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Abstract. The usability of model transformation languages depends on the level 
of abstractions one can work with in rules to perform complex operations on 
models. Recently, we have introduced a novel operator for our model transfor-
mation language GReAT that allows the concise specification of complex model 
(graph) rewriting operations that manipulate entire subgraphs. In this paper we 
show how the new operator can be used to implement non-trivial model manipu-
lations with fewer and simpler rules, while maintaining efficiency. The examples 
were motivated by problems encountered in real-life model transformations.  

Keywords: Model Transformation, Graph Transformation. 

1   Introduction 

Model-based development necessitates the use of model transformations. The cost of 
setting up a model-based development tool chain depends on how economical it is to 
implement possibly complex yet necessary model transformations on an ad hoc basis, 
and whose correctness is often essential for the usability of the toolchain. Thus, 
higher-level techniques for specifying model transformations have been proposed, 
and one promising conceptual framework for specifying model transformations is 
based on graph transformations [1]. 

The practical application of graph transformation-based model transformation ap-
proaches [10] has shown that while the high-level nature of the graph rewriting rules 
is very powerful, sometimes writing common operations is very tedious. Commonly, 
graph rewriting operations match a subgraph of a host graph and then create (or re-
move) nodes and edges in the model graph and possibly modify attributes. Due to the 
difficulty of performing equivalent operations using Java methods over some primi-
tive graph API, using the graph-based specification has clear advantages.  

A matched subgraph typically has a simple structure (pattern nodes and pattern 
edges are bound to host graph nodes and host graph edges), and it is hard to form 
closures over such subgraphs. The closure would group together multiple matches of 
pattern nodes and edges into a graph that is treated as a unit in the context of some 
subsequent operation, typically un-gluing or gluing this graph with other nodes, copy-
ing the graph, or removing the group altogether.  
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In our graph transformation-based model transformation tool, GReAT [1], we have 
introduced support for such closures over pattern matches. We call it the ‘grouping 
operator’, and we extended the semantics of our graph transformation rules with this 
new operator. This work has been reported in [3]. In this paper we briefly review the 
semantics of the operator and then give a number of examples —derived from real-
life applications— that illustrate the use of the operator. The paper concludes with a 
review of related approaches and a summary. 

2   Recap of Group Operator 

In this section we briefly review the fundamentals of GReAT, highlighting the fea-
tures of the grouping operator, first introduced in [3]. 

The Graph Rewriting and Transformation Language (GReAT) is a graphical lan-
guage used for the specification and execution of model transformations defined using 
elements from the meta-models of the source and target languages. The entire lan-
guage consists of three sub-languages: a pattern specification language, a transforma-
tion rule language, and a control-flow language. The pattern specification language is 
used to define the patterns matched in the host graph.  The transformation rule lan-
guage allows the creation and deletion of objects in the host graph, along with the 
modification of object attributes. Finally, the control-flow language allows a trans-
formation to be explicitly sequenced. 

The basic rewriting unit of a transformation is a Rule that contains two pieces: 1) a 
pattern to match with the host graph (defined using the pattern specification lan-
guage), and 2) an action to perform after the matches are found (defined using the 
transformation rule language).  When a Rule executes, it first finds all valid matches 
of the specified pattern in the host graph.  After all matches are found, the rule actions 
are executed.  These rule actions can include deleting and creating new elements in 
the host graph, as well as modifying attributes.  Finally, user selected elements are 
passed to the next rule in the sequence (specified using the control-flow language). 

2.1   Motivation for the Group Operator 

As described above, the result of the first stage of a rule execution is a set of matches, 
where each match is a unique binding for the pattern variables in the rule. The limita-
tion with this is that all the matches (of a single pattern) are isomorphic. In other 
words, all the matches have the same, predetermined number of nodes and edges. It 
would be useful to form closures over such unique matches, such that more complex 
sub-graphs can be matched and manipulated using the same rule. 

