerance requirements change, it is easier and less error-prone to evolve

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

51

and maintain the models accordingly and generate new artifacts than it is to modify the

four types of artifacts themselves. Furthermore, generating artifacts saves development

time since the translator makes sure that the models are built following a set of rules and

the translator transforms information in all models the same way, artifacts are less prone

to errors.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

52

CHAPTER VI

CASE STUDY

As a proof-of-concept, several prototype BTeV Trigger systems were constructed

using the tools developed. The demonstration consisted of a set of representative

architectures (computing clusters of various sizes), a target runtime infrastructure

(Chameleon + Elvin), a set of real and simulated application components (prototype

physics applications), a set of models in the various DSML’s, and the generated artifacts.

Multiple versions were implemented to test the flexibility of the design tools and to

assess their scalability. The tools were also evaluated by designers outside the tool

development group, to assess ease-of-use factors. This chapter describes the prototypes in

sufficient detail for a broad-stroke understanding of the application and its results. A set

of performance results are also presented.

As mentioned in Chapter 1, the Trigger system is embedded inside a particle

collider system providing three stages of experiment data filtering. Level 2/3 designates

the second and third stages of data filtering. Timing deadlines are somewhat relaxed for

Level 2/3 systems, and the filtering algorithms run much longer and are much more

precise than of those in HEP Level 1 systems [22].

The system was tested with respect to its ability to recover from a number of fault

scenarios. Dual processor worker nodes running a Fermilab distribution of Scientific

Linux and a command and control user interface were used. Figure 19 shows an overall

architectural view of the system.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

53

Figure 19 Level 2/3 Prototype System Setup (courtesy of H. Cheung, Fermilab)

The prototype system divides the worker nodes into three levels of hierarchy,

Global, Region, and Local levels. A Global Manager residing on a GlobalNode governs

all the Regions in the system. A Region consists of a RegionNode and several

LocalNodes. Each Region is governed by a Regional Manager that resides on the Region

Node. The Local level constitutes a node with an individual Local Manager to monitor

two HEP applications running locally on that node [20]. The physics applications receive

sample physics data from a Data Source application that is running on a separate node.

The fault management architecture is illustrated in Figure 20.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

54

Region Zone

Local Zone Local Zone

Global Zone

Regional Node 1

Fault Manager

Mitigation
Response

Mitigation
Response

Local Node 1.2
Fault Manager

Mitigation
Response

Mitigation
Response

Local Node 1.1
Fault Manager

Mitigation
Response

Mitigation
Response

Global Node
Fault Manager

Mitigation
Response

Mitigation
Response

Region Zone

Local Zone Local Zone

Global Zone

Regional Node 1

Fault Manager

Mitigation
Response

Mitigation
Response

Regional Node 1Regional Node 1

Fault Manager

Mitigation
Response

Mitigation
Response

Fault ManagerFault Manager

Mitigation
Response

Mitigation
Response

Local Node 1.2
Fault Manager

Mitigation
Response

Mitigation
Response

Local Node 1.1
Fault Manager

Mitigation
Response

Mitigation
Response

Local Node 1.2Local Node 1.2
Fault Manager

Mitigation
Response

Mitigation
Response

Fault ManagerFault Manager

Mitigation
Response

Mitigation
Response

Local Node 1.1
Fault Manager

Mitigation
Response

Mitigation
Response

Local Node 1.1Local Node 1.1
Fault Manager

Mitigation
Response

Mitigation
Response

Fault ManagerFault Manager

Mitigation
Response

Mitigation
Response

Global Node
Fault Manager

Mitigation
Response

Mitigation
Response

Global Node
Fault Manager

Mitigation
Response

Mitigation
Response

Global Node
Fault Manager

Mitigation
Response

Global NodeGlobal Node
Fault ManagerFault Manager

Mitigation
Response

Mitigation
Response

Figure 20 Fault Management Architecture in the Prototype System

Seven fault scenarios were constructed to represent typical fault conditions known

to occur in HEP data processing systems. The fault scenarios are the following:

1. HEP application crash

2. Corruption of data stream for HEP application

3. HEP application caught in an infinite loop

4. HEP application exponential slowdown

5. HEP application memory usage violation

6. Individual HEP application processing time violation on LocalNode

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

55

7. Region execution time violation of HEP application

Various fault injection controls are present to the user on the control user interface

for creating the fault scenarios listed above in the prototype system. The following

sections look at the fault-mitigation behaviors and fault recovery timelines in two of the

fault scenarios.

