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CHAPTER |

INTRODUCTION

The rapid advancement of computing technology resuttseiproliferation of the
complexity and size of real-time embedded computer systéhes complexity of such
systems results from a large number of components amdatibns among components
and with the environment. The mission-critical natureghef systems demands correct
outputs at correct time with very small margin fdetating errors.

Failures can, and do occur in these systems due to prolterhardware,
software, or the environment. As consequences of failueededrimental, faults must be
detected and corrected as soon as possible without digjleystem operations. A range
of fault-tolerance techniques exist, many of which are dase using redundant
components [27]. Due to constraints imposed by budget, powlesize, these traditional
techniques may not always be feasible. Instead, tlyssenss must be able to deal with
failures while minimizing the amount of extra resour&ace there is no single ‘perfect’
system response to failures, the way in which any p#ati@ystem handles failures is
often dependent on the goals of the application and envimnridese failure responses
must be definable by the system designers.

The work presented in this thesis is motivated by theé-faldrance requirements
of a class of large-scale, real-time embedded systeed ins high-energy physics
experiments (HEP) for data acquisition and processing.eT$ysems require thousands

of processors to perform real-time computations and bristighly reliable. In order to



maintain reliability, effective fault-mitigation pol&s must be incorporated into the
system design.

The work presented in this thesis is on the developuoieattool for specifying
and implementing fault-mitigation behaviors for laspale real-time embedded systems

for HEP experiments using a model-based approach.

Overview of BTeV Experiment

HEP experiments use massive facilities to understangrtifgerties and states of
the basic building blocks of matter. The experimenntdrest for this research is called
the BTe\} experiment that is under development at Fermi Natiofccelerator
Laboratory. BTeV'’s goal is to study charge-particle \tiola, mixing and rare decays of
particles known as beauty and charm hadrons [2].

The experiment takes place in a particle acceleratbhere enough energy is
applied to protons and anti-protons moving in opposite directmrachieve relativistic
speeds. The protons and anti-protons collide, breaking aphatmost basic components
of matter. The collisions are recorded for examinabérdetached secondary vertices
from charm and beauty hadrons decays. The proposed BTedtateayout is shown in
Figure 1.

The experiment is designed such that particle collisi@guio every 132
nanoseconds with raw data rate at more than 14.8 Glagesite collisions in the
presence of a large magnetic field are recorded by thefu3@ planar pixel detectors,

placed at fixed distances, providing a three dimensionalsgéatd he results are carried to

! The BTeV experiment was cancelled recently. Howeverwitwd will be applied to other High Energy Physics
applications.



localized processors that reconstruct the three-diimeal crossing data from the

detectors to examine the trajectories for detached segoveldices.

Ring Imaging
Magnet Cerenkov

Toroids

Silicon Strips \ \
f Electromagnetic
Pixel Detectors Cadlorimeter

Figure 1 The BTeV Detector Setup

While the aim of the experiment is to find new phenon@wurring during these
collisions, most of these collisions lead to alreadgwn collision behaviors and hence
can be discarded without any loss. Furthermore, thesiiaa from interaction are on the
order of 2Kbytes per event with events occurring i@t@ of 7.6MHz. The aggregate data
rate is clearly too high to be blindly recorded. Therefatata-dependent decision
algorithms called Triggers must be executed online to dyn#lynicempute an
accept/reject decision. The trigger has three levals,involving computations of

collision data. The first level performs tracks nestouction, primary vertex finding and



impact parameter computation [2]. All accepted event ffost level are saved and
passed onto the second and third level. Algorithm usetiegnsécond and third level
reconstructs the event with better resolution and aadit information to pick out events
with potentially interesting vertex topologies [2]. Bkealgorithms necessarily must be
computed in real-time, although significant queuing is typicalailable.

While the actual accepted events occur infrequently, thHe dogt of operation of
the experiment (facility, personnel, energy, etc.) drel large demand for the facility
requires the system to 1) operate with excellentbiitia 2) sustain high computational
performance and 3) maintain functional integrity over lpagods of time [1] [3]. At the
same time, the system cost must be minimized, precldduigtolerant approaches that
use redundancy such as triple-mode redundancy. Thus, thefgofslt mitigation are
the following:

* Maintain the maximal application functionality for asgt of component
failures.

» Recover from failures as completely and rapidly assitde.

* Minimize the system cost.

The solution requires a certain degree of “self-awas#nes the system to
accurately identify problems and tolerate failures. &dt§ will occur during operation,
they must be corrected in the shortest possible tiitle ag little human intervention as
possible. The system must possess capabilities to exagtdmated recovery procedures,
to make compensations for potentially changing resourcesifiyng loads or changing
system thresholds, to reconfigure existing detection racdvery procedures, and to

create new procedures.



These constraints and requirements are what driveei@arch and development
of toolsets at the Institute for Software Integratedt&wys, Vanderbilt University to
design fault-tolerant large-scale real-time embeddetesygs This thesis describes the

work done to support the creation and deployment of swdhrfatigating systems.

Autonomic Fault Mitigation Approach

The key features of the fault-mitigation approach in ortersatisfy the
requirements of the trigger and address the dependabilijepne associated with it is a
hierarchical fault management framework that providest-faitigation behaviors
customized for specific faults to systems. This franmbweses software entities called
fault managers which have mitigation knowledge fromigation strategies embedded
within them [4].

This fault-mitigation approach distinguishes two aspeadtsfault-mitigation:
Structural and Behavioral.

e Structural refers to the location and relationship ketw fault
management entities.
» Behavioral refers to the internal operation of thdtfenanager entities.

In large-scale systems, it is impractical for a sirfglét manager to manage all
mitigation activities. A single manager will result umpredictably large reaction times.
The reaction time to any specific fault will depend manding faults from the entire
system, an indeterminate number. With an unpredictaldy leeaction time, a fault has
the chance to propagate to other components, potentiallyimgdaccascade of failures.
A single fault manager is also susceptible to singletpai failure where failure of this

single fault manager disables the entire systemit lfandling capabilities.



Due to these concerns, distributed fault managers,digtinctive fault-mitigation
knowledge, should be employed. Specialized fault managebles division of fault
handling tasks so that mitigation actions could occudha@nd concurrently, resulting
in short reaction time. One or more fault managersiapdoyed to reside on each node in
the system to provide protection to the running applicatignsg their fault-mitigation
knowledge.

Moreover, fault managers are composed in a hierarclashldn in the system to
form a management network that has a tree strudtach manager has a specific control
zone over which it has authority to take mitigatiortiats. Faults are handled by
managers at the lowest level of occurrence in ordenitomize propagation time. If a
fault can not be resolved at a level, a request is gaipd up to the immediate superior
manager until it can be resolved. System-wide mitigatcommands are typically
broadcast down the hierarchy by the manager at the hilghves(i.e. the root node in the
tree structure).

For the HEP application space, we have defined thiggeablevels of hierarchy:
Local, Regional, and Global levels.

» Local Managers perform basic fault actions that oceutocal nodes in
the system.

» Regional Managers deal with successively larger groupsagsno Note
that there can be multiple levels of regional mansag

* Global Managers have the authority to order system waiggation

actions and responding to mitigation requests from LocdlRegional



Managers. Note that there can be multiple global masagerving as
backups.

The fault managers operate concurrently along with rdst of the system.
Responding to faults as they occur asynchronously, autatiatimaking fault-
mitigation decisions for faults in their zones only seytiminimally perturb the system.
The managers on each level only communicate withuiterslinate or superior managers
at a higher or lower level to coordinate fault-mitigatdecisions.

Reaction time improves since mitigation decisions caméaee closer to the fault
source. Scalability also improves because new fauttagers can be added easily at the
appropriate hierarchy level without causing disruption to gékisting fault-mitigation
network as system size increases [20]. For exampdeyviéral new nodes are introduced
in the system, they can either be added as individual nodds® Local management
level or they can be added as an entire region tBéiggonal management level.

Implementing fault managers with custom fault-mitigat knowledge and
deploying them across the system require extensive knosvlemfgthe runtime
environment. While we can expect a computer engineerfstiea work within the
details of implementation, the domain knowledge to defiygtem recovery actions is
more with the application designer and users, in this,déi& physicists. In addition, as
mitigation behaviors progressively become more comptewill become harder and
harder to manage and evolve them. Therefore, a hightmyethat abstracts the runtime

environment and facilitates the creation and managenhémé dramework is needed.



Problem Statement

The goal of the research described in this thesis detelop model-based tools
for achieving autonomic fault-mitigation in large-scalaltéme distributed systems and
to demonstrate the applicability of the tools on examijotes the BTeV application.

Developing such a tool involves the following:

1. Developing a domain-specific modeling environment for specifying
autonomic fault-mitigation behaviors in the systemheTmodeling
environment uses a domain-specific modeling language calledt Fa
Mitigation Modeling Language (FMML) to model mitigation beltas
for fault managing entities and interactions with ott@mponents in the
system.

2. Developing a translator to map high-level specificatioo lower-level
artifacts that is used by an execution platform toamsate a hierarchical
fault management framework that runs concurrently alibig the system
to mitigation failures.

