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CHAPTER I 

INTRODUCTION 

The rapid advancement of computing technology results in the proliferation of the 

complexity and size of real-time embedded computer systems. The complexity of such 

systems results from a large number of components and interactions among components 

and with the environment. The mission-critical nature of the systems demands correct 

outputs at correct time with very small margin for tolerating errors.  

Failures can, and do occur in these systems due to problems in hardware, 

software, or the environment. As consequences of failures are detrimental, faults must be 

detected and corrected as soon as possible without disturbing system operations. A range 

of fault-tolerance techniques exist, many of which are based on using redundant 

components [27]. Due to constraints imposed by budget, power and size, these traditional 

techniques may not always be feasible. Instead, these systems must be able to deal with 

failures while minimizing the amount of extra resources. Since there is no single ‘perfect’ 

system response to failures, the way in which any particular system handles failures is 

often dependent on the goals of the application and environment.  These failure responses 

must be definable by the system designers. 

The work presented in this thesis is motivated by the fault-tolerance requirements 

of a class of large-scale, real-time embedded systems used in high-energy physics 

experiments (HEP) for data acquisition and processing. These systems require thousands 

of processors to perform real-time computations and must be highly reliable. In order to 
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maintain reliability, effective fault-mitigation policies must be incorporated into the 

system design.  

 The work presented in this thesis is on the development of a tool for specifying 

and implementing fault-mitigation behaviors for large scale real-time embedded systems 

for HEP experiments using a model-based approach. 

Overview of BTeV Experiment 

HEP experiments use massive facilities to understand the properties and states of 

the basic building blocks of matter. The experiment of interest for this research is called 

the BTeV1 experiment that is under development at Fermi National Accelerator 

Laboratory. BTeV’s goal is to study charge-particle violation, mixing and rare decays of 

particles known as beauty and charm hadrons [2].  

The experiment takes place in a particle accelerator, where enough energy is 

applied to protons and anti-protons moving in opposite directions to achieve relativistic 

speeds. The protons and anti-protons collide, breaking up into the most basic components 

of matter. The collisions are recorded for examination of detached secondary vertices 

from charm and beauty hadrons decays. The proposed BTeV detector layout is shown in 

Figure 1. 

The experiment is designed such that particle collision occur every 132 

nanoseconds with raw data rate at more than 14.8 Gbytes/sec. The collisions in the 

presence of a large magnetic field are recorded by the use of 30 planar pixel detectors, 

placed at fixed distances, providing a three dimensional data set. The results are carried to 

                                                
1 The BTeV experiment was cancelled recently. However, the work will be applied to other High Energy Physics 

applications.  
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localized processors that reconstruct the three-dimensional crossing data from the 

detectors to examine the trajectories for detached secondary vertices.  

 

Figure 1 The BTeV Detector Setup 

While the aim of the experiment is to find new phenomena occurring during these 

collisions, most of these collisions lead to already known collision behaviors and hence 

can be discarded without any loss. Furthermore, the data sizes from interaction are on the 

order of 2Kbytes per event with events occurring at a rate of 7.6MHz. The aggregate data 

rate is clearly too high to be blindly recorded. Therefore, data-dependent decision 

algorithms called Triggers must be executed online to dynamically compute an 

accept/reject decision. The trigger has three levels, all involving computations of 

collision data. The first level performs tracks reconstruction, primary vertex finding and 
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impact parameter computation [2]. All accepted event from first level are saved and 

passed onto the second and third level. Algorithm used in the second and third level 

reconstructs the event with better resolution and additional information to pick out events 

with potentially interesting vertex topologies [2]. These algorithms necessarily must be 

computed in real-time, although significant queuing is typically available. 

While the actual accepted events occur infrequently, the high cost of operation of 

the experiment (facility, personnel, energy, etc.) and the large demand for the facility 

requires the system to 1) operate with excellent reliability, 2) sustain high computational 

performance and 3) maintain functional integrity over long periods of time [1] [3]. At the 

same time, the system cost must be minimized, precluding fault tolerant approaches that 

use redundancy such as triple-mode redundancy. Thus, the goals for fault mitigation are 

the following: 

• Maintain the maximal application functionality for any set of component 

failures. 

• Recover from failures as completely and rapidly as possible. 

• Minimize the system cost. 

The solution requires a certain degree of “self-awareness” in the system to 

accurately identify problems and tolerate failures. As faults will occur during operation, 

they must be corrected in the shortest possible time with as little human intervention as 

possible. The system must possess capabilities to execute automated recovery procedures, 

to make compensations for potentially changing resources by shifting loads or changing 

system thresholds, to reconfigure existing detection and recovery procedures, and to 

create new procedures.   
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These constraints and requirements are what drive the research and development 

of toolsets at the Institute for Software Integrated Systems, Vanderbilt University to 

design fault-tolerant large-scale real-time embedded systems. This thesis describes the 

work done to support the creation and deployment of such fault mitigating systems.  

Autonomic Fault Mitigation Approach 

The key features of the fault-mitigation approach in order to satisfy the 

requirements of the trigger and address the dependability problems associated with it is a 

hierarchical fault management framework that provides fault-mitigation behaviors 

customized for specific faults to systems. This framework uses software entities called 

fault managers which have mitigation knowledge from mitigation strategies embedded 

within them [4].  

This fault-mitigation approach distinguishes two aspects of fault-mitigation: 

Structural and Behavioral.  

• Structural refers to the location and relationship between fault 

management entities.    

• Behavioral refers to the internal operation of the fault manager entities. 

In large-scale systems, it is impractical for a single fault manager to manage all 

mitigation activities. A single manager will result in unpredictably large reaction times. 

The reaction time to any specific fault will depend on pending faults from the entire 

system, an indeterminate number. With an unpredictably large reaction time, a fault has 

the chance to propagate to other components, potentially inducing a cascade of failures. 

A single fault manager is also susceptible to single-point of failure where failure of this 

single fault manager disables the entire system’s fault handling capabilities.  
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Due to these concerns, distributed fault managers, with distinctive fault-mitigation 

knowledge, should be employed. Specialized fault managers enable division of fault 

handling tasks so that mitigation actions could occur rapidly and concurrently, resulting 

in short reaction time. One or more fault managers are deployed to reside on each node in 

the system to provide protection to the running applications using their fault-mitigation 

knowledge.   

Moreover, fault managers are composed in a hierarchical fashion in the system to 

form a management network that has a tree structure. Each manager has a specific control 

zone over which it has authority to take mitigation actions. Faults are handled by 

managers at the lowest level of occurrence in order to minimize propagation time. If a 

fault can not be resolved at a level, a request is propagated up to the immediate superior 

manager until it can be resolved. System-wide mitigation commands are typically 

broadcast down the hierarchy by the manager at the highest level (i.e. the root node in the 

tree structure).  

For the HEP application space, we have defined three logical levels of hierarchy: 

Local, Regional, and Global levels.  

• Local Managers perform basic fault actions that occur on local nodes in 

the system. 

• Regional Managers deal with successively larger groups of nodes.   Note 

that there can be multiple levels of regional managers. 

• Global Managers have the authority to order system wide mitigation 

actions and responding to mitigation requests from Local and Regional 
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Managers.  Note that there can be multiple global managers, serving as 

backups. 

The fault managers operate concurrently along with the rest of the system. 

Responding to faults as they occur asynchronously, automatically making fault-

mitigation decisions for faults in their zones only so they minimally perturb the system. 

The managers on each level only communicate with its subordinate or superior managers 

at a higher or lower level to coordinate fault-mitigation decisions. 

Reaction time improves since mitigation decisions can be made closer to the fault 

source. Scalability also improves because new fault managers can be added easily at the 

appropriate hierarchy level without causing disruption to the existing fault-mitigation 

network as system size increases [20]. For example, if several new nodes are introduced 

in the system, they can either be added as individual nodes to the Local management 

level or they can be added as an entire region to the Regional management level. 

Implementing fault managers with custom fault-mitigation knowledge and 

deploying them across the system require extensive knowledge of the runtime 

environment.  While we can expect a computer engineer/scientist to work within the 

details of implementation, the domain knowledge to define system recovery actions is 

more with the application designer and users, in this case, the physicists. In addition, as 

mitigation behaviors progressively become more complex, it will become harder and 

harder to manage and evolve them. Therefore, a high-level tool that abstracts the runtime 

environment and facilitates the creation and management of the framework is needed.  
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Problem Statement 

The goal of the research described in this thesis is to develop model-based tools 

for achieving autonomic fault-mitigation in large-scale real-time distributed systems and 

to demonstrate the applicability of the tools on examples from the BTeV application.  

Developing such a tool involves the following:  

1. Developing a domain-specific modeling environment for specifying 

autonomic fault-mitigation behaviors in the system. The modeling 

environment uses a domain-specific modeling language called Fault 

Mitigation Modeling Language (FMML) to model mitigation behaviors 

for fault managing entities and interactions with other components in the 

system.  

2. Developing a translator to map high-level specifications to lower-level 

artifacts that is used by an execution platform to instantiate a hierarchical 

fault management framework that runs concurrently along with the system 

to mitigation failures.   

This thesis describes the tool architecture, specification, and implementation. The 

tool is evaluated via a case study implementing a HEP application using this tool.  The 

organization of the thesis document is as follows: Chapter II presents a survey of some of 

the existing tools in designing autonomic systems and fault-mitigation execution 

platform. Chapter III describes various other modeling tools developed for the BTeV 

system. Chapter IV and Chapter V give details about FMML and the translator. Chapter 

VI presents a case study demonstrating tool applicability using BTeV application as an 

example. Conclusions are drawn in Chapter VII.  
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CHAPTER II 

BACKGROUND AND LITERATURE SURVEY 

Background 

Model-Integrated Computing 

Model Integrated Computing (MIC) is a design methodology used for building 

embedded software systems [5]. Its key objective is to provide a way to design an 

embedded system by capturing its requirements and manage its evolution. Domain 

specific model is the key element in this approach.  Using MIC technology one can 

capture the requirements, actual architecture, and the environment of a system in the form 

of high-level models. These models act as a repository of information that is needed for 

analyzing and generating the system. 