Corruption of Physics Data Stream

A common failure that can occur in HEP experiments is the temporal corruption

of physics data leading to incorrect filtering results or even crash of physics application.

The physics filtering applications are generally provided with the ability to detect

corrupted data streams. It is extremely important to notify the physicists running an

experiment upon detection of such fault so that the affected portions of the data stream

can be marked as corrupt and ignored. The Local Manager should also be notified of this

fault so that any trend regarding data stream corruption may be detected by the fault

management system.

Presently, the Local Manager behavior focuses on detection and reporting of the

data stream corruption to the system operator via user interface. There are two reporting

modes available; a verbose mode and a terse mode. While every data corruption is

reported in the verbose mode, a frequency of corruption occurrence is reported in the

terse mode. The frequency of occurrence is simply the number of data corruptions within

an adjustable time period. The default reporting mode is verbose but the mode can be

easily changed via a control button on the user interface.

This scenario can be created by injecting a “Bad Data” fault from the user

interface into the 65-node system. The Data Source upon receiving this command will

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

56

send a single corrupt data to a physics application on a local node. Figure 21 shows the

event timeline during the monitoring process of corrupt data. The legend for the events is

in Table 1.

Table 1 Event Legend for Data Stream Corruption Fault Scenario

Event Label Event Description

LM1

Received processing time report form HEP

application

LM2

Detection of HEP application encountering corrupt

data

LM3 Notification to user interface of detection

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

57

Figure 21 Mitigation Time Plot of Data Stream Corruption by Local Fault Manager

According to the timeline, the detection (LM2) and reporting of corruption (LM3)

takes around 0.1 milliseconds. This time is affected both by ARMOR’s internal

messaging system and Elvin. Currently, mechanisms for detecting trends in data

corruption have not been included in this behavior. This behavior will be enhanced to

include such mechanism in the future.

This scenario tests how affective the Local Manager is able to detect and report

the detection of bad physics data streams. Since it does not have control over the physics

data that are generated, timely detection and reporting is necessary to notify the system

administrator who has the authority to perform various checks on equipments and

detector environment to figure out the cause of the corruption.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

58

Region Timing Violations During Data Filtering

A typical occurrence is a decrease in the overall Level 2/3 data filtering system

throughput due to the HEP application taking too long in processing individual data. HEP

applications employ filtering algorithms whose execution times are data dependent. As

conditions in the particle accelerator change due to a higher density of particle collisions,

the characteristics of collision data also changes in turn affecting the behavior of the

filtering application. The HEP experiments run at a constant physical periodicity, so

slowing down the data acquisition is not considered a viable mitigation behavior. Instead,

physicists can reconfigure certain parameters of the HEP applications such that they have

shorter execution times.

In the prototype system, this timing violation is detected when the average

processing time of one or more regions is higher than a reasonable threshold. Once a

violation is detected, an immediate reconfiguration of HEP application in all regions is

initiated. The behavior to detect and mitigate such a violation requires cooperation among

the fault managers from all three levels of hierarchy. As Local Managers have only a

small view of the entire system, they do not know the processing times of HEP

applications on other nodes. Regional Managers have knowledge of HEP application

processing times in its control zone from Local Managers to detect violation but they do

not have the authority to initiate a global HEP application reconfiguration. The Global

Manager does not detect execution time violation of a region but it does have the

authority to initiate a global HEP application reconfiguration once it is notified of such

violation.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

59

Global Fault Manager

Local Fault Manager Regional Fault Manager

A B C

E

G

F

D

I

HG HG

Global Fault Manager

Local Fault Manager Regional Fault Manager

A B C

E

G

F

D

I

HG HG

Figure 22 Mitigation Behaviors of Local, Regional and Global Fault Managers

Figure 22 shows the mitigation behavior model of the Local Manager, Regional

Manager and Global Manager for this particular type of fault. The specific detection and

mitigation steps are described below along with the corresponding transitions from

Figure 22:

1. Local Managers of a region compute the average of every ten data

execution times of the physics applications on its node and send the

average to the Regional Manager. (A)

2. The Regional Manager computes a moving average of the execution times

that it receives from the Local Managers in its region. (B)

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

60

3. If the regional execution time is below a threshold then repeat Step 2. (C)

Otherwise, send a violation message to the Global Manager and go to a

VIOLATED state. (D)

4. The Global Manager upon receipt of the violation message, requests a

processing parameter from the data source. (E)

5. The Global Manager sends a command message to all the physics

application to change their configuration. Depending on this processing

parameter, not all physics applications need to change their configuration.