For instance, consider a chain of nodes of arbitrary length, as shown in the graph in 
Fig. 1. Suppose that we wish to select such chains of arbitrary length and move them 
to a different container. The pattern shown in Fig. 2 matches two connected nodes at a 
time. This will result in the matches (a—b), (b—c) and (c—d). While it is possible to 
use these matches to move the chain to a new container, the description would be 
cumbersome (especially since moving it in parts would create dangling edges). The 
group operator allows us to group all these matches together, so that the selected sub-
graph is the entire chain, as opposed to pairs of nodes. Using the group operator, the 
entire chain can be selected and copied in a single rule. 
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Fig. 1. A chain of arbitrary length 

 

Fig. 2. Graph rule for matching a connection 

Consider a container that contains a number of nodes, with a “name” attribute as-
sociated with each node. Multiple nodes are allowed to have the same “name”, and 
the container can have any number of nodes, with any number of different “name” 
attributes. Fig. 3 (a) shows such a container. Suppose that we wish to sort the nodes 
with the same “name” into a single container, as shown in Fig. 3 (b). This involves 
creating an arbitrary number of containers (depending upon how many different 
“name” values are present), and moving an arbitrary number of nodes into each con-
tainer. The group operator allows us to accomplish this in a single rule, when we use 
the “name” attribute as the grouping criterion. For the example shown in Fig. 3, the 
rule produces four matches of different sizes (one match containing four nodes, one 
with three, and two matches containing two nodes).  

 

Fig. 3. Sorting items into containers 

As shown above, it is useful to specify queries that can produce matches of differ-
ent, arbitrary sizes in a single rule. The group operator is a new construct introduced 
into the GReAT language to allow the results of multiple matches to be combined so 
that larger graph patterns could be specified in a compact manner.  In comparison, 
queries in PROGRES[12] allow the use of complex logic statements to construct a 
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result set, which can contain elements of different and arbitrary sizes.  Our approach 
provides a graphical abstraction that is easier to visualize and use. Similar to GReAT, 
AGG[14] allows the specification of additional conditions on the attributes of pattern 
objects in a rule, but the matches are still isomorphic. 

In general, a transformation can benefit from the group operator if the user must 
have the ability to specify a pattern that will match a variable number of objects. This 
often includes chains of objects with connections between them, such as the first 
example above, or large groups of objects that need to be separated into smaller 
groups based on common attributes, as in the second example given above. Also, a 
group operator should be used if sub-graphs (composed of multiple matches) need to 
be moved or copied into different containers, as these patterns can be difficult to spec-
ify in GReAT without this construct. 

Specifying a rule with a group operator is relatively simple. The user adds one 
group operator to the rule, and then specifies two additional items:  

1) Which elements of the overall pattern will be used to form the subgroups that 
are the subgraphs formed from the individual matches.  For instance, in Fig. 2, 
Connection, Node1 and Node2 must be selected.  The purpose of the rule 
should make the selection of which pattern objects are needed obvious. 

2) The Boolean expression that will determine when two matches should be 
placed into the same subgroup (we use the prefixes “the_” and “other_” to iden-
tify the matches). In Fig. 2, this would simply be true, since all the connections 
form a single group. In Fig. 3, we would use “the_Node.name() == 
other_Node().name”. This step is the crucial part of using the group op-
erator.  Matches from individual rules are often inserted into subgroups based 
on an attribute value of one of the objects, as in the second example above. In 
cases such as these, the Boolean expression is quite simple, and can even be 
written by novices who have limited experience with GReAT. Examples of 
both simple and complex Boolean expressions for subgroup formation are 
given in the following sections. Detailed information about subgroup formation 
can be found in [3]. 

After all matches are found, each match is placed into precisely one subgroup by 
evaluating the Boolean expression using this match and the matches already placed in 
subgroups. If the expression evaluates to true, then the current match is placed into 
the subgroup against which the Boolean expression was evaluated.  If the expression 
yields a “false” for all of the matches in existing subgroups, then the current match is 
placed in a newly created subgroup. Finally, the rule’s action is performed on a per-
subgroup basis instead of a per-match basis.  In this manner, one can effectively com-
bine several matches into one “larger” match and then perform actions on that larger 
match.  Additionally, the user can also choose to move or copy the elements of the 
subgroups to another parent container.  