The MultiGraph Architecture (MGA) provides a unified software architecture and 

framework for designing and building systems using the MIC approach.  The MGA 

design process is comprised of three levels as shown in Figure 2. Synthesized, adaptable 

software applications are transformed from system models built in the Model-Integrated 

Programming Synthesis (MIPS) using model translators. The MIPS provides a Domain 

Specific Modeling Language (DSML) that governs how a system can be modeled. The 

formal semantics, syntax and visualization rules of a DSML are specified through a 

metaprogramming interface at the Meta-Level in the form of meta-models.  
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Figure 2 Design Process in Multi-Graph Architecture (MGA) 

A toolkit called Generic Modeling Environment (GME) provides an environment 

for creating DSML and model translators. GME metamodeling environment provides a 

graphical interface similar to UML class diagrams [8]. In the metamodel, the user 

specifies the set of entities, their associations, groups and ordering that can be created in 

the domain models. The semantics of domain models are enforced in two ways. First, 

constraints specified by Object Constraint Language (OCL) are applied to models to 

enforce static semantics [9]. Second, dynamic semantics are enforced through model-

interpreter that parses the models to generate source code, configuration or analysis files.  

 Software Implemented Fault Tolerance 

Software Implemented Fault Tolerance is a dedicated software infrastructure 

capable of providing fault tolerance to user applications in a distributed environment. 
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Chameleon is a SIFT infrastructure developed at University of Illinois at Urbana-

Champaign [10] that explicitly provides fault-tolerant services through a range of error 

detection and recovery mechanisms for applications. This section will give details about 

Chameleon since it is used as the execution platform for the fault management 

framework.  

Chameleon provides fault-tolerant services through Adaptive Reconfigurable 

Mobile Objects of Reliability (ARMOR) [11]. ARMORs are processes that can be 

installed on multiple nodes to provide application specific fault-tolerance services. The 

Chameleon infrastructure is essentially a network of ARMOR entities residing on a single 

or multiple nodes linked together through a specialized messaging system.  

Since fault-tolerant requirements may change from application to application, the 

ARMOR architecture has been structured such that it can be reconfigured to 

accommodate changing requirements. The ARMOR architecture may be reconfigured 

from a structural and a behavior level. The structural level refers to the number and type 

of ARMORs that run on nodes across a system. The behavior level refers to the 

functionality of individual ARMORs. These two levels of reconfigurability are further 

explored in the following paragraphs. 

Three types of ARMORs have been developed: Manager, Daemon, and Common 

ARMORs. A detailed description of each type is given below [11]: 

1. Manager ARMOR is the most authoritative object in the ARMOR 

hierarchy. They execute fault-tolerance strategies which allow the failure 

detection and recovery of subordinate ARMORs.  
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2. Daemon ARMORs are installed on every node participating in the 

Chameleon environment and provide a communication gateway for local 

ARMORs to ARMORs on remote nodes. They execute fault-tolerant 

strategies that allow error detection and recovery of other local ARMORs. 

3. Specialized Common ARMORs execute different fault-tolerant strategies 

to provide for application dependability.  

The functionality of an ARMOR is determined by a composition of building 

blocks called Elements. A set of core infrastructure Elements have already been defined 

and are stored in a behavior library that comes with the installation of Chameleon. 

ARMORs from the three types defined previously have a predefined set of core 

functionalities. The Elements of an ARMOR are executed by a microkernel inside the 

ARMOR. 

ARMOR MicrokernelARMOR Microkernel

Msg tableMsg table

Named pipeNamed pipe

Msg routingMsg routing

Process mgmtProcess mgmt

App id mgmtApp id mgmt

Crash detectionCrash detection

Infrastructure 
Elements

Elvin/Armor msg converterElvin/Armor msg converter

Hang detectionHang detection

Node status reportNode status report

Filter crash reportFilter crash report

Bad data reportBad data report

Execution time reportExecution time report

Custom 
Elements

Memory leak reportMemory leak report

Computing 
Node

ARMOR

App 1 App 2 App 3
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Process mgmtProcess mgmt

App id mgmtApp id mgmt

Crash detectionCrash detection
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Elvin/Armor msg converterElvin/Armor msg converter
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Figure 3 Internal Structure of an ARMOR 
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Due to the composable nature of ARMORs, behavioral level reconfiguration can 

be achieved by modifying the Element composition of ARMORs as well as implementing 

custom Elements. Modification to the Element composition can be achieved by adding or 

removing Elements from an ARMOR through a Element composition file. Custom 

Elements have specialized behaviors and can be added to an ARMOR through the 

composition file. However, they must conform to the common publish/subscribe 

messaging interface available in all Elements to be able to use ARMOR’s internal 

messaging scheme. Figure 3 illustrates the makeup of an ARMOR. 

Autonomic Computing 

An immediate consequence of the increase in complexity and size of computing 

systems in the recent years is the rise in cost and difficulty in managing and maintaining 

such systems. Autonomic computing technologies and tools that enable automatic 

management of operations with minimal human intervention are being developed as a 

solution to this problem. By applying these technologies and tools, the resulting system 

will be able to regulate its functions in response to the environment in the same way that 

the human nervous system regulates body functions without conscious input [13].   

An autonomic system must satisfy the following four key characteristics: 

1. Self-Configuring – adapting to conditions in its environment by 

configuring system parameters 

2. Self-Healing – discovering and diagnosing problems and using alternate 

ways to function without disruption  

3. Self-Optimizing – using available resources and adjusting workloads to 

yield the maximum performance   
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4. Self-Protecting – anticipating, detecting, identifying, and protecting itself 

from possible threats 

An autonomic system will be able to function well under unexpected conditions.  

Fault-tolerance based upon an autonomic approach can be cheaper, eliminating expensive 

redundancies characteristic of traditional fault-tolerance techniques [14]. This section will 

review some of the available technologies and tools for designing autonomic systems and 

applications and examine their capabilities in providing fault-tolerance.  

Agent Building and Learning Environment  

The Agent Building and Learning Environment (ABLE) is a Java-based toolkit 

for developing and deploying intelligent agent applications developed by IBM [15]. The 

framework provides a lightweight Java agent framework, a library of intelligent software 

components, a set of development and test tools, and an agent platform.  

The ABLE agent framework is a software architecture that is built on the standard 

JavaBeans model. It allows algorithms to be packaged into JavaBeans called AbleBeans 

with a common interface. These AbleBeans can be connected to one another to form 

AbleAgents who can obtain information and perform actions with respect to applications 

they are responsible for. AbleAgents can be formed from other AbleAgents, in addition 

to AbleBeans.   

ABLE provides a library of core AbleBeans for data access, machine learning 

algorithms, machine reasoning and interface engines. In addition, library provides a 

common data model composed of a set of data type classes for Boolean, Categorical, 

Discrete, Numeric and String literals, variables and fields. In addition to these core beans, 

users can wrap new or existing algorithms to create customized beans. Any new beans 
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must be wrapped by an AbleBean instance, associated with a BeanInfo file that specifies 

an members to be externalized, and a GUI Customizer class to allow users to set any 

algorithm attributes.  

ABLE offers an interactive development and test environment. AbleAgents can 

be graphically constructed using the core AbleBeans library and other AbleAgents. 

AbleAgents can also be hand-coded and tested in this environment in the form of JAR 

files.  

ABLE agent platform provides a set of services including agent life-cycle 

transitions and directory facilitators and agent communication functions that allow 

AbleAgents to form multiagent systems. The platform can support agents on multiple 

physical systems using Java Remote Method Invocation for communication.  

ABLE toolkit can be used to add autonomic properties to applications by allowing 

users to create specialized agents who can monitor the external environment, plan reflex 

actions, learn behaviors, and take actions when problems occur. ABLE provides an 

architecture for construction of intelligent software components and agents using core 

beans that provide core functionality while allowing custom beans to be created for more 

specialized behaviors.   

AutoMate 

Grid computing attempts to use resources of many separated computers across a 

network to solve large-scale computation problems. AutoMate is a framework for 

enabling development of autonomic Grid applications that are capable of self-

configuring, self-composing, self-optimizing and self-adapting. The idea is to construct 

autonomic applications as dynamic composition of autonomic components [16].  
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The framework consists of two key components: an autonomic component 

framework called Accord and an agent-based middleware infrastructure called Rudder. 

The Accord framework consists of four concepts [17].   

1. Application Context – Defines a common semantic basis for components 

and applications. The semantic basis for describing application 

namespaces, component interfaces, sensors and actuators. Accord uses an 

XML-based language for describing functional and non-functional aspects 

of components.  

2. Autonomic Component – Defines autonomic components as basic 

building blocks for autonomic applications. An autonomic component is a 

self-contained software module with specified interfaces and context 

dependent. A component has rules, constraints, and mechanisms for self-

management and interacts with other components and systems via three 

ports to export information about their behavior, resource requirements, 

performance, interactivity and adaptability. An embedded rule agent 

monitors component state, controls execution of rules and cooperate with 

other agents to fulfill overall application objectives.  

3. Rule Definition – Management and dynamic composition of autonomic 

components are guided by rules. Rules are If-Then expressions where the 

conditional part is a logical combination of component/environment 

sensors and events. The action part of a rule is a sequence of 

component/environment sensor/actuator invocations. There are rules for 

defining runtime functional behaviors of autonomic components and 
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interactions between components, their environment, and within an 

autonomic application.  