(F)

6. The Local Managers and Regional Managers transition to a WAIT state

upon receipt of the configuration change message. (G)

7. In this WAIT state, the Local Managers wait for reconfiguration result

messages from the physics applications. The reconfiguration result

messages are propagated up the management hierarchy to the Global

Manager. (H) Upon receipt of reconfiguration messages from all regions,

the Global Manager returns to a NOMINAL and the scenario are

complete. (I)

Using the built-in logging feature of the custom mitigation behavior, the time of

occurrence for the above events was recorded. Results from several runs of the scenarios

were compared and the mitigation times were similar. Timing data from one of the runs is

used to construct a timeline that shows the sequence of events from violation discovery to

the regional reconfiguration event propagations in Figure 23. Table 2 gives the legend for

events in Figure 23. The events are represented by bars labeled with event type. The color

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

61

of the bar indicates the management level; green for Local level, blue for Regional level

and red for Global level. Please note that the clocks on the node where the fault managers

reside have not been synchronized with each other.

Table 2 Event Legend for Regional Execution Time Violation Fault Scenario

Event Label Event Description

LM1 Detection of command to reconfigure HEP application

LM2 Notification that HEP application has been reconfigured

RM1 Detection of slow regional processing time

RM2 Detection of command to reconfigure HEP application

RM3

Notification of all HEP applications in the region has

been reconfigured

GM1 Detection of reconfiguration request

GM2 Requesting configuration parameter

GM3 Received configuration parameter

GM4 Command to initiate HEP reconfigurations in the system

GM5

Notification that HEP applications has reconfigured in

the system

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

62

Figure 23 Mitigation Time Plot of Regional Execution Violation by Three Levels of Fault Managers

Figure 23 shows the normalized times at which detection and mitigation events

occur during this scenario. The sequence of events is (RM1, GM1, GM2, GM3, GM4,

RM2 & LM1, LM2, RM3, and GM5). From the figure, we can see that about 22.07

milliseconds pass between detection of timing violation by the Regional Manager (RM1)

and start of Global Manager’s corrective actions (GM2). The time it took for the

initiation of reconfiguration initiation (GM4) to the finish of reconfiguration and

reporting of all HEP applications (GM5) took about 61.47 milliseconds.

The prototype system for this timeline consisted of 65 nodes. The same scenario

can be run for different system sizes (5, 35, 65, 250 and more), the resulting data can be

compared to study the performance of the hierarchical fault management system in

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

63

mitigating behavior that require cooperativeness among management levels. This would

certainly be a part of future work.

Evaluation of Case Study

Using the different Domain Specific Modeling Languages, we were able to model

the complete Trigger prototype systems, generate implementation and runtime software,

and execute the system. Scalability of the prototype system from 5, 17, 35, to 65

computing nodes was easily achieved using different architecture specification models

expressed using SIML. Mitigation behaviors are easily expressed using state machine

concepts and artifacts generated by invoking the corresponding translator relieving

designers from burden of hand-coding them.

Designers outside the tool development group agreed that developing the

prototype system using the model-based tools was more intuitive as it provides domain-

specific concepts that are context specific. Configuration is also made easier using

graphical constructs that represent these concepts. Automatically generated software

reduces development time since software do not need to be hand-coded, allowing

designers to spend more time on designing rather than coding. The performance of

generated software was comparable to hand-generated software.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

64

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

Conclusions

Designing large-scale, real-time embedded systems is not a trivial task due to the

size and real-time constraints on the system. Fault tolerance and reliability requirements

further complicate the process. Redundancy based fault-tolerance techniques may not be

feasible, so systems must have the ability to detect, monitor, and correct faults

automatically. This is possible by employing a hierarchical fault management framework

that enables automatic fault mitigation.

Designing and implementing the management framework requires extensive

knowledge of the runtime environment. To aid designers who may not have this

knowledge and to speed up the design cycle, and to easily explore various alternative

solutions, a model-based approach is used that uses domain-specific languages and

concepts. Using this approach, a modeling tool was developed that has a domain-specific

modeling language and a model translator.

The domain-specific modeling language enables system designers to implement

customized fault-mitigation behaviors to target specific faults and specify interaction

between the fault managing entities and other components in the system. The model

translator translates the models to artifacts that are used to configure, specify, and deploy

the hierarchical fault management framework.

This tool was integrated with other modeling languages described in Chapter 3.

The tool suite was used to design, implement, and deploy a prototype Trigger system for

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

65

the BTeV experiment. Several fault scenarios were implemented for the Trigger system.