This thesis describes the tool architecture, specificagind implementation. The
tool is evaluated via a case study implementing a HEPcapiplh using this tool. The
organization of the thesis document is as follows: Ghdppresents a survey of some of
the existing tools in designing autonomic systems and faitifation execution
platform. Chapter Ill describes various other modeling to@geloped for the BTeV
system. Chapter IV and Chapter V give details about FMML the translator. Chapter
VI presents a case study demonstrating tool applicabiliygu8TeV application as an

example. Conclusions are drawn in Chapter VII.



CHAPTER I

BACKGROUND AND LITERATURE SURVEY

Background

Model-Integrated Computing

Model Integrated Computing (MIC) is a design methodologyl Use building
embedded software systems [5]. Its key objective is twvigle a way to design an
embedded system by capturing its requirements and marggev/atution. Domain
specific model is the key element in this approach. UG technology one can
capture the requirements, actual architecture, and the emerd of a system in the form
of high-level models. These models act as a repositbnyformation that is needed for
analyzing and generating the system.

The MultiGraph Architecture (MGA) provides a unified sedre architecture and
framework for designing and building systems using the MIC cgmr. The MGA
design process is comprised of three levels as showigime 2. Synthesized, adaptable
software applications are transformed from system rsololgilt in the Model-Integrated
Programming Synthesis (MIPS) using model translators. MRS provides a Domain
Specific Modeling Language (DSML) that governs how aesystan be modeled. The
formal semantics, syntax and visualization rules d$ML are specified through a

metaprogramming interface at the Meta-Level in thenfof meta-models.



Metaprogramming Environment  Application Appllcat!on
Interface Evolution Evolution Domain
I - - — - - 1 i N
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=

Model I nterpreters

Figure 2 Design Process in Multi-Graph Architecture (MGA

A toolkit called Generic Modeling Environment (GME) provideseavironment
for creating DSML and model translators. GME metamadeénvironment provides a
graphical interface similar to UML class diagrams [8}. the metamodel, the user
specifies the set of entities, their associationsygs and ordering that can be created in
the domain models. The semantics of domain models arecedfin two ways. First,
constraints specified by Object Constraint Language (O&k)applied to models to
enforce static semantics [9]. Second, dynamic sensaatie enforced through model-

interpreter that parses the models to generate soulee @anfiguration or analysis files.

Software Implemented Fault Tolerance
Software Implemented Fault Tolerance is a dedicatdtiva@ infrastructure

capable of providing fault tolerance to user applications idistributed environment.

10



Chameleon is a SIFT infrastructure developed at Uniyersit lllinois at Urbana-

Champaign [10}hat explicitly provides fault-tolerant services throwahange of error
detection and recovery mechanisms for applications. Séason will give details about
Chameleon since it is used as the execution platformtHer fault management
framework.

Chameleon provides fault-tolerant services through Adap&eeonfigurable
Mobile Objects of Reliability (ARMOR) [11]. ARMORs are qmesses that can be
installed on multiple nodes to provide application sped#idt-tolerance services. The
Chameleon infrastructure is essentially a network oMERR entities residing on a single
or multiple nodes linked together through a specialized agass system.

Since fault-tolerant requirements may change from egiidin to application, the
ARMOR architecture has been structured such that it lsanreconfigured to
accommodate changing requirements. The ARMOR archreahay be reconfigured
from a structural and a behavior level. The structusadllesfers to the number and type
of ARMORs that run on nodes across a system. The lmhéawel refers to the
functionality of individual ARMORSs. These two levels wdconfigurability are further
explored in the following paragraphs.

Three types of ARMORSs have been developed: Manager, DaemdrCommon
ARMORSs. A detailed description of each type is giverowdll1]:

1. Manager ARMOR is the most authoritative object in thRMOR
hierarchy. They execute fault-tolerance strategies walichv the failure

detection and recovery of subordinate ARMORS.

11



2. Daemon ARMORs are installed on every node participatimgthie
Chameleon environment and provide a communication gatewdgdak
ARMORs to ARMORs on remote nodes. They execute faldrant
strategies that allow error detection and recoverytlidrdocal ARMORS.

3. Specialized Common ARMORSs execute different fault-toiesirategies
to provide for application dependability.

The functionality of an ARMOR is determined by a conipms of building
blocks called Elements. A set of core infrastructuearigints have already been defined
and are stored in a behavior library that comes withitk&llation of Chameleon.
ARMORs from the three types defined previously have a prestbfset of core
functionalities. The Elements of an ARMOR are exetuig a microkernel inside the

ARMOR.

Computing

Hang detection

(App1 )(CApp2 ) ((App3 ]

Node status report

Process mgmt ~ C_Filter crash report

App id mgmt - _Bad data report

rash detection Execution time report

Infrastructure Memory leak report

Elements

Custom
Elements

Figure 3 Internal Structure of an ARMOR
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Due to the composable nature of ARMORSs, behavioral leagnfiguration can
be achieved by modifying the Element composition of ARM@Rsvell as implementing
custom Elements. Modification to the Element compmsican be achieved by adding or
removing Elements from an ARMOR through a Element cortipaosifile. Custom
Elements have specialized behaviors and can be added ARMIOR through the
composition file. However, they must conform to the omm publish/subscribe
messaging interface available in all Elements to be #@blese ARMOR'’s internal

messaging scheme. Figure 3 illustrates the makeup of MOMR

Autonomic Computing

An immediate consequence of the increase in complerilys&e of computing
systems in the recent years is the rise in cost dhdudty in managing and maintaining
such systems. Autonomic computing technologies and toals éhable automatic
management of operations with minimal human inteigenare being developed as a
solution to this problem. By applying these technologies aat$,tthe resulting system
will be able to regulate its functions in responsen®dnvironment in the same way that
the human nervous system regulates body functions wtitemscious input [13].

An autonomic system must satisfy the following four &bgracteristics:

1. Self-Configuring — adapting to conditions in its environment by
configuring system parameters

2. Self-Healing — discovering and diagnosing problems andgusiternate
ways to function without disruption

3. Self-Optimizing — using available resources and adjustingkloads to

yield the maximum performance

13



4. Self-Protecting — anticipating, detecting, identifying, gndtecting itself
from possible threats
An autonomic system will be able to function well undeexpected conditions.
Fault-tolerance based upon an autonomic approach candggecheliminating expensive
redundancies characteristic of traditional fault-toleeatechniques [14]. This section will
review some of the available technologies and tools feigdang autonomic systems and

applications and examine their capabilities in providindtfenlerance.

Agent Building and Learning Environment

The Agent Building and Learning Environment (ABLE) is a Jasaed toolkit
for developing and deploying intelligent agent applicatidegeloped by IBM [15]. The
framework provides a lightweight Java agent framewotirary of intelligent software
components, a set of development and test tools, aageart platform.

The ABLE agent framework is a software architecturéighbuilt on the standard
JavaBeans model. It allows algorithms to be packagedlanaBeans called AbleBeans
with a common interface. These AbleBeans can be costh¢ot one another to form
AbleAgents who can obtain information and perform actioilk respect to applications
they are responsible for. AbleAgents can be formed fotimr AbleAgents, in addition
to AbleBeans.

ABLE provides a library of core AbleBeans for data accesachine learning
algorithms, machine reasoning and interface engines. liticagdlibrary provides a
common data model composed of a set of data type clams@®olean, Categorical,
Discrete, Numeric and String literals, variables andl$ieln addition to these core beans,

users can wrap new or existing algorithms to create custdnieans. Any new beans

14



must be wrapped by an AbleBean instance, associated Bithranfo file that specifies
an members to be externalized, and a GUI Customizes ¢ttaallow users to set any
algorithm attributes.

ABLE offers an interactive development and test emwitent. AbleAgents can
be graphically constructed using the core AbleBeans libeamy other AbleAgents.
AbleAgents can also be hand-coded and tested in this enviromming form of JAR
files.

ABLE agent platform provides a set of services including tadéscycle
transitions and directory facilitators and agent comication functions that allow
AbleAgents to form multiagent systems. The platforam support agents on multiple
physical systems using Java Remote Method Invocatiocofomunication.

ABLE toolkit can be used to add autonomic properties to@mns by allowing
users to create specialized agents who can monit@xteenal environment, plan reflex
actions, learn behaviors, and take actions when probteogr. ABLE provides an
architecture for construction of intelligent softwa@mponents and agents using core
beans that provide core functionality while allowing oustoeans to be created for more

specialized behaviors.

AutoMate
Grid computing attempts to use resources of many sepamtguliters across a
network to solve large-scale computation problems. AuteMata framework for
enabling development of autonomic Grid applicationst thee capable of self-
configuring, self-composing, self-optimizing and self-adaptifige idea is to construct

autonomic applications as dynamic composition of autameomponents [16].
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The framework consists of two key components: an auwtdmaomponent
framework called Accord and an agent-based middlewarastinércture called Rudder.
The Accord framework consists of four concepts [17].

1. Application Context — Defines a common semantic bEsi€omponents
and applications. The semantic basis for describing applica
namespaces, component interfaces, sensors and actédatoed uses an
XML-based language for describing functional and non-funatiaspects
of components.