4. Rule Enforcement – Rules are injected into components at run time to 

enable self-managing behaviors in applications. Rules for runtime 

functional behaviors are executed by an embedded rule agent. Rules for 

component interactions are dynamically injected into the interacting 

components. 

Rudder is an agent-based middleware infrastructure to provide core capabilities 

for supporting autonomic composition, adaptations, and optimizations [16]. Self 

configuration is enabled through dynamic discovery and composition of new components 

and reconfiguration at run time. Self optimization enabled through dynamic switching of 

workflows and components. Self healing is achieved by restarting or replacing failed 

components. Self protection is enabled through reactive behaviors. The Rudder has two 

parts: 

1. The agent framework of Rudder provides three types of peer agents: 

Component Agent (CA), System Agent (SA), and Composition Agent 

(CSA). Component Agents define interaction rules for component 

interaction/communication behaviors and mechanisms. System Agents 

monitor, schedule, and adaptively optimize physical resource utilization. 

CA and SA exist as system services. CSA are transient, generated to 

satisfy application requirements. Application and system dynamics an 

uncertainties are addressed by rules that enable applications to 

dynamically change flows, components, and component interactions [16].  
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2. Reactive tuple space – Tuple space provides coordination service for 

distributed agents and mechanisms for rule definition, deployment and 

enforcement. It executes runtime adaptive policies to allow coordinated 

application execution and optimized computational resource allocation 

and utilization. Programmable reactive behaviors defined using a tuple 

consisting of a Condition, Guard, and Reaction are supported dynamically. 

Condition associated triggering events with reactions. Guard defines 

execution semantics of the behavior. Reaction specifies the computation 

for the behavior.     

vGrid 

vGrid is a middleware architecture that sits on top of the existing Grid 

middleware, intelligently managing and executing autonomic applications with huge 

computational requirements over limited Grid resource [18]. It is an extension of 

AutoMate. vGrid is made up of three layers. 

The first layer is called Autonomic Problem Solving Environment (Autonomic 

PSE). It provides application developers with a software development environment to 

design and construct scientific or engineering applications. The idea is to develop an 

autonomic application as a dynamic and opportunistic composition of autonomic 

components [18]. Individual modules of code are encapsulated into Fine Computation 

Unit (FCU) with information on data, operational rules, knowledge about its neighbors 

along with input and output ports for communication.  

A group FCUs are managed in a collection called Virtual Computation Unit 

(VCU) with common properties. A VCU is given to a single Grid resource. A set of VCU 
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makes up the complete parallel application. The autonomic properties reside at the VCU 

level. A vGrid manager (VGM) uses information and policies about a VCU’s behavior, 

resource requirements, performance, and interactivity and adaptively to autonomously 

change the VCU’s configuration when needed.  

Layer 2 is the vGrid Infrastructure Services enhances existing Grid middleware 

and runtime services to support autonomic Grid Applications [18]. The main components 

of the vGrid architecture include vGrid Manager (VGM), vGrid Resources, Open Grid 

Services, and Distributed Communication Service. The VGM itself is composed of 

Monitoring Engine (ME), Analysis Engine (AE), Planning Engine (PE), Knowledge 

Engine (KE) and Execution Engine (EE) for setting up and configuring application 

execution environment manages and controls all autonomic requirements. 

KE stores all high level policies as implementation rules regarding different 

scenarios. Example rules are estimated/projected execution times, effect on overall 

performance, load on resource unit and etc. The PE uses these rules to plan appropriate 

strategy for particular scenario. Local AE computes actual value of an application 

characteristic (i.e. execution time) with the estimated value. If actual value exceeds 

accepted value, then Local PE is notified and plans adjustments. The adjustments are 

made by the corresponding Local EE. If adjustments can not be fulfilled on a local 

domain, then requests are propagated up to the global ME, AE and PE for determining a 

new domain for execution. The local engines do not have authority in making decisions 

outside their own Grid domain.  

A distributed communication infrastructure with white board for coordinating all 

communications in the infrastructure among the engines and components. Layer 3 is 
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called the Autonomic Grid Application Execution Environment for monitoring and 

controlling actual execution of an application. It exists in each Grid resource domain. Its 

main components consist of Local VGM, local KE, ME, AE, PE, and EE. It sends VGM 

information about the VCUs being executed using the whiteboard.  

Summary 

The tools listed above have been applied to Grid applications or applications 

related to server diagnostics, administration and e-commerce whose requirements are 

different from HEP experiments. Significant amount of time and effort is required to 

customize and apply these tools to the Trigger system. Furthermore, if a manual 

development process is used, implementing the software for the tools can incur 

significant additional development cost as thorough knowledge of the tool and the 

specific implementation language is required.  

Moreover, research in the field describes characteristics of autonomic systems and 

specific examples or middleware, but there is not a standardized mechanism for 

constructing these systems. The challenges include defining autonomic fault-mitigation 

behaviors, implementing these behaviors in software, integrating these with the 

application, and providing the middleware and underlying operating system. Moreover, 

coordinating the responses across a distributed system further complicates the design.  

Therefore, automated tools are needed to help manage the complexity associated 

with designing and implementing autonomic response systems. The work described in 

this thesis is one such tools for designing fault mitigation behavior that aims to meet the 

requirements and challenges of HEP experiments using a model-based approach.  
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CHAPTER III 

MODELING LANGUAGES FOR THE BTEV ENVIRONMENT 

The Trigger system consists of several different aspects, ranging from hardware 

topology, communication architecture, software component configuration, fault-tolerance 

policy specification, data and message-types, message passing interfaces, run control, 

logging, online diagnosis, and deployment. These aspects of the system interact in 

varying degrees and are evolving on different timelines. In addition, there is a need to 

version-control the evolution of designs and design artifacts.  

A set of narrowly-focused Domain Specific Modeling Languages (DSML), 

integrated through a high-level language, has been developed to address these concerns 

[19]. The topic of this thesis, the Fault-Mitigation Modeling Language, is one of the 

narrowly focused DSMLs for specifying fault-mitigation policies in the system. Details 

of this modeling language can be found in Chapter 4. This chapter gives an overview of 

the other modeling languages for the Trigger system in the BTeV environment to provide 

the background to show how the DSMLs integrate together.   

Data Type Modeling Language 

The systems running High-energy physics experiments are composed of 

thousands of distributed processors. Due to the size of the system and nature of the 

experiment, large amounts of data and message transfer takes place, both locally as well 

as between processors across the network. A publish-subscribe mechanism called Elvin 

[28] is used in the system for this purpose. Like other publish-subscribe message systems, 
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messages are routed to clients across the network based on subscriptions of message 

contents. Clients can both publish and subscribe to messages by invoking specific APIs 

provided by Elvin.  

To reduce the complexity of the Elvin communication mechanism and match the 

messaging APIs to the tool requirements, an abstraction layer is developed over the Elvin 

APIs. This communication layer provides a standard way to marshal and de-marshal 

messages using the Elvin protocol while hiding the implementation details of the Elvin 

APIs. To further reduce burden on the user, the marshalling and de-marshalling code for 

messages are automatically from Data Type Modeling Language (DTML) models [19]. 

Users model the structure of messages used in the system using the Data Type 

Modeling Language. A message can contain message fields who represent simple data of 

type floats and integers to specify representation size (i.e. number of bits used) as well as 

composite data that can contain other composite data and simple data. Additional 

information such as array size or signed/unsigned representation can be specified through 

attributes of the message fields.  

Figure 4 shows an example message model expressed in DTML. This particular 

message contains a composite data and two simple data. The composite data represents 

the header of a message which contains three simple data (node_id, region_id, and 

message_category). As mentioned in the previously, the marshalling and de-marshalling 

code for this message is automatically generated for the user based on the message 

structure specified in the DTML model.  
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Figure 4 Example of a DTML Message Model 

Graphical User Interface Configuration Modeling Language  

Being able to monitor a system is essential to ensure that a system is functioning 

correctly. As a system evolves, its user interface needs to be reconfigured to reflect the 

changes in system requirements. Furthermore, configurable user interfaces would enable 

the physicists to dynamically view data and error conditions in ways that aid in system 

analysis. They would also allow users to dynamically configure and control the state of 

the system. The Graphical User Interface Configuration Modeling Language (GCML) is 
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a modeling language that provides an intuitive environment for users to configure user 

interfaces [21]. 

Graphical User Interface Configuration Modeling Language allows users to create 

multiple user interface panels as well as specify the displays and controls that are a part 

of these panels. The types of displays include Cartesian plot, histogram plot, 

checkerboards, and text box. The types of controls include pushbuttons, slider bars and 

editable text box. There are two aspects for the display and control objects, the Display 

aspect and the Dataflow aspect. The Display aspect is used to specify structural properties 

of display and control objects such as their physical location inside a user interface panel. 

The Dataflow aspect displays the data from the system that is to be displayed or 

controlled on a panel [21]. Figure 4 shows an example user interface with these two 

aspects. An additional component is provided in the Dataflow aspect called Computation 

Blocks that connect to incoming data to perform computation on the data before 

displaying. In Figure 5, data from a SystemStatus message is connected to a Computation 

Block for processing before they are displayed on a Checkerboard display in the 

MainControl panel.  

Once the user has modeled the system user interface using the language provided, 

the tool is capable of generating the artifacts necessary to create the user interface. The 

artifacts include structural files for specifying the location of display and control objects 

in a panel and dataflow code for receiving monitoring messages and sending control 

messages. Currently, the tool generates software that is executed by Matlab to create the 

user interfaces. 
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Dataflow Aspect

Display Aspect

Dataflow Aspect

Display Aspect

Dataflow Aspect

Display Aspect

 

Figure 5 User Interface Model in GCML 

System Integration Modeling Language 

The System Integration Modeling Language (SIML) is a system level modeling 

language used for specifying general dataflow within the system, as well as the structural 



Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

26  

and communication layout of the system. Typical objects represented in SIML are 

regions or partitions in the system, hardware components, software components, dataflow 

connections, node identification, and message routers. The information captured on 

system components, component hierarchy and interactions within the system in a SIML 

model are relevant for constructing system configuration files used in deploying the 

system.  