The next several sections give examples of the use of the group operator.  The ex-
amples presented here were derived from actual experience with real-life modeling 
and model transformations. However, for the sake of brevity they have been simpli-
fied to a presentable form. Note also that model transformations are often applied to 
legacy modeling paradigms that are imperfect, yet cannot be discarded because of the 
investment in the models. 
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3   Separating a System into Its Subsystems 

A system may be comprised of various subsystems which share common components. 
For instance, in a building, the electrical, plumbing, and networking subsystems all 
use rooms as a common component for distribution hubs and endpoints. Because of 
this, a model for such a system will necessarily have all subsystems represented, over-
lapping one another on top of their common components.  However, at some point it 
may be necessary to separate the individual subsystems for the purposes of verifica-
tion, construction, or clarity.  GReAT, with its group operator, can be used to specify 
such a transformation compactly.  To demonstrate this, both a “building” meta-model 
and a building model based on this meta-model, are presented, along with a GReAT 
transformation rule that makes use of the group operator to separate the model-
building’s electrical subsystem from its other subsystems. 

 

Fig. 4. Building Meta-Model 

Fig. 4 shows a meta-model for buildings with electrical, plumbing, networking, 
and room-connectivity (i.e., door) subsystems. Room is the component they share as 
their infrastructural basis. For instance, Electrical connections are between rooms, i.e. 
between the rooms’ sockets and switches, as are Network connections, for example, 
between a server room and other rooms’ network ports. Note also that the meta-model 
has components (DoorGroup, NetworkGroup, ElectricalGroup, and PlumbingGroup) 
that can contain copies each of these subsystems in isolation. 

The left side of Fig. 5 shows a simple model based on the building meta-model of 
Fig. 4. Electrical connections are drawn with dashed lines, while the solid connections 
represent other types of connections. As can be seen, multiple subsystem types are 
represented and are overlapping on top of their common Room components. For the 
purposes of building construction, it would be of great utility to be able to separate 
out these subsystems. For instance, the electrical subsystem (ElectricalGroup) in 
isolation could be given to an electrician for wiring purposes. Similarly, the room-
connectivity (DoorGroup) subsystem could be presented to an inspector or put 
through a model checker to make sure the building conforms to certain safety codes. 
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Fig. 5. Building Model (left) and Grouping Rule to Isolate the Electrical Subsystem (right) 

The right side of Fig. 5 shows a rule in a GReAT transformation that uses the 
group operator to separate out the electrical subsystems of the model to its left.  The 
rule creates a new ElectricalGroup model that will hold a copy of this subsystem.  
The group operator contains any Electrical connections matched by the rule, along 
with the rooms connected by these connections.  The Boolean expression the group 
operator uses to group matches together is trivial: it is simply the value “true”, indi-
cating that any and all Electrical connections and their associated rooms should be 
included -- this results in a single group that is the entire electrical subsystem. For a 
more complex setup, the grouping rule could group electrical connections based on 
the breaker from which they originate, or based on the voltage they carry. Rules for 
isolating other building subsystems are similar. 

Fig. 6 shows the results of applying the GReAT transformation rule in Fig. 5 to the 
model on its left.  The electrical subsystem is successfully separated from the other 
subsystems.  Such a diagram could be useful for an electrician or inspector. 
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Fig. 6. Building Model's Electrical Subsystem 

4   Creating Proxies for Distributed Communication 

Models of control systems often consist of dataflow blocks representing mathematical 
functions that manipulate data obtained from the environment or other input sources 
to achieve some desired output effect on the controlled system. Control designers 
initially formulate their controllers with no concern regarding the eventual deploy-
ment architecture; however, the implementation is commonly distributed over  
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separate physical nodes (called ‘components’) that must pass data between their con-
tained functions over a bus infrastructure in a timely and predictable manner to 
achieve the desired controlled outputs. To facilitate software abstraction and reusabil-
ity [13][7], direct dataflow connections between functional blocks deployed on  
different components are often managed using a proxy on the component hosting the 
receiver blocks. The bus implementation and the proxy are responsible for marshal-
ling and transferring data between components, thereby allowing the receiver blocks 
to interact with the proxy through an interface identical to that of the original sender 
without concern of how to access data from the bus. 