2. Autonomic Component — Defines autonomic components asc basi
building blocks for autonomic applications. An autonooomponent is a
self-contained software module with specified integf&a and context
dependent. A component has rules, constraints, andamisafs for self-
management and interacts with other components andnsystia three
ports to export information about their behavior, reseueqguirements,
performance, interactivity and adaptability. An embedded adent
monitors component state, controls execution of rutescoperate with
other agents to fulfill overall application objectives.

3. Rule Definition — Management and dynamic compositibrawtonomic
components are guided by rules. Rules are If-Then expnssahere the
conditional part is a logical combination of componemironment
sensors and events. The action part of a rule is cuesee of
component/environment sensor/actuator invocations. Thereudas for

defining runtime functional behaviors of autonomic comptseand
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interactions between components, their environment, &itbin an
autonomic application.

4. Rule Enforcement — Rules are injected into componentsiratime to
enable self-managing behaviors in applications. Rules rtortime
functional behaviors are executed by an embedded rule dgeles for
component interactions are dynamically injected inte thteracting
components.

Rudder is an agent-based middleware infrastructure to proweide capabilities
for supporting autonomic composition, adaptations, and aqmtions [16]. Self
configuration is enabled through dynamic discovery and composif new components
and reconfiguration at run time. Self optimization enabtedugh dynamic switching of
workflows and components. Self healing is achieved by ntesjaor replacing failed
components. Self protection is enabled through reactikeviiers. The Rudder has two
parts:

1. The agent framework of Rudder provides three types of peertsage
Component Agent (CA), System Agent (SA), and Composidgent
(CSA). Component Agents define interaction rules for camepb
interaction/communication behaviors and mechanismsteBysAgents
monitor, schedule, and adaptively optimize physical resoutitization.
CA and SA exist as system services. CSA are transgamterated to
satisfy application requirements. Application and sys@ynamics an
uncertainties are addressed by rules that enable appigatio

dynamically change flows, components, and componéstaictions [16].
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2. Reactive tuple space — Tuple space provides coordinationcesefmi
distributed agents and mechanisms for rule definition, gemat and
enforcement. It executes runtime adaptive policies mwatoordinated
application execution and optimized computational resoulioeasion
and utilization. Programmable reactive behaviors defined uwsimgple
consisting of a Condition, Guard, and Reaction are sugihalgtnamically.
Condition associated triggering events with reactions. dGudsfines
execution semantics of the behavior. Reaction spediiessomputation

for the behavior.

vGrid

vGrid is a middleware architecture that sits on top loé existing Grid
middleware, intelligently managing and executing autonoamplications with huge
computational requirements over limited Grid resource [18]is an extension of
AutoMate. vGrid is made up of three layers.

The first layer is called Autonomic Problem Solving Enviremn(Autonomic
PSE). It provides application developers with a softwdaeelopment environment to
design and construct scientific or engineering applinatid’he idea is to develop an
autonomic application as a dynamic and opportunistic coitiposof autonomic
components [18]. Individual modules of code are encapzllato Fine Computation
Unit (FCU) with information on data, operational ryl&sowledge about its neighbors
along with input and output ports for communication.

A group FCUs are managed in a collection called Virtuam@aation Unit

(VCU) with common properties. A VCU is given to a serid resource. A set of VCU
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makes up the complete parallel application. The autonproigerties reside at the VCU
level. A vGrid manager (VGM) uses information and pekcabout a VCU’s behavior,
resource requirements, performance, and interactivity ataptively to autonomously
change the VCU’s configuration when needed.

Layer 2 is the vGrid Infrastructure Services enhancesimxi§irid middleware
and runtime services to support autonomic Grid Applicat[@8]. The main components
of the vGrid architecture include vGrid Manager (VGM), d3Resources, Open Grid
Services, and Distributed Communication Service. The V{@&MdIf is composed of
Monitoring Engine (ME), Analysis Engine (AE), Planning Bregi(PE), Knowledge
Engine (KE) and Execution Engine (EE) for setting up andfigoring application
execution environment manages and controls all auton@apicrements.

KE stores all high level policies as implementatiaies regarding different
scenarios. Example rules are estimated/projected exmctimes, effect on overall
performance, load on resource unit and etc. The PE lisss tules to plan appropriate
strategy for particular scenario. Local AE computesuactvalue of an application
characteristic (i.e. execution time) with the estedavalue. If actual value exceeds
accepted value, then Local PE is notified and plans awkus. The adjustments are
made by the corresponding Local EE. If adjustments a#nba fulfiled on a local
domain, then requests are propagated up to the global MBNAPPE for determining a
new domain for execution. The local engines do not laavkority in making decisions
outside their own Grid domain.

A distributed communication infrastructure with whiteabw for coordinating all

communications in the infrastructure among the enginédscamponents. Layer 3 is
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called the Autonomic Grid Application Execution Environmdot monitoring and
controlling actual execution of an application. It existeach Grid resource domain. Its
main components consist of Local VGM, local KE, ME,,AE, and EE. It sends VGM

information about the VCUs being executed using the whateho

Summary

The tools listed above have been applied to Grid apmitsator applications
related to server diagnostics, administration ar@bramerce whose requirements are
different from HEP experiments. Significant amounttiofe and effort is required to
customize and apply these tools to the Trigger systemhdfanbre, if a manual
development process is used, implementing the softwarethe tools can incur
significant additional development cost as thorough kedge of the tool and the
specific implementation language is required.

Moreover, research in the field describes charadtief autonomic systems and
specific examples or middleware, but there is not andstrdized mechanism for
constructing these systems. The challenges include definiogi@amic fault-mitigation
behaviors, implementing these behaviors in softwaréggrating these with the
application, and providing the middleware and underlying dipgraystem. Moreover,
coordinating the responses across a distributed systémrfcomplicates the design.

Therefore, automated tools are needed to help managerimexity associated
with designing and implementing autonomic response systéneswork described in
this thesis is one such tools for designing fault mitigabiehavior that aims to meet the

requirements and challenges of HEP experiments usinglalthased approach.
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CHAPTER I

MODELING LANGUAGES FOR THE BTEV ENVIRONMENT

The Trigger system consists of several different espeanging from hardware
topology, communication architecture, software compbnoenfiguration, fault-tolerance
policy specification, data and message-types, messagmgasterfaces, run control,
logging, online diagnosis, and deployment. These aspectheokystem interact in
varying degrees and are evolving on different timelines.dtfitian, there is a need to
version-control the evolution of designs and desigfeats.

A set of narrowly-focused Domain Specific Modeling Largesm (DSML),
integrated through a high-level language, has been developsttiress these concerns
[19]. The topic of this thesis, the Fault-Mitigation Médg Language, is one of the
narrowly focused DSMLs for specifying fault-mitigation @ais in the system. Details
of this modeling language can be found in Chapter 4. This @hgptes an overview of
the other modeling languages for the Trigger system in th& Bhgironment to provide

the background to show how the DSMLs integrate together.

Data Type Modeling Language

The systems running High-energy physics experiments arapased of
thousands of distributed processors. Due to the sizédeokystem and nature of the
experiment, large amounts of data and message transésrgkace, both locally as well
as between processors across the network. A publishradbssechanism called Elvin

[28] is used in the system for this purpose. Like other puBlidgiscribe message systems,
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messages are routed to clients across the network lbaisedbscriptions of message
contents. Clients can both publish and subscribe to gesday invoking specific APIs
provided by Elvin.

To reduce the complexity of the Elvin communication ma&ra and match the
messaging APIs to the tool requirements, an abstrdetyen is developed over the Elvin
APIs. This communication layer provides a standard wayn&oshal and de-marshal
messages using the Elvin protocol while hiding the implemientatetails of the Elvin
APIls. To further reduce burden on the user, the maisfpalhd de-marshalling code for
messages are automatically from Data Type Modeling LangizagéL) models [19].

Users model the structure of messages used in the sysiagithe Data Type
Modeling Language. A message can contain message fieldseptesent simple data of
type floats and integers to specify representation(szenumber of bits used) as well as
composite data that can contain other composite datasiamole data. Additional
information such as array size or signed/unsigned rapedgn can be specified through
attributes of the message fields.

Figure 4 shows an example message model expressed in DII&_particular
message contains a composite data and two simpleTdaacomposite data represents
the header of a message which contains three singike (@ode_id, region_id, and
message_category). As mentioned in the previously, the allamghand de-marshalling
code for this message is automatically generated forusee based on the message

structure specified in the DTML model.
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Figure 4 Example of a DTML Message Model

Graphical User Interface Configuration Modeling Language

Being able to monitor a system is essential to erthatea system is functioning
correctly. As a system evolves, its user interfageds to be reconfigured to reflect the
changes in system requirements. Furthermore, configuradtanierfaces would enable
the physicists to dynamically view data and error comwl#iin ways that aid in system
analysis. They would also allow users to dynamicatlgfigure and control the state of

the system. The Graphical User Interface Configurddodeling Language (GCML) is
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a modeling language that provides an intuitive environment fnsus configure user
interfaces [21].