 

Figure 6 System Model Expressed in SIML 

Figure 6 shows a system configuration model expressed in the System Integration 

Modeling Language for a prototype HEP experiment from a global view. This model 

defines a GlobalManager component (GRCManager), several Region components 

(Region1, 2 and 3), and several LocalNodes. Each Region component represents a logical 

partition of the system and contains a RegionalManager and several LocalNodes. 

LocalNode components can be further decomposed to show a LocalManager component 
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and two HEP application components. Processors are identified by their IP address using 

the NodeIdentification object shown in Figure 6. Data paths between the components at 

global level are captured by solid black lines to represent point-to-point communication, 

and Routers represent access points to publish-subscribe communication services.  

Integration of Modeling Languages 

A set of Domain Specific Modeling Languages has been developed for the 

Trigger system, each specifying a relevant aspect of the system. They are briefly 

summarized below: 

1. The Data Type Modeling Language describes the data and message 

types used in the Trigger system.  

2. The Graphical User Interface Configuration Modeling Language 

specifies the logging and online diagnosis interface to the system.  

3. The System Integration Modeling Language determines the hardware 

topology, communication architecture, and software component 

configuration of the system.  

4. The modeling language used for specifying custom fault-mitigation 

behaviors of the system, Fault Mitigation Modeling Language 

(FMML), is described in detail in Chapter 4.  

These different languages are integrated together to form a complete description 

of the system. The System Integration Modeling Language serves as the high level 

language through which models of other DSMLs can be accessed, allowing integration of 

the modeling languages. This integration of the modeling languages is achieved using the 

concept of a Link type. A Link can be seen as a bridge between two graphical modeling 
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languages. A Link has attributes to identify the modeling language of the linked object, 

and file path of the linked object (relative to a CVS working-directory), and provides a 

concise interaction between different modeling languages [21].  

Link SpecificationLink Specification

 

Figure 7 Specification of Link in SIML 

A Link has specialized tools to facilitate the process of Link creation and Link 

navigation, as the creation of a Link is non-trivial and may require an intricate mapping 

between concepts in different modeling languages [19]. These tools relieve the system 

designers from the onus of Link creation and reduce the possibility of error occurring 
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during Link creation and navigation processes. As a result of this integration, SIML 

component can be decomposed to a model expressed in one of the many other languages 

in the tool suite through a Link type.  

The MonitorGUIComponent in Figure 7 is one component that can be 

decomposed to a user interface model created using GCML. The Link attributes 

associated with this component are link type, name of the modeling language, the 

filename of the user interface model, and object type. Other components in the SIML that 

are associated with models of other languages via a Link are Global, Regional, and Local 

fault managers.  

ImportImport

SIML

Language 
Links

FMMLGCML DTML
ImportImportImportImport

SIML

Language 
Links

FMMLFMMLGCMLGCML DTMLDTML
 

Figure 8 Integration of Modeling Languages 
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Data types and messages from Data Type Modeling Language models can be 

imported into the Graphical User Interface Modeling Language models and Fault 

Mitigation Modeling Language models. During the import process, data types and 

messages from DTML models are copied into the GCML and FMML models that use 

these to specify the information to be extracted or filled during system execution. Figure 

8 Illustrates how the modeling languages integrate with each other [21].  
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CHAPTER IV 

FAULT MITIGATION MODELING LANGUAGE 

Chapter 1 presented a fault mitigation approach using a hierarchical fault 

management framework where fault managers on multiple hierarchy levels can 

individually or cooperatively make mitigation decisions. Recall that this mitigation 

approach distinguishes two aspects: Structural and Behavioral. Structural refers to the 

placement of specialized fault managers within a system. Behavioral refers to the 

collective set of fault mitigation behaviors for all the fault managers in the framework. 

Together, they form the foundation for system-wide fault mitigation. 

A high-level tool called the Fault Mitigation Modeling Tool has been developed 

for defining and instantiating a fault management framework with customized fault 

detection, mitigation and recovery capabilities. The Domain Specific Modeling Language 

of the tool, Fault Mitigation Modeling Language (FMML), provides an environment for 

creating fault mitigation behaviors and recovery policies for the system under fault 

conditions. FMML also allows capturing information pertaining to the structural makeup 

of the fault mitigation framework. This chapter presents the concepts behind the FMML.  

Domain-Specific Modeling Language 

A Domain Specific Modeling Language allows a system designer to describe a 

system in terms of a domain. It enables system designers who have domain knowledge 

but not necessarily the implementation knowledge to design a system through use of 
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models with a strict set of concepts from a domain. The models can be analyzed to verify 

required properties of the design and used to generate the final system.  

DSMLs are declarative, have precise semantics and use domain-specific symbols 

[7]. A DSML is specified by the five-tuple of concrete syntax (C), abstract syntax (A), 

semantic domain (S), and semantic and syntactic mapping (MS and MC) 

L=<C, A, S, MS, MC>               (1) 

The purpose of an abstract syntax, A, is to define the data structures that can 

represent models via concepts, relationships, and integrity constraints using Unified 

Modeling Language (UML) class diagrams and Object Constraint Language as 

metalanguage. The concrete syntax, C, can be seen as a mapping of abstract syntax onto a 

specific domain of rendering [7]. Modelers can directly interact with the concrete syntax 

by manipulation of graphical objects that are renderings of the underlying objects of 

abstract syntax. The purpose of semantics is to define the meaning of models that we 

create using the DSML. Semantics can be broken down into two parts: semantic domain 

and semantic mapping. The semantic domain, S, is defined by mathematical formalisms. 

Syntax mapping, MC, is mapping of A C, whereby syntactic constructs are assigned to 

elements of the abstract syntax. Semantic mapping, MS, is a mapping of A S where 

syntactic concepts are related to concepts in the semantic domain.  

The syntax and static semantics of a DSML can be specified using a technique 

called metamodeling. The Generic Modeling Environment (GME) provides an 

environment for creating metamodels to describe the entities, their attributes, and their 

relationships that are available in the target DSML using UML class diagrams and OCL 

syntax. Once a metamodel has been created, the DSML can be generated using a meta-
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translator. Fault Mitigation Modeling Language is defined by a metamodeling language 

using the Generic Modeling Environment tool. The metalanguage defines the structural 

and behavioral aspects of a hierarchical fault management framework.  

Structural Concepts 

Fault managers reside on all nodes within a system, each providing some 

specialized fault-mitigation services. There are four general types of fault managers that 

can be instantiated for a fault-mitigation framework. The metamodel in Figure 9 shows 

the four types of fault managers available in the modeling language using a language 

similar to UML class diagrams. Note that fault managers are called ARMORs in the 

Chameleon execution platform. Therefore, the four types of fault managers are called 

ManagerArmor, LibraryArmor, DaemonArmor and CustomArmor in the metamodel. A 

brief description of each type of fault managers is as follows: 

1. ManagerArmor – Monitors other fault managers in the systems. It keeps 

location and type information of all the existing fault managers in the 

system.  (A) 

2. LibraryArmor – Provides specific predefined behaviors to applications.  

(B) 

3. DaemonArmor – Exchanges heartbeat and registration information with 

ManagerArmor and other fault managers. (C) 

4. CustomArmor – It has behavior of one of the other three types of fault 

manager, specified via a reference (D), with additional custom mitigation 

behaviors.  
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The first three types are composed of predefined behaviors available from a 

behavior library. The fourth type is intended for customization by the system designer. 

Custom fault managers can contain any number of arbitrary fault-mitigation behaviors in 

addition to behaviors from the behavior library.  

A B C

DEF

G

A B C

DEF

G
 

Figure 9 Metamodel of Structural Concepts 

Behaviors can be seen as basic elements that can be plugged into a fault manager. 

Two types of behaviors are available for plugging into a CustomArmor fault manager: 

custom behaviors that are called CustomElements (E), and predefined behaviors from the 

behavior library that are called StandardElement (F). The relationship between the 

behaviors and custom fault managers are constructed using containment relationship. A 

CustomElement object contains a behavior reference to a custom mitigation behavior 

model (G) that opens the behavior model it refers to when double clicked.  
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The global view of fault managers’ placements within a system is captured using 

the System Integration Modeling Language where fault managers reside on LocalNode, 

RegionNode, and GlobalNode components in the system. Fault managers’ behavior 

models are integrated into a SIML model using Links. Figure 10 shows that a LocalNode 

contains a LocalARMOR component that has a Link to a FMML model. The FMML 

model specifies a Custom type fault manager and a Daemon type fault manager.  

LinkLink

 

Figure 10 Location Specification of Fault Managers on a Local Node 

Behavioral Concepts 

The State machine-based formal specification methodologies have long been used 

to design and specify reactive systems. The FMML uses Statechart [23] notation for 

describing the fault-mitigation behavior of fault managers. Using FMML, failure states 
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and progression of behavior under failure can be defined as well as interactions between 

fault managers and with other components of the system.  

The features of the behavioral specification are as follows: 

• State defines the status of a computing node at a particular instant in time.  

• Transitions implement the change of states. These occur with a particular 

event (application failure, status or recovery reports, etc).  

• Transition objects are annotated with Trigger, Guard, and Action. The 

Guard is a condition that must be true for a transition to occur. The Action 

is a specific action that is executed when a transition is taken (e.g. reset 

event variables, data variables, decrementing event counts, etc).  