Assume we have a system deployed across a set of distributed nodes called Com-
ponents.  Each component contains a dataflow graph consisting of Functions that pass 
data to and from each other through Ports. A connection between two ports is called a 
Dataflow, and it connects only one sending port to one receiving port. Still, one port 
can send data to multiple receiving ports through multiple dataflows from the port to 
each receiver. Dataflows can also connect ports of two functions deployed on separate 
components.  

To implement a modeled distributed system described previously, a Proxy for a 
function should be created in all components that receive input from that function. 
The sending function should be connected to receiver functions through its proxy 
instead of direct dataflows to the receivers’ ports. The Group operator provides a 
means to perform this operation within GReAT by creating a single proxy of a func-
tion on other components that use the function’s output within their respective  
dataflow graphs. The proxy inserted into a component will have an input port and an 
output port for each output port in the sending function connected to inputs of receiv-
ing functions on one component. This implements a mirroring of the interface of the 
sender’s ports that concern the functions on the target component. 

Fig. 7 shows the Group rule in GReAT for starting this transformation. It is respon-
sible for creating a single proxy for Function1 within Component2 if output ports of 
Function1 are connected to input ports of Function2 within Component2. The rule 
takes in the top-level System object as its input. The rule first finds all the component 
objects in the system, and the Guard condition code, Component1.uniqueID() != 
Component2.uniqueId(), removes matches where Component1 and Component2 
are the same component. Now, the rule returns the set of dataflow connections between 
function ports within these unique components. Once the dataflows, DataflowFF, that 
connect ports of Function1 and Function2 are matched, the subgroups consisting of the 
sending functions’ output ports, F_Output, must be formed. The grouping criterion of 
the group operator restricts membership to a subgroup to unique F_Output objects in 
the same function, Function1. A single subgroup holds the output ports needed by a 
single proxy on a component. According to the Group rule execution semantics, ob-
jects with the CreateNew action (marked with a checkmark) will be created for each 
subgroup. This creates a single Proxy object within Component2 for each subgroup, 
and the Group action of copy will copy the ports in the subgroup into the proxy.  The 
output packets of the rule will consist of the ports holding the dataflows across separate 
components and the components where these ports are located.  All Component2 ob-
jects found in the match will now contain appropriate proxies, and each proxy will 
contain the output ports copied from its representative function, Function1.  
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Fig. 7. Group Rule for Creating Proxies with Ports 

For each proxy, direct dataflow connections from the original sending function to 
the receiving functions need to be replaced by the appropriate connections from the 
proxy to the receiving functions. Also, the same output ports of the sending function 
must be connected to appropriate input ports of the proxy. The rules to create these 
dataflows and the input ports of the proxy are shown below in Fig. 8, and they can be 
executed in parallel. 

The left rule of Fig. 8 creates the dataflow connections from a proxy’s output ports to 
the receiver functions’ input ports. The output packets from the rule in Fig. 7 contain all 
of the dataflow connections between Function1 and Function2. The Guard condition 
restricts found matches to those where the output port of the proxy, P_Output, has the 
same name as the output port of Function1, F_Output.  The resulting matches are the 
correct ports since the output ports copied into the proxy were the output ports of Func-
tion1 in the previous rule, i.e., they will have the same name. Once matched correctly, 
the connection from the F_Output to the input port of Function2, F_Input, is replaced 
by the connection from the output of the proxy, P_Output, to F_Input through a data-
flow, Dataflow_PF. The procedural code (contained in AttributeMapping) renames the 
proxy object to be “P” plus the name of its corresponding function, Function1, to make 
it identifiable in the resulting model.   

The right rule in Fig. 8 matches the sending function’s output ports, F_Output, to 
their copied instances within a proxy on another component. The Guard condition 
restricts found matches to those where the output port of the proxy, P_Output, has the 
same name as the output port of Function1, F_Output. For each match, a new input 
port, P_Input, is created within the proxy. This provides an input interface in the proxy 
that mirrors its output ports. Each output port of the sending function, F_Output, is 
then connected to its corresponding proxy input port. The procedural code (Attribute-
Mapping) renames a created input port to be “In_” followed by the name of the output 
port, F_Output, it is now connected to through a dataflow, Dataflow_FP.  