Graphical User Interface Configuration Modeling Language allogers to create
multiple user interface panels as well as specifydibplays and controls that are a part
of these panels. The types of displays include Cartepiat, histogram plot,
checkerboards, and text box. The types of controls ingludébuttons, slider bars and
editable text box. There are two aspects for the disptal control objects, the Display
aspect and the Dataflow aspect. The Display aspectastasspecify structural properties
of display and control objects such as their physazdtion inside a user interface panel.
The Dataflow aspect displays the data from the sydfsah is to be displayed or
controlled on a panel [21]. Figure 4 shows an example ingenface with these two
aspects. An additional component is provided in the Datadlgpect called Computation
Blocks that connect to incoming data to perform computate the data before
displaying. In Figure 5, data from a SystemStatus messagangcted to a Computation
Block for processing before they are displayed on a Chechstbdisplay in the
MainControl panel.

Once the user has modeled the system user interfagethsitanguage provided,
the tool is capable of generating the artifacts necgs¢eatreate the user interface. The
artifacts include structural files for specifying the lagatof display and control objects
in a panel and dataflow code for receiving monitoring messagessending control
messages. Currently, the tool generates softwarestleatecuted by Matlab to create the

user interfaces.
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System Integration Modeling Language

The System Integration Modeling Language (SIML) is a sydwvel modeling

language used for specifying general dataflow within the sysiswell as the structural
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and communication layout of the system. Typical objeefsresented in SIML are
regions or partitions in the system, hardware compsnsoftware components, dataflow
connections, node identification, and message rouférs. information captured on
system components, component hierarchy and interactibhs the system in a SIML

model are relevant for constructing system configuratites fused in deploying the

system.
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Figure 6 System Model Expressed in SIML

Figure 6 shows a system configuration model expressed Bydtem Integration
Modeling Language for a prototype HEP experiment from a gloieab. This model
defines a GlobalManager component (GRCManager), seuReglion components
(Regionl, 2 and 3), and several LocalNodes. Each Regmpanent represents a logical
partition of the system and contains a RegionalManager several LocalNodes.

LocalNode components can be further decomposed to shameaManager component
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and two HEP application components. Processors aréfidéry their IP address using
the Nodeldentification object shown in Figure 6. Data ph#te/een the components at
global level are captured by solid black litegepresent point-to-point communication,

and Routers represent access points to publish-subscnirewucation services.

Integration of Modeling Languages

A set of Domain Specific Modeling Languages has been dewklgpe the
Trigger system, each specifying a relevant aspect of yeerm. They are briefly
summarized below:

1. The Data Type Modeling Language describes the data andhgeess
types used in the Trigger system.

2. The Graphical User Interface Configuration Modeling Language
specifies the logging and online diagnosis interfacedsyistem.

3. The System Integration Modeling Language determines the hardwa
topology, communication architecture, and software caompb
configuration of the system.

4. The modeling language used for specifying custom fault-mitigatio
behaviors of the system, Fault Mitigation Modeling Lampua
(FMML), is described in detail in Chapter 4.

These different languages are integrated together to docomplete description
of the system. The System Integration Modeling Langusggees as the high level
language through which models of other DSMLs can be sedeallowing integration of
the modeling languages. This integration of the modeling laygsuis achieved using the

concept of a Link type. A Link can be seen as a bridgedst two graphical modeling
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languages. A Link has attributes to identify the modelinguage of the linked object,
and file path of the linked object (relative to a CVS kimg-directory), and provides a

concise interaction between different modeling languags [
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Figure 7 Specification of Link in SIML

A Link has specialized tools to facilitate the process ioklcreation and Link
navigation, as the creation of a Link is non-trivial andy require an intricate mapping
between concepts in different modeling languages [19]. Ttoede relieve the system

designers from the onus of Link creation and reduce thsilplity of error occurring
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during Link creation and navigation processes. As a resuli® integration, SIML
component can be decomposed to a model expressed in theero@ny other languages
in the tool suite through a Link type.

The MonitorGUIComponent in Figure 7s one component that can be
decomposed to a user interface model created using GCMe&. LTtk attributes
associated with this component are link type, name ofntbeeling language, the
filename of the user interface model, and object typkeQtomponents in the SIML that
are associated with models of other languages via a kinkBbal, Regional, and Local

fault managers.

SIML

Language
Links

Import Import

GCML DTML FMML

Figure 8 Integration of Modeling Languages
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Data types and messages from Data Type Modeling Language sneaitelbe
imported into the Graphical User Interface Modeling Languagelels and Fault
Mitigation Modeling Language models. During the import psscedata types and
messages from DTML models are copied into the GCML avitYlE models that use
these to specify the information to be extractedl@dfiduring system execution. Figure

8 lllustrates how the modeling languages integrate with et [21].
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CHAPTER IV

FAULT MITIGATION MODELING LANGUAGE

Chapter 1 presented a fault mitigation approach using a hiarakctault
management framework where fault managers on multipatuhy levels can
individually or cooperatively make mitigation decisions.c&E that this mitigation
approach distinguishes two aspects: Structural and Behbaw&iractural refers to the
placement of specialized fault managers within a gystBehavioral refers to the
collective set of fault mitigation behaviors for #ile fault managers in the framework.
Together, they form the foundation for system-widédt fantigation.

A high-level tool called the Fault Mitigation Modeling Tdwks been developed
for defining and instantiating a fault management framewasitk customized fault
detection, mitigation and recovery capabilities. The DarBpecific Modeling Language
of the tool, Fault Mitigation Modeling Language (FMML), prdes an environment for
creating fault mitigation behaviors and recovery podicfer the system under fault
conditions. FMML also allows capturing information p@rtag to the structural makeup

of the fault mitigation framework. This chapter presdht concepts behind the FMML.

Domain-Specific Modeling Language

A Domain Specific Modeling Language allows a system designelescribe a
system in terms of a domain. It enables system dasigmeo have domain knowledge

but not necessarily the implementation knowledge tsigdea system through use of
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models with a strict set of concepts from a domaire iMledels can be analyzed to verify
required properties of the design and used to generatadhsystem.

DSMLs are declarative, have precise semantics and useardep&ific symbols
[7]. A DSML is specified by the five-tuple of concretentax (C), abstract syntax (A),
semantic domain (S), and semantic and syntactic mappiggritMVe)

L=<C, A, S, M, Mc> (1)

The purpose of an abstract syntax, A, is to define tha skatictures that can
represent models via concepts, relationships, and integoitytraints using Unified
Modeling Language (UML) class diagrams and Object Constreanguage as
metalanguage. The concrete syntax, C, can be seemasping of abstract syntax onto a
specific domain of rendering [7]. Modelers can directlgiatt with the concrete syntax
by manipulation of graphical objects that are renderingth@funderlying objects of
abstract syntax. The purpose of semantics is to defmengmning of models that we
create using the DSML. Semantics can be broken dowrwagarts: semantic domain
and semantic mapping. The semantic domain, S, is definecathematical formalisms.
Syntax mapping, M is mapping of A~C, whereby syntactic constructs are assigned to
elements of the abstract syntax. Semantic mappinrg,idMa mapping of A>S where
syntactic concepts are related to concepts in thergentkomain.

The syntax and static semantics of a DSML can beifsggeeising a technique
called metamodeling. The Generic Modeling Environment (GMipvides an
environment for creating metamodels to describe theiestitheir attributes, and their
relationships that are available in the target DSML@&IML class diagrams and OCL

syntax. Once a metamodel has been created, the D@Nbe generated using a meta-
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translator. Fault Mitigation Modeling Language is definedabyetamodeling language
using the Generic Modeling Environment tool. The metalanguafyeedehe structural

and behavioral aspects of a hierarchical fault managemnaeaméwork.

Structural Concepts

Fault managers reside on all nodes within a system, pastiding some
specialized fault-mitigation services. There are fouregaitypes of fault managers that
can be instantiated for a fault-mitigation frameworke Thetamodel in Figure 9 shows
the four types of fault managers available in the moddamguage using a language
similar to UML class diagrams. Note that fault managare called ARMORSs in the
Chameleon execution platform. Therefore, the four typefault managers are called
ManagerArmor, LibraryArmor, DaemonArmor and CustomArmoithe metamodel. A
brief description of each type of fault managers ®Hlsws:

1. ManagerArmor — Monitors other fault managers in the systétrkeeps
location and type information of all the existing faulamagers in the
system. (A)

2. LibraryArmor — Provides specific predefined behaviors to appbns.
(B)

3. DaemonArmor — Exchanges heartbeat and registration infemmeith
ManagerArmor and other fault managers. (C)

4. CustomArmor — It has behavior of one of the otherdhypes of fault
manager, specified via a reference (D), with additienatom mitigation

behaviors.
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The first three types are composed of predefined belsaawailable from a
behavior library. The fourth type is intended for custation by the system designer.
Custom fault managers can contain any number of anpitaalt-mitigation behaviors in

addition to behaviors from the behavior library.