• Transition objects contain Messages objects that act as triggering events to 

activate transitions.  

• Lines connect States and Transition objects represent transitions between 

States, capturing the progression of States.  

Each mitigation behavior is specified using a hierarchical state machine. Figure 

11 shows the metamodel that define the syntax and semantics of the behavior state 

machines. The Machine acts as a container that encapsulates mitigation behaviors, one 

container per behavior described using hierarchical state machine concepts. States of the 

system are defined by a set of State objects. Each State object can be further decomposed 

to two or more concurrent substates or mutually exclusive disjoint substates like 

Statechart. Initial  denotes the default state a system is in through an InitialConn type 

connection to the default state. Each behavior state machine contains a set of Data for use 

in keeping track of current and next states, system information, thresholds, and error 
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counts. Transition denotes progression of states due to a triggering event. Trigger, Guard, 

and Action are attributes of a Transition object to specify the triggering event, guard and 

action to be performed as a result of transitioning to the next state. Note that unless the 

Guard attribute is fulfilled, a state transition will not take place and actions specified in 

the Action attribute will not take place. User-defined actions could be computing 

parameters for reconfiguration or statistics for tracking trends in the system. The user can 

also create and send new events as messages to other components or fault managers in 

the system.  

 

Figure 11 Metamodel of Mitigation Behavior Specification 

As stated previously, events in the form of messages act as inputs and outputs 

events to the behavior state machines. The input events are used to trigger a state 

transition while the output events are sent due to a state transition. Events can carry 
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system information from another component or it can be a command message from a 

superior fault manager or user interface. Events between fault managers and components 

in the system are exchanged via the Elvin publish/subscribe mechanism.  

The metamodel in Figure 12 shows the specification of input and output 

messages. A Transition object can contain Message objects through UML containment 

relationship (A). Message objects can contain message fields that are of type Int8, Int16, 

Int32, Int64, or Real64 (B). These types are the exact same types used by the DTML. 

This is because the messages specified in DTML models are copied into the 

MessageImport folder (C) of FMML models using a helper tool called a plug-in. By 

copying the message structures from a central message model, we can be sure that the 

messages used by all modeling languages have the same structures.  

A
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C
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A

B

C

DE

 

Figure 12 Specification of Input and Output Events in Fault Managers 

Sources of messages can be divided into two groups, either an internal or external 

channel. Internal channel messages are from the same fault manager. External channel 

message are from a different fault manager or other system components. Likewise, 
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messages are sent via an internal or an external channel. Figure 12 shows these key 

concepts using a metamodel. Input events are denoted by connecting a SubscribeChannel 

object (D) to a Message via a ChannelConn type connection. Output events are denoted 

by connecting PublishChannel object (E) to a Message object. The Type attribute 

indicates the type of source or destination a message is from or intended for; whether 

message is for another mitigation behavior of the same fault manager or another system 

component.  

Figure 13 shows a behavior model expressed in FMML [20]. In this model, there 

are two possible system states, NOMINAL and FAULT, with NOMINAL being the 

default state. Arrival of an AsteroidData message triggers Transition1 to be evaluated. 

The guard condition is checked first. In this model, the guard condition is verifying 

whether a state variable called “parameter” is below a threshold value. The value of the 

parameter variable comes from the AsteroidData message. If the guard condition 

evaluates to true, a RequestData message is sent to another component that has 

knowledge of how to handle such message and state moves from NOMINAL to FAULT.  

If the guard condition evaluates to false, no state transition takes place. Likewise, another 

AsteroidData message triggers evaluation of Transition2 and transition executes 

depending upon evaluation of the guard condition.  
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Figure 13 Mitigation Behavior Model in FMML 

Extensions to Level 1 Fault Mitigation Research 

The current fault-mitigation language focuses on the requirements of Level 2/3 

data filtering of the BTeV Trigger system. It is built upon prior work done for the Level 1 

data filtering of the Trigger system. Details of the Level 1 fault-mitigation language can 

be found in [24][25]. The current language uses Statechart notations to specify mitigation 

behaviors like the Level 1 tool but with some extensions.  

The current language allows temporal behavior by using temporal events to 

trigger transitions and temporal guard conditions. A behavior can be activated 

periodically by a message that is sent at a user-define rate. This feature can be useful for 

behaviors that are required to update the user interface at a constant rate or monitoring of 

important tasks that require frequent verification. Determination of whether to remain or 

switch to a different state can be dependent upon how long it has been since entrance into 

the state by checking the elapsed time in the guard condition. This can be used to 
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determine if an error is intermittent or persistent. An example scenario would be to 

transition into a probation state when an error has occurred. If the same error repeatedly 

occurs within a certain time period then that could be an indication of a serious error and 

calls for thorough examination of the error. Then the system administrator would be 

notified. There are many other variations of this scheme.   

The current language is also integrated with another modeling language, the Data 

Type Modeling Language. Due to the number of nodes in the system and the large 

amount of messages exchanged among these nodes, it is important to ensure the 

consistency in the messages used by all the components. This feature is achieved by 

using a utility program that imports messages from DTML into the FMML models. The 

message fields of the imported messages are represented as ports allowing direct copy 

and paste of messages and assigning/retrieving data to/from the messages. 
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CHAPTER V 

MAPPING DOMAIN MODELS TO IMPLEMENTATION 

With the Fault Mitigation Modeling Language defined, users can create models of 

fault managers along with their mitigation behaviors. Through the use of a model 

translator, these models can be mapped to artifacts used by an underlying execution 

platform to instantiate a fault-mitigation framework, thereby, bridging the gap between 

high level mitigation behavior designs to low level source code [7].  

Execution Platform Artifacts 

Currently, Chameleon is the execution platform for the BTeV prototype system. 

A detailed description of it can be found in Chapter 2. Chameleon possesses several key 

capabilities for executing a hierarchical fault management framework. These capabilities 

are listed below: 

1. Fault Manager Specification and Instantiation - In Chameleon, fault 

managers are called Adaptive Reconfigurable Mobile Objects of 

Reliability (ARMOR).  

2. Mitigation Behavior Instantiation - Fault-mitigation behaviors can be 

added and removed from fault managers. ARMORs in Chameleon support 

multiple mitigation behaviors in the form of pluggable building blocks 

called Elements, each implementing a custom behavior. 

3. Communication - It provides mechanism for reliable communication 

between fault managers and within the fault managers.   
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Artifacts for creating and instantiating fault managers, specifying custom 

mitigation behavior, and communicating with other system components and fault 

managers are generated from Fault Mitigation Modeling Language models. Figure 14 

shows the translation process from FMML models to artifacts.  
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Figure 14 Mapping Process and Resulting Artifacts 

Fault Manager Specification and Instantiation Script Generation 

A microkernel in the Chameleon environment is responsible for instantiating fault 

managers. The instantiation process is invoked through a shell script that supplies the 

microkernel with a manager id and name of a Tcl script file. Every manager in the system 

must have a unique id for identification. The id and Tcl file name come from attributes 

associated with the fault manager object in the FMML model.  

The Tcl script file contains various structural information about a fault manager, 

ranging from id of the fault manager to the name of the mitigation behaviors this manager 

possesses. The names of the behaviors come from name of StandardElement and 

CustomElement objects that a fault manager contains.  
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Specification Script
package require ea
package require dmn
package require conf
pkg_ea_init
...
set idDaemon [lindex $argv 0]
...
chm_ea_armor_setlog 0 -1 0 0

chm_ea_add_element 0 context_table 0
chm_ea_add_element 0 daemon_np_mgmt 0
chm_ea_add_element 0 daemon_proc_mgmt 0
chm_ea_add_element 0 daemon_armor_install 0
chm_ea_add_element 0 route_control 0
chm_ea_add_element 0 daemon_tcp_mgmt 0
chm_ea_add_element 0 daemon_init 0
chm_ea_add_element 0 daemon_armor_loc_cache 0
...

chm_ea_add_element 0 dtml_sender_GlobalArmor 0
chm_ea_add_element 0 dtml_rcver_GlobalArmor 0

chm_ea_add_element 0 Filter_ExecTime_Global 0
chm_ea_add_element 0 Global_Event_Status 0
....
chm_ea_armor_finalize

#!/bin/bash
source $HOME/demo_conf/env.rc
cd $SHARED_TCL;
chmtcl ftm_daemon.tcl 2;

Instantiation Script

Standard Daemon Behavior

Custom Behavior

Communication Gateway

Specification Script
package require ea
package require dmn
package require conf
pkg_ea_init
...
set idDaemon [lindex $argv 0]
...
chm_ea_armor_setlog 0 -1 0 0

chm_ea_add_element 0 context_table 0
chm_ea_add_element 0 daemon_np_mgmt 0
chm_ea_add_element 0 daemon_proc_mgmt 0
chm_ea_add_element 0 daemon_armor_install 0
chm_ea_add_element 0 route_control 0
chm_ea_add_element 0 daemon_tcp_mgmt 0
chm_ea_add_element 0 daemon_init 0
chm_ea_add_element 0 daemon_armor_loc_cache 0
...

chm_ea_add_element 0 dtml_sender_GlobalArmor 0
chm_ea_add_element 0 dtml_rcver_GlobalArmor 0

chm_ea_add_element 0 Filter_ExecTime_Global 0
chm_ea_add_element 0 Global_Event_Status 0
....
chm_ea_armor_finalize

Specification Script
package require ea
package require dmn
package require conf
pkg_ea_init
...
set idDaemon [lindex $argv 0]
...
chm_ea_armor_setlog 0 -1 0 0

chm_ea_add_element 0 context_table 0
chm_ea_add_element 0 daemon_np_mgmt 0
chm_ea_add_element 0 daemon_proc_mgmt 0
chm_ea_add_element 0 daemon_armor_install 0
chm_ea_add_element 0 route_control 0
chm_ea_add_element 0 daemon_tcp_mgmt 0
chm_ea_add_element 0 daemon_init 0
chm_ea_add_element 0 daemon_armor_loc_cache 0
...