Fig. 9 shows an example input model that needs proxies included in the compo-
nents. The boxes labeled C1, C2, and C3 represent components, those labeled F1, 
F2… F9 represent functions, and arrows within functions represent ports. The arrow 
indicates the directional flow of data, and directed lines between ports are dataflow  
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Fig. 8. Rules for Creating Connections to/from a Proxy 

connections. The circles represent system inputs and outputs and are of no concern 
regarding the transformation. The functions F5 and F7 appear twice in components 
C2 and C3, respectively, as unique instances of the same function block.  

Looking at the input model, we see that functions F2 and F3 are the only functions 
with connections across different components; therefore, proxies must be created for 
these functions. 

Fig. 10 shows the resulting output model of the system after the rules above are 
applied.  During the execution of the first rule, a total of three subgroups would be 
created for the entire system model. Each subgroup has a corresponding proxy, PF2 
and PF3 in this model, where the number identifier for each proxy matches the num-
ber identifier for its corresponding function, e.g., PF3  F3.   

 

Fig. 9. Sample Input Model 

 

Fig. 10. Sample Output Model 
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Notice that the proxies’ port interfaces are not the same on different components, 
e.g. PF2 in C2 has a two port interface whereas PF2 in C3 has a one port interface. 
This occurs since the ports copied into a proxy are the ones explicitly needed by func-
tions on the same component and not the entire set of output ports of the sending 
function. 

5   Shared Variables in a Dataflow Model 

A dataflow model consists of Blocks, which are connected through Ports. Connec-
tions between these ports are called Lines, which represent flow of data between the 
blocks through their ports. While the ports may be classified as input and output ports, 
the flow of data may be from one input port to another (or one output port to another), 
as in the case of a hierarchical block, where a top level input port may be passing 
information along to the lower level blocks. 

A single port may be connected to multiple ports through multiple lines. In gener-
ating code from such models, we would like to use a single shared variable to repre-
sent all such lines. We would also like to make a temporary ‘cross-link’ association 
between each line and its shared variable, for specific purposes necessary later in the 
code generation. The Group operator offers a convenient way to achieve this in 
GReAT. We will see how a Group rule can be used to identify groups of such lines 
and create a new variable for each such group, and generate the cross-links. 

 

Fig. 11. Group Rule for Creating a Shared Variable 

Fig. 11 shows the Group rule in GReAT for creating a single shared variable for a 
group of lines. For each block, we take the ports contained in that block and group the 
lines originating from that port. Note that the port may be connected to other ports 
which are not contained in the same block. Port1, Port2 and Line are added to the 
Group object, and the grouping criterion is set as: the_Port1 == other_Port1. 
This results in multiple lines originating from a single Port object in a Block being 
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grouped together. A new variable is then created inside Program. Since this is a 
Group rule, the CreateNew action fires once for each subgroup that has been created. 
This means that a single variable will be created for each set of lines that have been 
grouped together.  

After creating the new variable, we associate it with its Line, using a cross-link. 
This is indicated by the line with the role names ref and sharedVar. Since the cross-
link is a simple association, it will be created for each match, between the Line in that 
match, and the StateVar created for the group that this match is placed in.  

Fig. 12 shows a section of a dataflow diagram. The port Res has three Lines and the 
port Con has two Lines coming from it. Let the Line connected to port Pi be called Li. 
Then, L1, L2, L3 will be in one subgroup, and L4 and L5 will be in another subgroup.  

The group rule creates a new shared variable Var1 for the subgroup {L1, L2, L3}, 
and another shared variable Var2 for the subgroup {L4, L5}. The output packets gen-
erated from the group rule are {L1, Var1}, {L2, Var1}, {L3, Var1}, {L4, Var2} and 
{L5, Var2}. 