ArmorClass

<=FCQO==
ErrorLogsSize field
MainLogSize : field
IMsglogSize : field

StdoutLogSize field
TCL_FileMame : field

ArmorlD field
ManagerArmor LibraryArmor DaemonArmor CustomArmor
==Atom== ==Atom== ==Atom== ==podel==
ManagerType: enum LibraryType: enum DaemonType :  enum
StandardElement CustomElement ArmorBase
F == itom== g ==Nlodel== E ==Reference== D
RequireFackage . enum °"| Heartbeatrate :  field
InstanceMumber: field

MachineRef ArmorClassFroxy

==Reference== ==FCOProy=»
ErrorLogSize : field
MainLogSize : field
l MsgLogSize field
BehaviorProxy StdoutLogSize . field
==NodelProm== TCL_FileMame: field
G : ArmorlD : field

L 2

Figure 9 Metamodel of Structural Concepts

Behaviors can be seen as basic elements that caodgegdlinto a fault manager.
Two types of behaviors are available for plugging into at@wodrmor fault manager:
custom behaviors that are called CustomElements (B8)peedefined behaviors from the
behavior library that are called StandardElement (Fe Télationship between the
behaviors and custom fault managers are constructed cmiiginment relationship. A
CustomElement object contains a behavior reference doseom mitigation behavior

model (G) that opens the behavior model it refers tawdwaible clicked.
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The global view of fault managers’ placements withsystem is captured using
the System Integration Modeling Language where faultagers reside on LocalNode,
RegionNode, and GlobalNode components in the systemt Fanagers’ behavior
models are integrated into a SIML model using Links. Figureht@vs that a LocalNode
contains a LocalARMOR component that has a Link teMML model. The FMML

model specifies a Custom type fault manager and a Dagperiault manager.
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Figure 10 Location Specification of Fault Managers on @alblode

Behavioral Concepts

The State machine-based formal specification methodolbgies long been used
to design and specify reactive systems. The FMML &esechart [23] notation for

describing the fault-mitigation behavior of fault managéfsing FMML, failure states
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and progression of behavior under failure can be defineehsas interactions between
fault managers and with other components of the system
The features of the behavioral specification are bsis:
» State defines the status of a computing node at a partiostant in time.
» Transitions implement the change of states. Theserauth a particular
event (application failure, status or recovery repotty, e
» Transition objects are annotated with Trigger, Guard, anib®cThe
Guard is a condition that must be true for a transitaooccur. The Action
is a specific action that is executed when a tramsigotaken (e.g. reset
event variables, data variables, decrementing events;ainj.
» Transition objects contain Messages objects that ddggsring events to
activate transitions.
» Lines connect States and Transition objects represamtitions between
States, capturing the progression of States.
Each mitigation behavior is specified using a hierarchictkestiachine. Figure
11 shows the metamodel that define the syntax and semaftithe behavior state
machines. TheMachineacts as a container that encapsulates mitigatioavisels, one
container per behavior described using hierarchical statdine concepts. States of the
system are defined by a setSihteobjects. Eaclstateobject can be further decomposed
to two or more concurrent substates or mutually exclusiggidt substates like
Statechartlinitial denotes the default state a system is in throughiéialConn type
connection to the default state. Each behavior statdime contains a set Dhta for use

in keeping track of current and next states, system idfoom thresholds, and error
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counts.Transitiondenotes progression of states due to a triggering emegger, Guard,
and Actionare attributes of &ransitionobject to specify the triggering event, guard and
action to be performed as a result of transitioningheortext state. Note that unless the
Guard attribute is fulfilled, a state transition will ntake place and actions specified in
the Action attribute will not take place. User-defined actions dobk computing
parameters for reconfiguration or statistics for tnagkrends in the system. The user can

also create and send new events as messages to otlggmeons or fault managers in

the system.
Behavior Behavior
==Faolder== ==Agpects== |
SiBase - ~
TransitionConn
f =FCO== ==Connection==
Machipe | | L 1 ——

==Model=> T 7

T 4 4 | '
" =t A InitialConn
Data Initial - State | & ! !
<<Atom>> «=Atom== E'j ==lladel== E'=' voo-] ==Connecticn==
Initialvalue © field e Decompaosition © enum °
Modifier:  enum 4 |
Size : field
l;.-‘pe: _ field Ers |@sr [T cocfecfocd] ToTransition
SCope Enum Transiticn ' + <<zonnection==
==Model==
Action : field
Guard : field
Trigger : field —
FromTransition
| ==Connection==
’_

Figure 11 Metamodel of Mitigation Behavior Specification

As stated previously, events in the form of messagessamputs and outputs
events to the behavior state machines. The input ewrtused to trigger a state

transition while the output events are sent due to t& stansition. Events can carry
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system information from another component or it canabcommand message from a
superior fault manager or user interface. Events betfe#inmanagers and components
in the system are exchanged via the Elvin publish/subserdmdanism.

The metamodel in Figure 12 shows the specification of inmat autput
messages. A Transition object can contdessageobjects through UML containment
relationship (A). Message objects can contain messalgks that are of typit8, Intl6,
Int32, Int64, or Real64B). These types are the exact same types used byTihi.D
This is because the messages specified in DTML modelscapied into the
Messagelmporfolder (C) of FMML models using a helper tool calleplag-in. By
copying the message structures from a central message, medean be sure that the

messages used by all modeling languages have the same s$tucture

TransitionProxy
==ModelProxy==

2 . Message

Action : f!eld /|| Messagelmport DTMLImport = d

Guard field dodel==

. . / ==Folder>> |e—{ ==Nodel>= -
Trigger: figld “ | Messagelabel : field
L Vi Subscription:  field
»
ChannelConn h MessageProxy
==Connection=>= |-....-, + <=ModelProxy==
[ U e|o- “| Subscription:  field
Channel Messagelabel - field
=<Atom=e | »
dst[0..- \
Type : enum
\
\
I 1
\ Ints Int1& Int32 IntG4 Reald4
E D \ =zAtom== «=zAtom== <zAtom== «=zAtom== =<Atom==
- \
PublishChannel SubscribeChannel

<=Atom== <=<Atom==

Figure 12 Specification of Input and Output Events in Faalhagers

Sources of messages can be divided into two groupsy aithinternal or external
channel. Internal channel messages are from the sarterfanager. External channel

message are from a different fault manager or othstesy components. Likewise,
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messages are sent via an internal or an external dhdngere 12 shows these key
concepts using a metamodel. Input events are denoted by tingreesubscribeChannel
object (D) to avViessagevia aChannelConrtype connection. Output events are denoted
by connectingPublishChannelobject (E) to aMessageobject. TheType attribute
indicates the type of source or destination a messafyjensor intended for; whether
message is for another mitigation behavior of the stawé manager or another system
component.

Figure 13 shows a behavior model expressed in FMML [20]. snrtlodel, there
are two possible system states, NOMINAL and FAULTthwNOMINAL being the
default state. Arrival of an AsteroidData message trgdeansitionl to be evaluated.
The guard condition is checked first. In this model, the djiandition is verifying
whether a state variable called “parameter” is bedothreshold value. The value of the
parameter variable comes from the AsteroidData mesdégehe guard condition
evaluates to true, a RequestData message is sent toerammmimponent that has
knowledge of how to handle such message and state mowetNODMINAL to FAULT.

If the guard condition evaluates to false, no state itransakes place. Likewise, another
AsteroidData message triggers evaluation of Transition@ #&ansition executes

depending upon evaluation of the guard condition.
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Figure 13 Mitigation Behavior Model in FMML

Extensions to Level 1 Fault Mitigation Research

The current fault-mitigation language focuses on the remants of Level 2/3
data filtering of the BTeV Trigger system. It is bwifton prior work done for the Level 1
data filtering of the Trigger system. Details of therélel fault-mitigation language can
be found in [24][25]. The current language uses Statechaatiomd to specify mitigation
behaviors like the Level 1 tool but with some extensions.

The current language allows temporal behavior by using teahgwents to
trigger transitions and temporal guard conditions. A bemawan be activated
periodically by a message that is sent at a user-deftee This feature can be useful for
behaviors that are required to update the user interfacea@tstant rate or monitoring of
important tasks that require frequent verification. Dateation of whether to remain or
switch to a different state can be dependent upon hiegvildias been since entrance into

the state by checking the elapsed time in the guard @@mdithis can be used to
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determine if an error is intermittent or persistent. &mmple scenario would be to
transition into a probation state when an errord@zirred. If the same error repeatedly
occurs within a certain time period then that could iéndication of a serious error and
calls for thorough examination of the error. Then tigstesm administrator would be
notified. There are many other variations of this suhe

The current language is also integrated with another mngd@inguage, the Data
Type Modeling Language. Due to the number of nodes in teeemyand the large
amount of messages exchanged among these nodes, ntp@stant to ensure the
consistency in the messages used by all the compondnssfebture is achieved by
using a utility program that imports messages from DTMb the FMML models. The
message fields of the imported messages are represenpediasllowing direct copy

and paste of messages and assigning/retrieving data to/franetisages.
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CHAPTER V

MAPPING DOMAIN MODELS TO IMPLEMENTATION

With the Fault Mitigation Modeling Language defined, uszns create models of
fault managers along with their mitigation behaviorsroligh the use of a model
translator, these models can be mapped to artifacts Inmgean underlying execution
platform to instantiate a fault-mitigation framewotkereby, bridging the gap between

high level mitigation behavior designs to low level sowade [7].

Execution Platform Artifacts

Currently, Chameleon is the execution platform for BieeV prototype system.
A detailed description of it can be found in Chapter 2. Gllaom possesses several key
capabilities for executing a hierarchical fault managerframework. These capabilities
are listed below:

1. Fault Manager Specification and Instantiation - In Célmon, fault
managers are called Adaptive Reconfigurable Mobile Objects of
Reliability (ARMOR).