chm_ea_add_element 0 dtml_sender_GlobalArmor 0
chm_ea_add_element 0 dtml_rcver_GlobalArmor 0

chm_ea_add_element 0 Filter_ExecTime_Global 0
chm_ea_add_element 0 Global_Event_Status 0
....
chm_ea_armor_finalize

#!/bin/bash
source $HOME/demo_conf/env.rc
cd $SHARED_TCL;
chmtcl ftm_daemon.tcl 2;

Instantiation Script
#!/bin/bash
source $HOME/demo_conf/env.rc
cd $SHARED_TCL;
chmtcl ftm_daemon.tcl 2;

Instantiation Script

Standard Daemon Behavior

Custom Behavior

Communication Gateway

 

Figure 15 Mapping of Instantiation and Specification Scripts 

Figure 15 illustrates the mapping of a Tcl script and an instantiation script from a 

CustomArmor object named Custom_Daemon in a FMML model. The Custom_Daemon 

object contains two custom mitigation behaviors that maps to corresponding instantiation 

code in the Tcl script. The instantiation code for the communication gateway is 

automatically added to the Tcl script. The ArmorBase of the Custom_Daemon indicates 

that it has the basic behavior of Daemon type fault managers in addition to the custom 

behaviors. So the basic behavior instantiation code is also added to the Tcl script. The 

instantiation script uses the ArmorID and Tcl FileName attributes for identifying the 
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unique id of the fault manager and the specification file when fault manager is 

instantiated.    

Fault Managers Communication Gateway Generation 

Publishing an Elvin message involves creating a message by specifying its 

various message fields and then broadcasting the message via an Elvin router. 

Subscribing for an Elvin message involves creating an subscription expression, providing 

a message callback function. Both processes involve calling marshalling and de-

marshalling APIs from a library of general APIs that uses the Elvin-specific APIs 

internally.  

Fault managers need to exchange messages with other components in the system 

to monitor and track failures in the system. The messaging scheme used in the system is a 

publish/subscribe mechanism through Elvin. Since ARMORs only recognizes ARMOR 

messages, messages sent using the Elvin protocols must be translated into an equivalent 

ARMOR message representation. Likewise, outgoing ARMOR messages must be 

translated into an equivalent Elvin message representation.  

The two way translation processes is encapsulated within two custom gateways of 

a fault manager; one for sending and one for receiving Elvin messages. These two 

gateways are implemented as C++ classes with some fixed functions for instantiation 

themselves used by the ARMOR microkernel. The receiving gateway takes an Elvin 

message and encapsulates it within an ARMOR message. Custom mitigation behaviors 

can then proceed to process the ARMOR message. Likewise, any ARMOR message sent 

by custom mitigation behaviors are stripped, with the resulting Elvin message sent by the 

sending gateway via Elvin. Figure 16 illustrates the translation processes.  
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Figure 16 Message Translation Process Using Communication Gateways 

Since not all fault managers receive and send the same messages, the gateways 

must be customized based the types of messages modeled in FMML. This information 

comes from the Transition objects in the FMML model. Only the non-Daemon type of 

fault managers will have the gateway behaviors.  

Recall that Transition objects contain input and output messages associated with a 

state transition. The model translator translates all messages connected to a 

SubscribeChannel object with the type attribute equal to Elvin to a callback function and 

associates the callback with a corresponding Elvin subscription expression in the receiver 

gateway. The subscription expression comes from an attribute of a Message object.  

The model translator translates all messages connected to a PublishChannel object 

with the type attribute equal to Elvin to a function call to strip out the Elvin message from 

an ARMOR message based on a defined message type in DTML and a publish API call  
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to publish message via Elvin. An ARMOR message’s associated DTML message type is 

denoted by the Message_Type attribute of a message object.  

Fault Mitigation Behavior Generation 

The mitigation behaviors are modeled as hierarchical state machines in FMML. 

Each behavior model is implemented as a C++ class with three core parts: a state 

machine function, incoming message processing functions, and outgoing message 

specification functions.  

Mapping of Messages 

The Data objects in the model are transformed to class variables by the translator. 

Inside the incoming message processing functions, data of the incoming messages are 

assigned to class variables. The assignment is specified by the message assignment in 

FMML models. A similar mapping occurs for creating outgoing messages inside the 

outgoing message specification functions from models. Figure 17 illustrates the mapping 

from models to code.  
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class callback0:public CallbackArmor<CurrentCrossin g>
{

public:
callback0(ControlsConnection *cc, void *p) :Callbac kArmor<CurrentCrossing>(cc, 

p) { }
void invoke(CurrentCrossing* msg)
{

printf("Callback. Recieved CurrentCrossingmessage.\ n");
Receiver_Gateway *Rcver=(Receiver_Gateway*)this->el ement_ptr;
mc_message_ct *pmc = new mc_message_ct;
mc_bundle_ct *bundle= pmc->push_bundle();
…
bundle->idArmorDest = Rcver->get_armor_id();
pmc->push_op(bundle,MSG_CURRENT_CROSSING);
pmc->set_field(MV_MSG_CURRENT_CROSSING,msg,sizeof(C urrentCrossing));
Rcver->get_armor()->execute_context(pmc);
…
}

};
…
thread_return_ct Receiver_Gateway::elvin_subscribe( void *ar) 
{
SubscriptionData sub00;

sub00.lang_option=equals;
sub00.field = "category";
sub00.ValueType =StringValue;
sub00.un_val.sval ="Current_Crossing_Number";
list0.push_back(sub00);
callback0 *p0 = new callback0(er->con, er);
er->con->subscribe( auto_ptr<callback0>(p0), list0) ;

…
}

Receiver Gateway Source File

void Sender_Gateway::msg_ChangeFilterConfig_handler  (mc_message_ct *pmc)
{

printf("SENDING ChangeFilterConfig message\n");
ChangeFilterConfig *msg = (ChangeFilterConfig*)pmc- >        

get_data(MV_MSG_CHANGE_FILTER_CONFIG);
msg->myHeader.region_id = this->region_id;
msg->myHeader.node_id=this->node_id;
con->publish(msg); 

}

Sender Gateway Source File

class callback0:public CallbackArmor<CurrentCrossin g>
{

public:
callback0(ControlsConnection *cc, void *p) :Callbac kArmor<CurrentCrossing>(cc, 

p) { }
void invoke(CurrentCrossing* msg)
{

printf("Callback. Recieved CurrentCrossingmessage.\ n");
Receiver_Gateway *Rcver=(Receiver_Gateway*)this->el ement_ptr;
mc_message_ct *pmc = new mc_message_ct;
mc_bundle_ct *bundle= pmc->push_bundle();
…
bundle->idArmorDest = Rcver->get_armor_id();
pmc->push_op(bundle,MSG_CURRENT_CROSSING);
pmc->set_field(MV_MSG_CURRENT_CROSSING,msg,sizeof(C urrentCrossing));
Rcver->get_armor()->execute_context(pmc);
…
}

};
…
thread_return_ct Receiver_Gateway::elvin_subscribe( void *ar) 
{
SubscriptionData sub00;

sub00.lang_option=equals;
sub00.field = "category";
sub00.ValueType =StringValue;
sub00.un_val.sval ="Current_Crossing_Number";
list0.push_back(sub00);
callback0 *p0 = new callback0(er->con, er);
er->con->subscribe( auto_ptr<callback0>(p0), list0) ;

…
}

Receiver Gateway Source File

void Sender_Gateway::msg_ChangeFilterConfig_handler  (mc_message_ct *pmc)
{

printf("SENDING ChangeFilterConfig message\n");
ChangeFilterConfig *msg = (ChangeFilterConfig*)pmc- >        

get_data(MV_MSG_CHANGE_FILTER_CONFIG);
msg->myHeader.region_id = this->region_id;
msg->myHeader.node_id=this->node_id;
con->publish(msg); 

}

Sender Gateway Source File
void Sender_Gateway::msg_ChangeFilterConfig_handler  (mc_message_ct *pmc)
{

printf("SENDING ChangeFilterConfig message\n");
ChangeFilterConfig *msg = (ChangeFilterConfig*)pmc- >        

get_data(MV_MSG_CHANGE_FILTER_CONFIG);
msg->myHeader.region_id = this->region_id;
msg->myHeader.node_id=this->node_id;
con->publish(msg); 

}

Sender Gateway Source File

 

Figure 17 Mapping to Communication Gateway Source Files from Model 

Mapping of Behaviors 

The behavior model is mapped to a nested switch statement inside the state 

machine function of the custom Element. Nested switch statement was chosen for its 

simplicity, small memory footprint, and modularity. Other typical implementations of 

state machines include state table, state design pattern, or a combination of the other 

implementations [29]. Figure 18 illustrates the mapping process. The various mappings 

are listed below: 
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1. A set of defined states is collected from the model. An enum construct 

defining the states is created as a class variable in the custom Element 

class.  

2. For each state, a case segment is created.   

3. For each state, its outgoing transitions’ guard condition is transformed to if 

and else if clauses under the corresponding case label. The action code of 

transitions are inserted inside the if and else if clauses. Action code is 

based on the action attributes of the transition objects from the behavior 

model.  