 

Fig. 12. Sample Dataflow Diagram 

6   Ordered Binary Decision Diagram Reduction 

Ordered Binary Decision Diagrams (OBDDs) [4] are used for representing and evalu-
ating Boolean functions. Arbitrary OBDDs can often be reduced, using algorithms 
such as those described in [9], to a more compact representation. This example de-
scribes how the group operator simplifies the specification of a transformation that 
performs this reduction algorithm. 

An OBDD can be thought of as a rooted tree consisting of nodes that have variable 
assignments. A node whose variable is 0 or 1 is called a terminal node, and is called a 
non-terminal node otherwise.  Each non-terminal node contains two outgoing connec-
tions: one “low” connection and one “high” connection. If a node’s variable is as-
signed a value of 0, then the low connection tells which node to evaluate next, and if a 
node’s variable is assigned a value of 1, then the high connection tells which node to 
evaluate next. The value of the function for a particular assignment of values to vari-
ables is given when a terminal node is reached. 

The reduction algorithm in [9] begins by assigning an integer label to each of the 
nodes in the diagram in the following manner. The first 0-node that is encountered 
receives the first label (for instance, #0). All of the other terminal 0-nodes have the 
same value, so they also received the same label. In the same way, all of the terminal 



 Applying a Grouping Operator in Model Transformations 421 

1-nodes receive the next label (#1). Next, we define two terms: given a non-terminal 
node n, lo(n) is defined to be the node pointed to by the low connection from n 
(drawn here using dashed lines), and hi(n) is defined to be the node pointed to by the 
high connection from n (drawn here using solid lines). 

The rest of the algorithm proceeds in a bottom-up manner as follows.  To assign a 
label to each of nodes at level i, we assume that we have already assigned a label to 
all of the nodes at all levels j such that j > i.  That is, we assume that all of the nodes 
on levels below the current level have been labeled.  A node n at level i receives its 
label in one of the following three ways: 

1. If the label of the node lo(n) is equal to the label of the node hi(n), n also re-
ceives this same label 

2. If there is another node m such that n and m have the same variable xi, and 
the labels of lo(n) and lo(m) are equal and the labels of hi(n) and hi(m) are 
equal, n receives the same label as m. 

3. Otherwise, n receives the next unused integer as its label. 
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Fig. 13. Unlabeled OBDD (left) and Labelled OBDD (right) 

Fig. 13 shows an example OBDD both before and after the labeling algorithm has 
been applied. In the rest of this example, we assume that the input to our transforma-
tion rules is the labeled OBDD on the right of Fig. 13. 

After the labeling of the OBDD, the next step of the reduction algorithm of [9], and 
the transformation we will describe below, removes redundant nodes based on their 
labels. That is, for each group of nodes with the same label, it creates one new node 
with that same label and creates the connections between these “reduced” nodes ap-
propriately. 

There are two re-writing rules we must write to perform this transformation: 

1. Determine which nodes are equivalent based on their labels, and for each set 
of equivalent nodes, create a new node. 

2. Create the low and high connections between the newly created nodes based 
on the low and high connections that exist between the old nodes. 

Fig. 14 shows a rule that performs the first step of our transformation. The incom-
ing context for the rule (the objects bound to the input ports) are the diagrams in 
which the nodes are found. The diagram named OldDiagram is the non-reduced 
OBDD, and the diagram named Diagram will be the reduced OBDD. This rule first 
finds all of the nodes in OldDiagram. A group operator is present, and contains as its 



422 D. Balasubramanian et al. 

only members the nodes found in OldDiagram.  The subgroups are formed by  
iterating over each match (which each consist of a single node found in OldDiagram) 
and evaluating the user-specified grouping criteria against matches already in sub-
groups; in our case, two matches should be inserted into the same subgroup if the 
values of their labels are equal. 

 

Fig. 14. Rule to Create Nodes 

The grouping criteria code that will accomplish this is: the_OldNode.Label() 
== other_OldNode.Label(). After subgroup formation, new objects are created 
on a per subgroup basis, and new associations are created on a per match basis. Thus, 
our rule creates one new node in our reduced OBDD (Diagram) for each group of 
nodes that have the same label in the unreduced OBDD, and also creates a temporary 
association between the newly created nodes and the node in the unreduced OBDD to 
which the new node corresponds; this temporary association will be matched in the 
next rule to connect the new states together. Finally, the procedural code (Attribute-
Mapping) takes care of setting the values of the attributes (the label and variable val-
ues) of the newly created nodes. 