The behaviors involved mitigation actions at the local fault manager level as well as

coordinated behaviors between different management levels. The system was

successfully demonstrated at 2005 IEEE Real-Time and Embedded Technology and

Applications Symposium.

The model-integrated approach proved effective for system implementation. The

entire system software was generated from the MIC tools. Performance was shown to be

adequate, comparable to hand-generated code. System scalability was demonstrated by

migrating architectures from 5 nodes to 65 nodes within time period of an hour.

General user comments were positive. Users were able to completely redefine the

fault mitigation behavior with very little knowledge of the underlying implementation.

Approximately 7 mitigation behaviors were implemented and tested within a 2 week

period. The visibility of the behavior as models also served to make the system behavior

much more understandable, and therefore manageable.

Future Work

Several areas related to this research need to be explored. First of all, the current

tools simplify the definition of behaviors and automate the production of code to

implement these behaviors. As these behaviors become complicated via large individual

state machines and cooperative, distributed state machines, the effective behavior

becomes very difficult to understand. Tools for verifying behavior will help in producing

reliable, well-understood systems. The state machine based formalism for describing

mitigation behaviors allows static model checking techniques to be applied for analyzing

the behaviors. Some of the existing tools that can be used include SMV, SPIN and

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

66

UPPAL. Fault Mitigation Modeling Language models can be transformed to equivalent

formats used by one of the verification tools using a model translator.

Currently, we are not using any simulation tools to predict the mitigation

behaviors. Use of simulation tools, like Simulink Stateflow, will enable better design

during design time. Since the mitigation models already uses Statechart notations, only

some modification will be needed to transform FMML models to an equivalent Stateflow

model for simulation. However, a simulation framework would need to be developed so

that Stateflow models can be directly plugged into the framework. The framework needs

to have a fault injector so that various faults could be injected during simulation.

The prototype system has been limited to ~65 nodes. The tool should be used to

model, generate, and analyze more complex behaviors on prototype systems with larger

number of nodes. Observations can be made to study how well the tool allows the

behaviors to be scaled up according system size.

Performance measurements of the system have been relatively limited. As of now,

mitigation action timings have been taken for the 65 node prototype system. More

extensive performance measures on mitigation timings should be taken for studying how

performance of the fault management framework relates to system size and

improvements that could be made to the behaviors for minimal mitigation time.

Additionally, this can help to design behaviors that can fulfill real-time requirements. So

that real-time mitigation deadlines can be incorporated into system mitigation behaviors.

These performance measures can be used in the simulations described above.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

67

REFERENCES

[1] J. N. Buttler, et. al, “Fault Tolerant Issues in the BTeV Trigger”, FERMILAB-Conf-
01/427, December 2002.

[2] S. Kwan, “The BTeV Pixel Detector and Trigger System”, FERMILAB-Conf-
02/313-E, December 2002.

[3] J. Kowalkowski, “Understanding and Coping with Hardware and Software Failures
in a Very Large Trigger Farm”, 2003 Computing in High Energy and Nuclear
Physics, La Jolla, CA, USA, March 2003.

[4] S. Neema, T. Bapty, S. Shetty, S. Nordstrom, “Developing Autonomic Fault
Mitigation Systems”, Journal of Engineering Applications of Artificial Intelligence
Special Issue on Autonomic Computing and Grids, Elsevier 2004.

[5] J. Sztipanovits, G. Karsai, “Model-Integrated Computing”, IEEE Computer, vol. 30,
no. 4, pp. 110-112, April, 1997.

[6] G. Nordstrom, J. Sztipanovits, G. Karsai, A. Ledeczi, “Metamodeling – Rapid
Design and Evolution of Domain-Specific Modeling Environments”, Proceedings of
the IEEE ECBS ’99 Conference, Nashville, TN, pp. 68-74, April 1999.

[7] G. Karsai, J. Sztipanovits., A. Ledeczi, T. Bapty, “Model-Integrated Development of
Embedded Software”, Proceedings of the IEEE, Vol. 91, Number 1, pp. 145-164,
January, 2003.

[8] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason IV, G.
Nordstrom, J. Sprinkle, P. Volgyesi, “The Generic Modeling Environment”,
Workshop on Intelligent Signal Processing, Budapest, Hungary, May 17, 2001.

[9] A. Ledeczi, M. Maroti, A. Bakay, G. Nordstrom, J. Garrett, C. Thomason IV, J.
Sprinkle, P. Volgyesi, “GME 2000 Users Manual (v2.0)”, Institute for Software
Integrated Systems, Vanderbilt University, December 18, 2001.