4. For each outgoing message in a transition object in the model, a call to the 

corresponding outgoing message processing function is added inside the if 

or else if clause.  
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void Filter_ExecTime_Global_ct::run_statemachine 
(mc_message_ct *pmc)
{

cur_time_=time(NULL);
switch(cur_state_)
{
case REQUEST:

if(msg_current_crossing_flag)
{

printf("Current State= REQUEST\n");
config_param_=cur_crossing_+N;
next_state_=COMMAND;
send_changefilterconfig(pmc); }

break;  
}

…
cur_state_ = next_state_;

}

…
void Filter_ExecTime_Global_ct::msg_current_crossin g_handler 
(mc_message_ct *pmc)
{

printf("msg_current_crossing_handler Handler\n ");
msg_current_crossing_flag = true;
CurrentCrossing *msg = (CurrentCrossing*)pmc-> 

get_data(MV_MSG_CURRENT_CROSSING);
cur_crossing_ = msg->current_crossing;
run_statemachine(pmc);
msg_current_crossing_flag = false;

}
…

void Filter_ExecTime_Global_ct::send_changefilterco nfig 
(mc_message_ct *pmc)
{

printf("send_changefilterconfig \n");
ChangeFilterConfig *msg = new ChangeFilterConfig;
msg->myHeader.category = "Change_All_Filter_Config" ;
msg->config_param = config_param_;
mc_bundle_ct *bundle = pmc->push_bundle();
bundle->idArmorDest = get_armor_id();
pmc->push_op(bundle, MSG_CHANGE_FILTER_CONFIG);
pmc->set_field(MV_MSG_CHANGE_FILTER_CONFIG, msg, 

sizeof(ChangeFilterConfig));
delete msg;

}

…

Behavior Source File
void Filter_ExecTime_Global_ct::run_statemachine 
(mc_message_ct *pmc)
{

cur_time_=time(NULL);
switch(cur_state_)
{
case REQUEST:

if(msg_current_crossing_flag)
{

printf("Current State= REQUEST\n");
config_param_=cur_crossing_+N;
next_state_=COMMAND;
send_changefilterconfig(pmc); }

break;  
}

…
cur_state_ = next_state_;

}

…
void Filter_ExecTime_Global_ct::msg_current_crossin g_handler 
(mc_message_ct *pmc)
{

printf("msg_current_crossing_handler Handler\n ");
msg_current_crossing_flag = true;
CurrentCrossing *msg = (CurrentCrossing*)pmc-> 

get_data(MV_MSG_CURRENT_CROSSING);
cur_crossing_ = msg->current_crossing;
run_statemachine(pmc);
msg_current_crossing_flag = false;

}
…

void Filter_ExecTime_Global_ct::send_changefilterco nfig 
(mc_message_ct *pmc)
{

printf("send_changefilterconfig \n");
ChangeFilterConfig *msg = new ChangeFilterConfig;
msg->myHeader.category = "Change_All_Filter_Config" ;
msg->config_param = config_param_;
mc_bundle_ct *bundle = pmc->push_bundle();
bundle->idArmorDest = get_armor_id();
pmc->push_op(bundle, MSG_CHANGE_FILTER_CONFIG);
pmc->set_field(MV_MSG_CHANGE_FILTER_CONFIG, msg, 

sizeof(ChangeFilterConfig));
delete msg;

}

…

Behavior Source File
void Filter_ExecTime_Global_ct::run_statemachine 
(mc_message_ct *pmc)
{

cur_time_=time(NULL);
switch(cur_state_)
{
case REQUEST:

if(msg_current_crossing_flag)
{

printf("Current State= REQUEST\n");
config_param_=cur_crossing_+N;
next_state_=COMMAND;
send_changefilterconfig(pmc); }

break;  
}

…
cur_state_ = next_state_;

}

…
void Filter_ExecTime_Global_ct::msg_current_crossin g_handler 
(mc_message_ct *pmc)
{

printf("msg_current_crossing_handler Handler\n ");
msg_current_crossing_flag = true;
CurrentCrossing *msg = (CurrentCrossing*)pmc-> 

get_data(MV_MSG_CURRENT_CROSSING);
cur_crossing_ = msg->current_crossing;
run_statemachine(pmc);
msg_current_crossing_flag = false;

}
…

void Filter_ExecTime_Global_ct::send_changefilterco nfig 
(mc_message_ct *pmc)
{

printf("send_changefilterconfig \n");
ChangeFilterConfig *msg = new ChangeFilterConfig;
msg->myHeader.category = "Change_All_Filter_Config" ;
msg->config_param = config_param_;
mc_bundle_ct *bundle = pmc->push_bundle();
bundle->idArmorDest = get_armor_id();
pmc->push_op(bundle, MSG_CHANGE_FILTER_CONFIG);
pmc->set_field(MV_MSG_CHANGE_FILTER_CONFIG, msg, 

sizeof(ChangeFilterConfig));
delete msg;

}

…

Behavior Source File

 

Figure 18 Mapping to Behavior Source File from Model 

Summary 

Through the model translation process, four types of artifacts are generated from 

Fault Mitigation Modeling Language models. Automatically generating these artifacts 

shields the designers of mitigation behaviors and fault management framework from the 

implementation details of Chameleon, which would require thorough knowledge in 

several programming languages and understanding of Chameleon execution environment. 

As system fault-tolerance requirements change, it is easier and less error-prone to evolve 
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and maintain the models accordingly and generate new artifacts than it is to modify the 

four types of artifacts themselves. Furthermore, generating artifacts saves development 

time since the translator makes sure that the models are built following a set of rules and 

the translator transforms information in all models the same way, artifacts are less prone 

to errors.   
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CHAPTER VI 

CASE STUDY 

As a proof-of-concept, several prototype BTeV Trigger systems were constructed 

using the tools developed. The demonstration consisted of a set of representative 

architectures (computing clusters of various sizes), a target runtime infrastructure 

(Chameleon + Elvin), a set of real and simulated application components (prototype 

physics applications), a set of models in the various DSML’s, and the generated artifacts.  

Multiple versions were implemented to test the flexibility of the design tools and to 

assess their scalability.  The tools were also evaluated by designers outside the tool 

development group, to assess ease-of-use factors. This chapter describes the prototypes in 

sufficient detail for a broad-stroke understanding of the application and its results.  A set 

of performance results are also presented.  

As mentioned in Chapter 1, the Trigger system is embedded inside a particle 

collider system providing three stages of experiment data filtering. Level 2/3 designates 

the second and third stages of data filtering. Timing deadlines are somewhat relaxed for 

Level 2/3 systems, and the filtering algorithms run much longer and are much more 

precise than of those in HEP Level 1 systems [22]. 

The system was tested with respect to its ability to recover from a number of fault 

scenarios. Dual processor worker nodes running a Fermilab distribution of Scientific 

Linux and a command and control user interface were used. Figure 19 shows an overall 

architectural view of the system. 
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Figure 19 Level 2/3 Prototype System Setup (courtesy of H. Cheung, Fermilab) 

The prototype system divides the worker nodes into three levels of hierarchy, 

Global, Region, and Local levels. A Global Manager residing on a GlobalNode governs 

all the Regions in the system. A Region consists of a RegionNode and several 

LocalNodes. Each Region is governed by a Regional Manager that resides on the Region 

Node. The Local level constitutes a node with an individual Local Manager to monitor 

two HEP applications running locally on that node [20]. The physics applications receive 

sample physics data from a Data Source application that is running on a separate node. 

The fault management architecture is illustrated in Figure 20.  
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Figure 20 Fault Management Architecture in the Prototype System 

Seven fault scenarios were constructed to represent typical fault conditions known 

to occur in HEP data processing systems. The fault scenarios are the following:  

1. HEP application crash 

2. Corruption of data stream for HEP application 

3. HEP application caught in an infinite loop 

4. HEP application exponential slowdown 

5. HEP application memory usage violation 

6. Individual HEP application processing time violation on LocalNode 
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7. Region execution time violation of HEP application 

Various fault injection controls are present to the user on the control user interface 

for creating the fault scenarios listed above in the prototype system. The following 

sections look at the fault-mitigation behaviors and fault recovery timelines in two of the 

fault scenarios.  

Corruption of Physics Data Stream 

A common failure that can occur in HEP experiments is the temporal corruption 

of physics data leading to incorrect filtering results or even crash of physics application. 

The physics filtering applications are generally provided with the ability to detect 

corrupted data streams. It is extremely important to notify the physicists running an 

experiment upon detection of such fault so that the affected portions of the data stream 

can be marked as corrupt and ignored. The Local Manager should also be notified of this 

fault so that any trend regarding data stream corruption may be detected by the fault 

management system.  

Presently, the Local Manager behavior focuses on detection and reporting of the 

data stream corruption to the system operator via user interface. There are two reporting 

modes available; a verbose mode and a terse mode. While every data corruption is 

reported in the verbose mode, a frequency of corruption occurrence is reported in the 

terse mode. The frequency of occurrence is simply the number of data corruptions within 

an adjustable time period. The default reporting mode is verbose but the mode can be 

easily changed via a control button on the user interface.   

This scenario can be created by injecting a “Bad Data” fault from the user 

interface into the 65-node system. The Data Source upon receiving this command will 
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send a single corrupt data to a physics application on a local node. Figure 21 shows the 

event timeline during the monitoring process of corrupt data. The legend for the events is 

in Table 1.  

Table 1 Event Legend for Data Stream Corruption Fault Scenario 

Event Label Event Description 

LM1 

Received processing time report form HEP 

application 

LM2 

Detection of HEP application encountering corrupt 

data 

LM3  Notification to user interface of detection 
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Figure 21 Mitigation Time Plot of Data Stream Corruption by Local Fault Manager 

According to the timeline, the detection (LM2) and reporting of corruption (LM3) 

takes around 0.1 milliseconds. This time is affected both by ARMOR’s internal 

messaging system and Elvin. Currently, mechanisms for detecting trends in data 

corruption have not been included in this behavior. This behavior will be enhanced to 

include such mechanism in the future.   