The next rule in the sequence, shown in Fig. 15, is responsible for connecting the 
nodes of the reduced OBDD. The incoming context consists of two elements: a node 
from the unreduced OBDD (labeled OldNode) and the corresponding node in the 
reduced OBDD (labeled NewNode). The rule finds all of the connections in the unre-
duced OBDD such that OldNode is the destination of the connection; it then finds the 
node in the reduced OBDD that corresponds to this “source” node in the unreduced 
OBDD by matching the association created in the previous rule (labeled with the 
rolenames src and dst in both places). Remember that NewNode is already the node in 
the reduced OBDD corresponding to OldNode because they are passed from the pre-
vious rule together.  The AttributeMapping block takes care of setting the connection 
to the proper type, low or high, with the following code: NewConnection.Type() 
= OldConnection.Type(). 
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Fig. 15. Rule to Connect States in the Reduced OBDD 

The resulting connected and reduced OBDD is shown in Fig. 16. 
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Fig. 16. Connected and (Partially) Reduced OBDD 

7   Related Work 

Hoffman et al. [5] introduced transformations on frame bounded subgraphs which re-
strict graph edges from crossing frame boundaries. The copying of such a delimited 
subgraph permits copying only the nodes and edges contained within a frame. The 
group operator uses a similar idea when performing actions on grouped objects: only 
user selected nodes and edges that belong to a group under the membership criterion 
will have the group action (bind, move, or copy) performed on them.  Following the 
application of the action specified for the group, all edges with an endpoint outside of a 
subgroup, including those to other formed subgroups in the same rule, will be removed.  

Van Gorp et al. [11] implemented the copying of subgraphs in the MoTMoT pro-
ject [8] using the “copy” and “onCopy” operators. The “copy” and “onCopy” opera-
tors provide means to perform deep copies on models and/or copying specified nodes 
and edges within a rule; however, it is not obvious how a user could implement in 
MoTMoT transformations presented above using the group operator within the 
GReAT language.  The difficulty for MoTMoT to recreate the same transformations 
in an equally small number of rules would arise because it does not appear to have the 
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ability to subdivide the set of all matches in a rule based on a conditional expression 
and perform actions only on the formed subgroups instead of every match. The group 
operator extends the normal rule execution semantics in GReAT by allowing the 
application of copying, or other actions, on a per set/group basis. 

As alluded to previously, the ability to handle and manipulate matched objects as 
sets is a prerequisite to match the capabilities of the group operator.  Even though 
they rely on textual specification of transformations, ATL [2] and VIATRA2 [15] do 
not appear to be less expressive or powerful than graphical languages such as 
GReAT.  VIATRA2 explicitly uses an Abstract State Machine (ASM) based language 
and ATL matches many of the ASM constructs; therefore, it is no surprise that both 
languages provide a data type for handling sets and other mathematical multi-object 
types, and providing a grouping criterion as a Boolean expression would require no 
extension to the languages.  Also, performing actions on a per group basis would 
involve using the “foreach” command, common to both languages.        

8   Summary and Conclusions 

This paper has shown examples for the practical application of a high-level grouping 
operator in a graph-transformation based model transformation language. The examples 
provided were derived from practical problems and clearly show the use of the operator 
to allow more abstract and concise descriptions of complex transformation steps. This 
simplifies the transformation specification, making it easier to write and maintain.  

We have implemented the operator in the GReAT interpretive transformation en-
gine (GRE), and we have a prototype implementation of a code generator that com-
piles the rules with the group operator into executable code. However, it is the topic 
of further research how to generate efficient executable code from such rewriting 
rules. Another research topic is related to the restrictions we have placed on the group 
operator: these restrictions make the implementation of the group-rules straightfor-
ward, but it is not clear how well they stand up in practice. We plan to investigate 
how these restrictions can be weakened while maintaining the powerful properties of 
the grouping operator.  
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