[10] Z. Kalbarczyk, R. K. Iyer, S. Bagchi, K. Whisnant, “Chameleon: A Software
Infrastructure for Adaptive Fault Tolerance”, IEEE Transaction on Parallel and
Distributed Systems, vol. 10, no. 6, pp. 560-579, June 1999.

[11] S. Bagchi, B. Srinivasan, K. Whisnant, Z. Kalbarczyk, R. K. Iyer, “Hierarchical
Error Detection in a Software Implemented Fault Tolerance (SIFT) Environment”,
IEEE Transactions on Knowledge and Data Engineering, vol. 12, no. 2, pp. 203-224,
2000.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

68

[12] K. Whisnant, Z. Kalbarczyk, R. K. Iyer, “A System Model for Dynamically
Reconfigurable Software”, IBM Systems Journal, Special Issue on Autonomic
Computing, vol. 42, no. 1, pp. 45-49, 2003.

[13] IBM Autonomic Research Webpage, http://www.research.ibm.com/autonomic

[14] M. Hiller, “Software Fault Tolerance Techniques from a Real-Time Systems Point
of View: An Overview”, Technical Report No. 98-16, Dept. of Computer
Engineering, Chalmers University of Technology, Sweden, 1998.

[15] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills III, and Y. Diao, “ABLE:
A toolkit for building multiagent autonomic systems”, IBM Systems Journal,
Volume 41, Number 3, 2002.

[16] M. Parashar, “AutoMate: Enabling Autonomic Applications on the Grid”,
Autonomic Computing Workshop, 5th Annual International Active Middleware
Services Workshop, Seattle, WA, 2003.

[17] Z. Li, H. Liu, M. Parashar, “Enabling Autonomic, Self-managing Grid
Applications”, Proceedings of the 4th International Workshop on Grid Computing
(Grid 2003), Phoenix, AZ, USA, IEEE Computer Society Press, pp 34 - 41,
November 2003.

[18] B. Khargharia, et. al, “vGrid: A Framework for Building Autonomic Applications”,
Autonomic Applications Workshop, 10th International Conference on High
Performance Computing (HiPC 2003), Hyderabad, India, December 2003.

[19] S. Shetty, S. Nordstrom, S. Ahuja, D. Yao, T. Bapty, S. Neema, “System Integration
of Large Scale Autonomic Systems Using Multiple Domain Specific Modeling
Languages”, Engineering of Autonomic Systems, IEEE ECBS Workshop on
Engineering of Autonomic Systems, Greenbelt, MD, April, 2005.

[20] D. Yao, S. Neema, S. Nordstrom, S. Shetty, S. Ahuja, T. Bapty, “Specification and
Implementation of Autonomic Large-Scale System Behaviors Using Domain-
Specific Modeling Language Tools”, Proceedings of the 2005 International
Conference on Software Engineering Research and Practice, Las Vegas, NV, June,
2005.

[21] S. Ahuja, D. Yao, S. Neema, T. Bapty, S. Shetty, S. Nordstrom, “Dynamically
Reconfigurable Monitoring in Large Scale Real-Time Embedded Systems”,
Proceedings of the IEEE SoutheastCon, Fort Lauderdale, FL, April 2005.

[22] S. Ahuja, et. al, “RTES Demo System2004”, Special Issue on High Performance,
Fault Adaptive, Large Scale Embedded Real-Time Systems, ACM SIGBED Review,
July 2005, Volume 2, Number 3.

[23] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Science of
Computer Programming, vol. 8, pp. 231-274, June 1987.

Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

69

[24] S. Shetty, “Towards Developing Tools and Technologies for Modeling Faults in
Large Scale, Real Time, Reactive Embedded Systems”, M. S. Thesis, Vanderbilt
University, 2004.

[25] S. Shetty, S. Neema, et. al, “Model-Based Self-Adaptive Behavior Language for
Large Scale Real-Time Embedded Systems”, IEEE Conference on Engineering of
Computer Based Systems, Brno, Czech Republic, 2004.

[26] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,” Science of
Computer Programming, vol. 8, pp. 231-274, June 1987.

[27] M. Hiller, “Software Fault Tolerance Techniques from a Real-Time Systems Point
of View: An Overview”, Technical Report No. 98-16, Department of Computer
Engineering, Chalmers University of Technology, Sweden, 1998

[28] Elvin Webpage http://elvin.dstc.edu.au

[29] Miro Samek. Practical Statecharts in C/C++. CMP Books, 2002.