This scenario tests how affective the Local Manager is able to detect and report 

the detection of bad physics data streams. Since it does not have control over the physics 

data that are generated, timely detection and reporting is necessary to notify the system 

administrator who has the authority to perform various checks on equipments and 

detector environment to figure out the cause of the corruption.  
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Region Timing Violations During Data Filtering 

A typical occurrence is a decrease in the overall Level 2/3 data filtering system 

throughput due to the HEP application taking too long in processing individual data. HEP 

applications employ filtering algorithms whose execution times are data dependent. As 

conditions in the particle accelerator change due to a higher density of particle collisions, 

the characteristics of collision data also changes in turn affecting the behavior of the 

filtering application. The HEP experiments run at a constant physical periodicity, so 

slowing down the data acquisition is not considered a viable mitigation behavior. Instead, 

physicists can reconfigure certain parameters of the HEP applications such that they have 

shorter execution times.  

In the prototype system, this timing violation is detected when the average 

processing time of one or more regions is higher than a reasonable threshold. Once a 

violation is detected, an immediate reconfiguration of HEP application in all regions is 

initiated. The behavior to detect and mitigate such a violation requires cooperation among 

the fault managers from all three levels of hierarchy. As Local Managers have only a 

small view of the entire system, they do not know the processing times of HEP 

applications on other nodes. Regional Managers have knowledge of HEP application 

processing times in its control zone from Local Managers to detect violation but they do 

not have the authority to initiate a global HEP application reconfiguration. The Global 

Manager does not detect execution time violation of a region but it does have the 

authority to initiate a global HEP application reconfiguration once it is notified of such 

violation.  
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Figure 22 Mitigation Behaviors of Local, Regional and Global Fault Managers 

Figure 22 shows the mitigation behavior model of the Local Manager, Regional 

Manager and Global Manager for this particular type of fault. The specific detection and 

mitigation steps are described below along with the corresponding transitions from 

Figure 22:  

1. Local Managers of a region compute the average of every ten data 

execution times of the physics applications on its node and send the 

average to the Regional Manager. (A) 

2. The Regional Manager computes a moving average of the execution times 

that it receives from the Local Managers in its region. (B) 
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3. If the regional execution time is below a threshold then repeat Step 2. (C) 

Otherwise, send a violation message to the Global Manager and go to a 

VIOLATED state.  (D) 

4. The Global Manager upon receipt of the violation message, requests a 

processing parameter from the data source. (E) 

5. The Global Manager sends a command message to all the physics 

application to change their configuration. Depending on this processing 

parameter, not all physics applications need to change their configuration. 

(F) 

6. The Local Managers and Regional Managers transition to a WAIT state 

upon receipt of the configuration change message. (G) 

7. In this WAIT state, the Local Managers wait for reconfiguration result 

messages from the physics applications. The reconfiguration result 

messages are propagated up the management hierarchy to the Global 

Manager. (H) Upon receipt of reconfiguration messages from all regions, 

the Global Manager returns to a NOMINAL and the scenario are 

complete. (I) 

Using the built-in logging feature of the custom mitigation behavior, the time of 

occurrence for the above events was recorded. Results from several runs of the scenarios 

were compared and the mitigation times were similar. Timing data from one of the runs is 

used to construct a timeline that shows the sequence of events from violation discovery to 

the regional reconfiguration event propagations in Figure 23. Table 2 gives the legend for 

events in Figure 23. The events are represented by bars labeled with event type. The color 
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of the bar indicates the management level; green for Local level, blue for Regional level 

and red for Global level. Please note that the clocks on the node where the fault managers 

reside have not been synchronized with each other.  

Table 2 Event Legend for Regional Execution Time Violation Fault Scenario 

Event Label Event Description 

LM1 Detection of command to reconfigure HEP application 

LM2 Notification that HEP application has been reconfigured 

RM1 Detection of slow regional processing time 

RM2 Detection of command to reconfigure HEP application  

RM3 

Notification of all HEP applications in the region has 

been reconfigured   

GM1 Detection of reconfiguration request 

GM2 Requesting configuration parameter 

GM3 Received configuration parameter 

GM4 Command to initiate HEP reconfigurations in the system 

GM5 

Notification that HEP applications has reconfigured in 

the system 
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Figure 23 Mitigation Time Plot of Regional Execution Violation by Three Levels of Fault Managers 

Figure 23 shows the normalized times at which detection and mitigation events 

occur during this scenario. The sequence of events is (RM1, GM1, GM2, GM3, GM4, 

RM2 & LM1, LM2, RM3, and GM5). From the figure, we can see that about 22.07 

milliseconds pass between detection of timing violation by the Regional Manager (RM1) 

and start of Global Manager’s corrective actions (GM2). The time it took for the 

initiation of reconfiguration initiation (GM4) to the finish of reconfiguration and 

reporting of all HEP applications (GM5) took about 61.47 milliseconds.  

The prototype system for this timeline consisted of 65 nodes. The same scenario 

can be run for different system sizes (5, 35, 65, 250 and more), the resulting data can be 

compared to study the performance of the hierarchical fault management system in 
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mitigating behavior that require cooperativeness among management levels.  This would 

certainly be a part of future work.  

Evaluation of Case Study 

Using the different Domain Specific Modeling Languages, we were able to model 

the complete Trigger prototype systems, generate implementation and runtime software, 

and execute the system. Scalability of the prototype system from 5, 17, 35, to 65 

computing nodes was easily achieved using different architecture specification models 

expressed using SIML. Mitigation behaviors are easily expressed using state machine 

concepts and artifacts generated by invoking the corresponding translator relieving 

designers from burden of hand-coding them.  

Designers outside the tool development group agreed that developing the 

prototype system using the model-based tools was more intuitive as it provides domain-

specific concepts that are context specific. Configuration is also made easier using 

graphical constructs that represent these concepts. Automatically generated software 

reduces development time since software do not need to be hand-coded, allowing 

designers to spend more time on designing rather than coding. The performance of 

generated software was comparable to hand-generated software. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

Designing large-scale, real-time embedded systems is not a trivial task due to the 

size and real-time constraints on the system. Fault tolerance and reliability requirements 

further complicate the process. Redundancy based fault-tolerance techniques may not be 

feasible, so systems must have the ability to detect, monitor, and correct faults 

automatically. This is possible by employing a hierarchical fault management framework 

that enables automatic fault mitigation.  

Designing and implementing the management framework requires extensive 

knowledge of the runtime environment. To aid designers who may not have this 

knowledge and to speed up the design cycle, and to easily explore various alternative 

solutions, a model-based approach is used that uses domain-specific languages and 

concepts. Using this approach, a modeling tool was developed that has a domain-specific 

modeling language and a model translator.  

The domain-specific modeling language enables system designers to implement 

customized fault-mitigation behaviors to target specific faults and specify interaction 

between the fault managing entities and other components in the system. The model 

translator translates the models to artifacts that are used to configure, specify, and deploy 

the hierarchical fault management framework. 

This tool was integrated with other modeling languages described in Chapter 3. 

The tool suite was used to design, implement, and deploy a prototype Trigger system for 



Draft Draft
Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft Draft

Draft Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft Draft

Draft Draft Draft
Draft

65  

the BTeV experiment. Several fault scenarios were implemented for the Trigger system. 

The behaviors involved mitigation actions at the local fault manager level as well as 

coordinated behaviors between different management levels. The system was 

successfully demonstrated at 2005 IEEE Real-Time and Embedded Technology and 

Applications Symposium.  

The model-integrated approach proved effective for system implementation.  The 

entire system software was generated from the MIC tools.  Performance was shown to be 

adequate, comparable to hand-generated code.   System scalability was demonstrated by 

migrating architectures from 5 nodes to 65 nodes within time period of an hour. 

General user comments were positive. Users were able to completely redefine the 

fault mitigation behavior with very little knowledge of the underlying implementation.  

Approximately 7 mitigation behaviors were implemented and tested within a 2 week 

period.  The visibility of the behavior as models also served to make the system behavior 

much more understandable, and therefore manageable. 

Future Work 

Several areas related to this research need to be explored. First of all, the current 

tools simplify the definition of behaviors and automate the production of code to 

implement these behaviors.  As these behaviors become complicated via large individual 

state machines and cooperative, distributed state machines, the effective behavior 

becomes very difficult to understand. Tools for verifying behavior will help in producing 

reliable, well-understood systems. The state machine based formalism for describing 

mitigation behaviors allows static model checking techniques to be applied for analyzing 

the behaviors. Some of the existing tools that can be used include SMV, SPIN and 
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UPPAL. Fault Mitigation Modeling Language models can be transformed to equivalent 

formats used by one of the verification tools using a model translator.  

Currently, we are not using any simulation tools to predict the mitigation 

behaviors. Use of simulation tools, like Simulink Stateflow, will enable better design 

during design time. Since the mitigation models already uses Statechart notations, only 

some modification will be needed to transform FMML models to an equivalent Stateflow 

model for simulation. However, a simulation framework would need to be developed so 

that Stateflow models can be directly plugged into the framework. The framework needs 

to have a fault injector so that various faults could be injected during simulation.  

The prototype system has been limited to ~65 nodes. The tool should be used to 

model, generate, and analyze more complex behaviors on prototype systems with larger 

number of nodes. Observations can be made to study how well the tool allows the 

behaviors to be scaled up according system size.   

Performance measurements of the system have been relatively limited. As of now, 

mitigation action timings have been taken for the 65 node prototype system. More 

extensive performance measures on mitigation timings should be taken for studying how 

performance of the fault management framework relates to system size and 

improvements that could be made to the behaviors for minimal mitigation time. 

Additionally, this can help to design behaviors that can fulfill real-time requirements. So 

that real-time mitigation deadlines can be incorporated into system mitigation behaviors.  

These performance measures can be used in the simulations described above. 
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