2. Mitigation Behavior Instantiation - Fault-mitigatiobehaviors can be
added and removed from fault managers. ARMORs in Chamslgaport
multiple mitigation behaviors in the form of pluggable Itumg blocks
called Elements, each implementing a custom behavior.

3. Communication - It provides mechanism for reliable camiration

between fault managers and within the fault managers.
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Artifacts for creating and instantiating fault managespecifying custom
mitigation behavior, and communicating with other systermpmnents and fault
managers are generated from Fault Mitigation Modelingguage models. Figure 14

shows the translation process from FMML models tdeaitis.

e e e_Globa obal ARMOR-65/Behavio e e EE
W T Name: [Fiter_ExecTime_Gic [State Aspect[Behavior ] Base: [N/A Chameleon
Sl T Mame: [Fiter_Ex hal Z>
obaArmo torn i
T Name: [Globalé Initial
o
% State
count_
g -~ Mitigation
o o 2
% L, N Behavior
/ \
/ Element
num-reg > >\ Translator ; 20
B )
config_par: - teenn——— N | L2V T e a gl ommunication
global confjg success .
i parametdr request Gateway
% Z> Element
my_id_
Custor
region config result v
>
]
1

Figure 14 Mapping Process and Resulting Artifacts

Fault Manager Specification and Instantiation Scripteésation

A microkernel in the Chameleon environment is respon$alenstantiating fault
managers. The instantiation process is invoked throughlbsshipt that supplies the
microkernel with a manager id and name of a Tcl scilgatEvery manager in the system
must have a unique id for identification. The id and Tlel iame come from attributes
associated with the fault manager object in the FMMided.

The Tcl script file contains various structural inforimatabout a fault manager,
ranging from id of the fault manager to the name oftitegation behaviors this manager
possesses. The names of the behaviors come from nan$aodardElement and

CustomElement objects that a fault manager contains.
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Specification Script

package require ea
package require dmn
" Chameleon - Global ARMOR-65 package require conf
_Ei\e Edit View Window  Help pkg_ea_init
|4 & | &= a4 AV A EEOEEN

set idDaemon [lindex $argv 0]

T Name.lﬁ\ohalﬁlmor |A|mo| / T Name:|Eusmm_Daamnn |EusmmArmm
chm_ea_armor_setlog 0-1 00

Standard Daemon Behavior

@m_ea_add_element 0 context_table 0 \
chm_ea_add_element 0 daemon_np_mgmt O
chm_ea_add_element 0 daemon_proc_mgmt O
chm_ea_add_element 0 daemon_armor_install 0
chm_ea_add_element O route_control 0
chm_ea_add_element 0 daemon_tcp_mgmt O
chm_ea_add_element 0 daemon_init 0
hm_ea_add_element 0 daemon_armor_loc_cache 0 )

R P

bl

Managé&rArmar

GIoba_Event_Status

T YT Communication Gateway
Custom_Daemon \ L chm_ea_add_element O dtml_sender_GlobalArmor O
chm_ea_add_element 0 dtml_rcver_GlobalArmor O

\ L A B
\ « -
\ \ Fier_ExecTime_Global) Custom Behavior
- - chm_ea_add_element O Filter_ExecTime_Global 0
[Eustom_Daeman r chm_ea add element 0 Global Event Status 0
b Ir\ '!r\ iaont \ ) .
lArmulID Z ~ chm_ea_armor_finalize
telFileh amae: ftoo dasmon
E.UDILIDDSIZE -1 . . .
ks v Instantiation Script
: = - #!/bin/bash
Ready EDIT |100% Chameleon |11:22 AM \ source $HOME/dem0_C0nf/enV.rC

cd $SHARED_TCL;
chmtcl ftm_daemon.tcl 2;

Figure 15 Mapping of Instantiation and Specification@s

Figure 15 illustrates the mapping of a Tcl script and an itiatam script from a
CustomArmor object named Custom_Daemon in a FMML mdde. Custom_Daemon
object contains two custom mitigation behaviors that nlag®rresponding instantiation
code in the Tcl script. The instantiation code for tlmammunication gateway is
automatically added to the Tcl script. The ArmorBaséhefCustom_Daemon indicates
that it has the basic behavior of Daemon type fauhagars in addition to the custom
behaviors. So the basic behavior instantiation codésis added to the Tcl script. The

instantiation script uses the ArmorID and Tcl FileNaat&ributes for identifying the
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unique id of the fault manager and the specification fileewHault manager is

instantiated.

Fault Managers Communication Gateway Generation

Publishing an Elvin message involves creating a message byyspedis
various message fields and then broadcasting the messagan Elvin router.
Subscribing for an Elvin message involves creating an spheorexpression, providing
a message callback function. Both processes involve cattiagshalling and de-
marshalling APIs from a library of general APIs that suske Elvin-specific APIs
internally.

Fault managers need to exchange messages with other cantgpaonthe system
to monitor and track failures in the system. The messagihgme used in the system is a
publish/subscribe mechanism through Elvin. Since ARMORs omlygrdzes ARMOR
messages, messages sent using the Elvin protocols muanslated into an equivalent
ARMOR message representation. Likewise, outgoing ARMORssages must be
translated into an equivalent Elvin message represamtati

The two way translation processes is encapsulated wtloircustom gateways of
a fault manager; one for sending and one for receivingn Ehessages. These two
gateways are implemented as C++ classes with some fixections for instantiation
themselves used by the ARMOR microkernel. The receivingnwggteakes an Elvin
message and encapsulates it within an ARMOR messageantCustigation behaviors
can then proceed to process the ARMOR message. LikeamgeARMOR message sent
by custom mitigation behaviors are stripped, with theltieguElvin message sent by the

sending gateway via Elvin. Figure 16 illustrates the tréinslgprocesses.
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Figure 16 Message Translation Process Using Commigricaateways

Since not all fault managers receive and send the sasmsages, the gateways
must be customized based the types of messages modeldtMib. A his information
comes from the Transition objects in the FMML mod&hly the non-Daemon type of
fault managers will have the gateway behaviors.

Recall that Transition objects contain input and outpusagess associated with a
state transition. The model translator translates maéssages connected to a
SubscribeChannel object with the type attribute equal tonEdva callback function and
associates the callback with a corresponding Elvincsiydt®n expression in the receiver
gateway. The subscription expression comes from abwtrof a Message object.

The model translator translates all messages connecteBublishChannel object
with the type attribute equal to Elvin to a function t¢alktrip out the Elvin message from

an ARMOR message based on a defined message type in @nta publish API call
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to publish message via Elvin. An ARMOR message’s assdcizid/lL message type is

denoted by the Message_Type attribute of a message object.

Fault Mitigation Behavior Generation

The mitigation behaviors are modeled as hierarchical statshines in FMML.
Each behavior model is implemented as a C++ class thide core parts: a state
machine function, incoming message processing functiond, cangoing message

specification functions.

Mapping of Messages
The Data objects in the model are transformed to gksables by the translator.
Inside the incoming message processing functions, data efdbeing messages are
assigned to class variables. The assignment is sgkdiff the message assignment in
FMML models. A similar mapping occurs for creating oubhgpimessages inside the
outgoing message specification functions from modeggré 17 illustrates the mapping

from models to code.

47



Receiver Gateway Source File

class callbackO:public CallbackArmor<CurrentCrossin g>

{
public:
callbackO(ControlsConnection *cc, void *p) :Callbac kArmor<CurrentCrossing>(cc, - =
D {} 7L Filter_ExecTime_Global - /GlobalFaultManager/Behavior/Filter_ExecTime_... [= J[E][&)
void invoke(CurrentCrossing* msg) T Name: |Fiter_ExecTime_Glc [State: Aspect|Behavior | Base: [N/A Zoo
{ 3
printf("Callback. Recieved CurrentCrossingmessage.\ n"); izl
Receiver_Gateway *Rever=(Receiver_Gateway*)this->el  ement_ptr; itz -
mc_message_ct *pmc = new mc_message_ct; .
mc_bundle_ct *bundle= pmc->push_bundle();
violation
bundle->idArmorDest = Rcver->get_armor_id();
pmc->push_op(bundle, MSG_CURRENT_CROSSING);
pmc->set_fieldMV_MSG_CURRENT_CROSSING,msg,sizeof(C urrentCrossing));
Rcver->get_armor()->execute_context(pmc); State
}

h q oMiltAND

wait

thread_return_ct Receiver_Gateway::elvin_subscribe(  void *ar) \

SubscriptionData sub00; ,‘.‘
sub00.lang_option=equals;
sub00.field = "category"; SubscribgChannel PublishChannel
sub00.ValueType =StringValue;
sub00.un_val.sval ="Current_Crossing_Number"; e _
list0.push_back(sub00); i config_param e
callback0 *p0 = new callbackO(er->con, er); — | - - myH |
er->con->subscribe( auto_ptr<callback0>(p0), list0) ~; cur_crossing_ .. = ]

CurrentCrossing * ChangeFilterConfig

} cat

a3 >
Atributes | Preferences | Properties
N~

Sender Gateway Source File Subscription =quials,categary,Stingy alue Curment_Crossing_Number,
void Sender_Gateway::msg_ChangeFilterConfig_handler (mc_message_ct *pmc)
Messagel abel MSG_CURREMNT_CROSSING
printf("SENDING ChangeFilterConfig message\n"); Ready EDIT [100% [Chamelfon [03:15 Pv

ChangeFilterConfig *msg = (ChangeFilterConfig*)pmec- >
get_data(MV_MSG_CHANGE_FILTER_CONFIG);
msg->myHeader.region_id = this->region_id;
msg->myHeader.node_id=this->node_id; >
con->publish(msg);

Figure 17 Mapping to Communication Gateway Source Fites Model

Mapping of Behaviors
The behavior model is mapped to a nested switch statem&de the state
machine function of the custom Element. Nested switatement was chosen for its
simplicity, small memory footprint, and modularity. @thtypical implementations of
state machines include state table, state design patteencambination of the other
implementations [29]. Figure 18 illustrates the mapping gg®cThe various mappings

are listed below:

48



1. A set of defined states is collected from the model.eAam construct
defining the states is created as a class variable icustem Element
class.

2. For each state, a case segment is created.

3. For each state, its outgoing transitions’ guard comtisdransformed to if
and else if clauses under the corresponding case HEmelaction code of
transitions are inserted inside the if and else if esugction code is
based on the action attributes of the transition ebjgFom the behavior
model.

4. For each outgoing message in a transition object in téelna call to the
corresponding outgoing message processing function is aaksidd the if

or else if clause.
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Behavior Source File
void Filter_ExecTime_Global_ct::run_statemachine
(mc_message_ct *pmc)

{
cur_time_=time(NULL);
switch(cur_state_)

Chameleon - GlobalFaultManager - [Filter_ExecTime_Global - /GlobalFaultManag... (= |[E1)[]
tl Ble Edit View Window Help NEES

A a +* ¥vVa amEOEED?

c
case REQUEST: « R T HName: [Fiter_ExecTime_Glc [State Aspect [Behavior | Base: [N/& Zoom
if(msg_current_crossing_flag)

printf("Current State= REQUEST\n"); inigal

config_param_=cur_crossing_+N;
next_state_ =COMMAND;
send_changefilterconfig(pmc); }
break;
}

State G

B

violation

cur_state_ = next_state_;

}

State
void Filter_ExecTime_Global_ct::msg_current_crossin g_handler

OMMAND
* \ X
(mc_message_ct *pmc) N\ [command ™

printf("msg_current_crossing_handler Handler\n *); tsbutes | Preferences | Propertes
msg current crossing flag = true; Trigger MSG_CURRENT_CROSSING ~
CurrentCrossing *msg = (CurrentCrossing*)pmc->

get_data(MV_MSG_CURRENT_CROSSING);
cur_crossing_ = msg->current_crossing;

run_statemachine(pmc); 1\ Jaction config_param_=cur_crossing_+N;

msg_current_crossing_flag = false; \gﬂy EDIT [100% [Chameleon [04:06 PM
} \
A

void Filter_ExecTime_Global_ct::send_changefilterco nfig SubscribeChannel PublishEhannel
(mc_message_ct *pmc) : :

printf("send_changefilterconfig \n");
ChangeFilterConfig *msg = new ChangeFilterConfig;
msg->myHeader.category = "Change_All_Filter_Config" cur_crassing |
msg->config_param = config_param_; - ~  CurentCrossing
mc_bundle_ct *bundle = pmc->push_bundle();
bundle->idArmorDest = get_armor_id();
pmc->push_op(bundle, MSG_CHANGE_FILTER_CONFIG);
pmc->set_fieldMV_MSG_CHANGE_FILTER_CONFIG, msg,
sizeof(ChangeFilterConfig));
delete msg;

}

Figure 18 Mapping to Behavior Source File from Model

Summary

Through the model translation process, four types dhatsi are generated from
Fault Mitigation Modeling Language models. Automaticallyngmting these artifacts
shields the designers of mitigation behaviors and faattagement framework from the
implementation details of Chameleon, which would requirerough knowledge in
several programming languages and understanding of Chaneadecurtion environment.

As system fault-tolerance requirements change,easer and less error-prone to evolve
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and maintain the models accordingly and generate néfactstthan it is to modify the
four types of artifacts themselves. Furthermore, géingrartifacts saves development
time since the translator makes sure that the modelsudtdollowing a set of rules and
the translator transforms information in all moddle same way, artifacts are less prone

to errors.
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CHAPTER VI

CASE STUDY

As a proof-of-concept, several prototype BTeV Trigger systerere constructed
using the tools developed. The demonstration consisted sdtaof representative
architectures (computing clusters of various sizes), rgetaruntime infrastructure
(Chameleon + Elvin), a set of real and simulated agpdin components (prototype
physics applications), a set of models in the vario8MD's, and the generated artifacts.
Multiple versions were implemented to test the fldiipiof the design tools and to
assess their scalability. The tools were also evalubtedesigners outside the tool
development group, to assess ease-of-use factors.dptec describes the prototypes in
sufficient detail for a broad-stroke understanding ofdpplication and its results. A set
of performance results are also presented.

As mentioned in Chapter 1, the Trigger system is embeddétk iasparticle
collider system providing three stages of experiment filegeing. Level 2/3 designates
the second and third stages of data filtering. Timing deasllare somewhat relaxed for
Level 2/3 systems, and the filtering algorithms run muclydorand are much more
precise than of those in HEP Level 1 systems [22].

The system was tested with respect to its ability toveicfrom a number of fault
scenarios. Dual processor worker nodes running a Fermitabbution of Scientific
Linux and a command and control user interface were. isgdre 19 shows an overall

architectural view of the system.
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Figure 19 Level 2/3 Prototype System Setup (courtesy ohiduy, Fermilab)

The prototype system divides the worker nodes into tleeeld of hierarchy,
Global, Region, and Local levels. A Global Manageidirg on a GlobalNode governs
all the Regions in the system. A Region consists oRegionNode and several
LocalNodes. Each Region is governed by a Regional Manhgeresides on the Region
Node. The Local level constitutes a node with an individuwaal Manager to monitor
two HEP applications running locally on that node [20]. The iokyapplications receive
sample physics data from a Data Source applicationighrainning on a separate node.

The fault management architecture is illustrated in Fig0Oce
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Regional Node 1

Figure 20 Fault Management Architecture in the ProtoSystem

Seven fault scenarios were constructed to represanatyault conditions known
to occur in HEP data processing systems. The fault Sosraae the following:
1. HEP application crash
2. Corruption of data stream for HEP application
3. HEP application caught in an infinite loop
4. HEP application exponential slowdown
5. HEP application memory usage violation

6. Individual HEP application processing time violation atalNode
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7. Region execution time violation of HEP application
Various fault injection controls are present to ther us the control user interface
for creating the fault scenarios listed above in thetgbype system. The following
sections look at the fault-mitigation behaviors andtfeecovery timelines in two of the

fault scenarios.

Corruption of Physics Data Stream

A common failure that can occur in HEP experimentfiéstemporal corruption
of physics data leading to incorrect filtering results wrecrash of physics application.
The physics filtering applications are generally provided wiib ability to detect
corrupted data streams. It is extremely important tofynthhe physicists running an
experiment upon detection of such fault so that thecedtl portions of the data stream
can be marked as corrupt and ignored. The Local Manageldsiiso be notified of this
fault so that any trend regarding data stream corruptiag be detected by the fault
management system.

Presently, the Local Manager behavior focuses on deteatid reporting of the
data stream corruption to the system operator via usafaoe. There are two reporting
modes available; a verbose mode and a terse mode. Alehy data corruption is
reported in the verbose mode, a frequency of corruptienroence is reported in the
terse mode. The frequency of occurrence is simply the&eu of data corruptions within
an adjustable time period. The default reporting modesibose but the mode can be
easily changed via a control button on the user irterfa

This scenario can be created by injecting a “Bad Datalt fmom the user

interface into the 65-node system. The Data Source tgm®iving this command will

55



send a single corrupt data to a physics application oca hode. Figure 28hows the
event timeline during the monitoring process of corrupt.dita legend for the events is

in Table 1.

Table 1 Event Legend for Data Stream Corruption Feeghario

Event Label  |[Event Description

Received processing time report form HEP

LM1 application

Detection of HEP application encountering corrupt

LM2 data

LM3 Notification to user interface of detection
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Figure 21 Mitigation Time Plot of Data Stream Corruptity Local Fault Manager

According to the timeline, the detection (LM2) and repagrti corruption (LM3)

takes around 0.1 milliseconds. This time is affected bothARMOR'’s internal

messaging system and Elvin. Currently, mechanisms for dwfettends in data

corruption have not been included in this behavior. Thisatdeh will be enhanced to

include such mechanism in the future.

This scenario tests how affective the Local Manageble to detect and report

the detection of bad physics data streams. Since itradsave control over the physics

data that are generated, timely detection and reportingasssary to notify the system

administrator who has the authority to perform variousckfieon equipments and

detector environment to figure out the cause of the coomupti
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Region Timing Violations During Data Filtering

A typical occurrence is a decrease in the overalleLy3 data filtering system
throughput due to the HEP application taking too long in @m%iog individual data. HEP
applications employ filtering algorithms whose executiomets are data dependent. As
conditions in the particle accelerator change due tgleehidensity of particle collisions,
the characteristics of collision data also changeturn affecting the behavior of the
filtering application. The HEP experiments run at astamt physical periodicity, so
slowing down the data acquisition is not considerecghbl@imitigation behavior. Instead,
physicists can reconfigure certain parameters of the HERapphs such that they have
shorter execution times.

In the prototype system, this timing violation is detectdten the average
processing time of one or more regions is higher thamasonable threshold. Once a
violation is detected, an immediate reconfiguration oPHipplication in all regions is
initiated. The behavior to detect and mitigate such atawlaequires cooperation among
the fault managers from all three levels of hierardhy.Local Managers have only a
small view of the entire system, they do not know ftecessing times of HEP
applications on other nodes. Regional Managers have ledges of HEP application
processing times in its control zone from Local Mamage detect violation but they do
not have the authority to initiate a global HEP appiicareconfiguration. The Global
Manager does not detect execution time violation of giorebut it does have the
authority to initiate a global HEP application reconfegion once it is notified of such

violation.
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Figure 22 Mitigation Behaviors of Local, Regional anolgll Fault Managers

Figure 22shows the mitigation behavior model of the Local Mamadregional
Manager and Global Manager for this particular typeaaftf The specific detection and
mitigation steps are described below along with the esponding transitions from
Figure 22:

1. Local Managers of a region compute the average of etamydata
execution times of the physics applications on its node send the
average to the Regional Manager. (A)

2. The Regional Manager computes a moving average of deigan times

that it receives from the Local Managers in itsaag(B)
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. If the regional execution time is below a threshdient repeat Step 2. (C)
Otherwise, send a violation message to the Global Mareagk go to a
VIOLATED state. (D)

. The Global Manager upon receipt of the violation messeggjests a
processing parameter from the data source. (E)

. The Global Manager sends a command message to alpliysics
application to change their configuration. Depending os fnocessing
parameter, not all physics applications need to chamgedbnfiguration.
(F)

. The Local Managers and Regional Managers transitiom Y8AIT state
upon receipt of the configuration change message. (G)

In this WAIT state, the Local Managers wait for recguafation result
messages from the physics applications. The reconfigoratsult
messages are propagated up the management hierarchy tootre Gl
Manager. (H) Upon receipt of reconfiguration messages abmegions,
the Global Manager returns to a NOMINAL and the scenaie

complete. (1)

Using the built-in logging feature of the custom mitigatlehavior, the time of

occurrence for the above events was recorded. Ré=rtsseveral runs of the scenarios

were compared and the mitigation times were similanifig data from one of the runs is

used to construct a timeline that shows the sequencentisefvom violation discovery to

the regional reconfiguration event propagationsigure 23. Table gives the legend for

events in Figure 23. The events are represented by batsedawvith event type. The color
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of the bar indicates the management level; green foalleegel, blue for Regional level
and red for Global level. Please note that the clockb®@mode where the fault managers

reside have not been synchronized with each other.

Table 2 Event Legend for Regional Execution Time ViotaFault Scenario

Event Label Event Description

LM1 Detection of command to reconfigure HEP application
LM2 Notification that HEP application has been reconfgli
RM1 Detection of slow regional processing time

RM2 Detection of command to reconfigure HEP application

Notification of all HEP applications in the region has

RM3 been reconfigured

GM1 Detection of reconfiguration request

GM2 Requesting configuration parameter

GMS3 Received configuration parameter

GM4 Command to initiate HEP reconfigurations in the system

Notification that HEP applications has reconfigured in

GM5 the system
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Figure 23 Mitigation Time Plot of Regional Execution Mition by Three Levels of Fault Managers

Figure 23 shows the normalized times at which detectionn@nigation events
occur during this scenario. The sequence of events is (RM1, @2, GM3, GM4,
RM2 & LM1, LM2, RM3, and GM5). From the figure, we can deat about 22.07
milliseconds pass between detection of timing violabgrthe Regional Manager (RM1)
and start of Global Manager’'s corrective actions (GMBEhe time it took for the
initiation of reconfiguration initiation (GM4) to the fsh of reconfiguration and
reporting of all HEP applications (GM5) took about 61.47igattonds.

The prototype system for this timeline consisted of 65 nob@s.same scenario
can be run for different system sizes (5, 35, 65, 250 and)ntbe resulting data can be

compared to study the performance of the hierarchical faalhagement system in
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mitigating behavior that require cooperativeness among geament levels. This would

certainly be a part of future work.

Evaluation of Case Study

Using the different Domain Specific Modeling Languagesyweee able to model
the complete Trigger prototype systems, generate impkati@m and runtime software,
and execute the system. Scalability of the prototypeesydtom 5, 17, 35, to 65
computing nodes was easily achieved using different aothite specification models
expressed using SIML. Mitigation behaviors are easily esged using state machine
concepts and artifacts generated by invoking the corresgpridanslator relieving
designers from burden of hand-coding them.

Designers outside the tool development group agreed thatodewge the
prototype system using the model-based tools was more \vstaii it provides domain-
specific concepts that are context specific. Configunai® also made easier using
graphical constructs that represent these concepts. Alitaityagenerated software
reduces development time since software do not need toama-doded, allowing
designers to spend more time on designing rather thamgco@ihe performance of

generated software was comparable to hand-generatedrsoftwa
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Conclusions

Designing large-scale, real-time embedded systems istnetadtask due to the
size and real-time constraints on the system. Falétance and reliability requirements
further complicate the process. Redundancy based @eithce techniques may not be
feasible, so systems must have the ability to detectitarp and correct faults
automatically. This is possible by employing a hierarcHealk management framework
that enables automatic fault mitigation.

Designing and implementing the management framework reqexesnsive
knowledge of the runtime environment. To aid designers wiay not have this
knowledge and to speed up the design cycle, and to easilgrexmrious alternative
solutions, a model-based approach is used that uses domaiilcsf@nguages and
concepts. Using this approach, a modeling tool was developetab a domain-specific
modeling language and a model translator.

The domain-specific modeling language enables system designenplement
customized fault-mitigation behaviors to target speddialts and specify interaction
between the fault managing entities and other compgsrianthe system. The model
translator translates the models to artifacts theataed to configure, specify, and deploy
the hierarchical fault management framework.

This tool was integrated with other modeling languages desciib&hapter 3.

The tool suite was used to design, implement, and deptogtatype Trigger system for
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the BTeV experiment. Several fault scenarios werg@amented for the Trigger system.
The behaviors involved mitigation actions at the loealltf manager level as well as
coordinated behaviors between different management levEi® system was
successfully demonstrated at 2005 IEEE Real-Time and Embedsgthalogy and
Applications Symposium.

The model-integrated approach proved effective for systggtementation. The
entire system software was generated from the MIGtoBEerformance was shown to be
adequate, comparable to hand-generated code. System sgaledslidemonstrated by
migrating architectures from 5 nodes to 65 nodes within timegef an hour.

General user comments were positive. Users were@lolempletely redefine the
fault mitigation behavior with very little knowledge tife underlying implementation.
Approximately 7 mitigation behaviors were implemented asted within a 2 week
period. The visibility of the behavior as models alswes# to make the system behavior

much more understandable, and therefore manageable.

Future Work

Several areas related to this research need to lb@rexpFirst of all, the current
tools simplify the definition of behaviors and automabe production of code to
implement these behaviors. As these behaviors becomgplicated via large individual
state machines and cooperative, distributed state machineseffective behavior
becomes very difficult to understand. Tools for verifybehavior will help in producing
reliable, well-understood systems. The state machine Hasethlism for describing
mitigation behaviors allows static model checking teghes to be applied for analyzing

the behaviors. Some of the existing tools that can bd usdude SMV, SPIN and
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UPPAL. Fault Mitigation Modeling Language models can basfiamed to equivalent
formats used by one of the verification tools using a mwdatlator.

Currently, we are not using any simulation tools to ptetle mitigation
behaviors. Use of simulation tools, like Simulink Stiete, will enable better design
during design time. Since the mitigation models alreaghs Statechart notations, only
some modification will be needed to transform FMMLdats to an equivalent Stateflow
model for simulation. However, a simulation framekwarould need to be developed so
that Stateflow models can be directly plugged into thedrsork. The framework needs
to have a fault injector so that various faults couldnpected during simulation.

The prototype system has been limited to ~65 nodes. Thesthoald be used to
model, generate, and analyze more complex behaviorsobotype systems with larger
number of nodes. Observations can be made to study homthegetool allows the
behaviors to be scaled up according system size.

Performance measurements of the system have beawalglétmited. As of now,
mitigation action timings have been taken for the 65 nodd¢otype system. More
extensive performance measures on mitigation timings dhmutaken for studying how
performance of the fault management framework relai®s system size and
improvements that could be made to the behaviors for ralnimitigation time.
Additionally, this can help to design behaviors that cdfillfreal-time requirements. So
that real-time mitigation deadlines can be incorporatem $ystem mitigation behaviors.

These performance measures can be used in the simsld&scribed above.
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