
A. Schürr, M. Nagl, and A. Zündorf (Eds.): AGTIVE 2007, LNCS 5088, pp. 410–425, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Applying a Grouping Operator in Model
Transformations

Daniel Balasubramanian, Anantha Narayanan, Sandeep Neema, Benjamin Ness,
Feng Shi, Ryan Thibodeaux, and Gabor Karsai

Institute for Software Integrated Systems, 2015 Terrace Place, Nashville, TN 37235
{Daniel,Ananth,Sandeep,BNess,FengShi,RThibodeaux,

Gabor}@isis.vanderbilt.edu

Abstract. The usability of model transformation languages depends on the level
of abstractions one can work with in rules to perform complex operations on
models. Recently, we have introduced a novel operator for our model transfor-
mation language GReAT that allows the concise specification of complex model
(graph) rewriting operations that manipulate entire subgraphs. In this paper we
show how the new operator can be used to implement non-trivial model manipu-
lations with fewer and simpler rules, while maintaining efficiency. The examples
were motivated by problems encountered in real-life model transformations.

Keywords: Model Transformation, Graph Transformation.

1 Introduction

Model-based development necessitates the use of model transformations. The cost of
setting up a model-based development tool chain depends on how economical it is to
implement possibly complex yet necessary model transformations on an ad hoc basis,
and whose correctness is often essential for the usability of the toolchain. Thus,
higher-level techniques for specifying model transformations have been proposed,
and one promising conceptual framework for specifying model transformations is
based on graph transformations [1].

The practical application of graph transformation-based model transformation ap-
proaches [10] has shown that while the high-level nature of the graph rewriting rules
is very powerful, sometimes writing common operations is very tedious. Commonly,
graph rewriting operations match a subgraph of a host graph and then create (or re-
move) nodes and edges in the model graph and possibly modify attributes. Due to the
difficulty of performing equivalent operations using Java methods over some primi-
tive graph API, using the graph-based specification has clear advantages.

A matched subgraph typically has a simple structure (pattern nodes and pattern
edges are bound to host graph nodes and host graph edges), and it is hard to form
closures over such subgraphs. The closure would group together multiple matches of
pattern nodes and edges into a graph that is treated as a unit in the context of some
subsequent operation, typically un-gluing or gluing this graph with other nodes, copy-
ing the graph, or removing the group altogether.

 Applying a Grouping Operator in Model Transformations 411

In our graph transformation-based model transformation tool, GReAT [1], we have
introduced support for such closures over pattern matches. We call it the ‘grouping
operator’, and we extended the semantics of our graph transformation rules with this
new operator. This work has been reported in [3]. In this paper we briefly review the
semantics of the operator and then give a number of examples —derived from real-
life applications— that illustrate the use of the operator. The paper concludes with a
review of related approaches and a summary.

2 Recap of Group Operator

In this section we briefly review the fundamentals of GReAT, highlighting the fea-
tures of the grouping operator, first introduced in [3].

The Graph Rewriting and Transformation Language (GReAT) is a graphical lan-
guage used for the specification and execution of model transformations defined using
elements from the meta-models of the source and target languages. The entire lan-
guage consists of three sub-languages: a pattern specification language, a transforma-
tion rule language, and a control-flow language. The pattern specification language is
used to define the patterns matched in the host graph. The transformation rule lan-
guage allows the creation and deletion of objects in the host graph, along with the
modification of object attributes. Finally, the control-flow language allows a trans-
formation to be explicitly sequenced.

The basic rewriting unit of a transformation is a Rule that contains two pieces: 1) a
pattern to match with the host graph (defined using the pattern specification lan-
guage), and 2) an action to perform after the matches are found (defined using the
transformation rule language). When a Rule executes, it first finds all valid matches
of the specified pattern in the host graph. After all matches are found, the rule actions
are executed. These rule actions can include deleting and creating new elements in
the host graph, as well as modifying attributes. Finally, user selected elements are
passed to the next rule in the sequence (specified using the control-flow language).

2.1 Motivation for the Group Operator

As described above, the result of the first stage of a rule execution is a set of matches,
where each match is a unique binding for the pattern variables in the rule. The limita-
tion with this is that all the matches (of a single pattern) are isomorphic. In other
words, all the matches have the same, predetermined number of nodes and edges. It
would be useful to form closures over such unique matches, such that more complex
sub-graphs can be matched and manipulated using the same rule.

For instance, consider a chain of nodes of arbitrary length, as shown in the graph in
Fig. 1. Suppose that we wish to select such chains of arbitrary length and move them
to a different container. The pattern shown in Fig. 2 matches two connected nodes at a
time. This will result in the matches (a—b), (b—c) and (c—d). While it is possible to
use these matches to move the chain to a new container, the description would be
cumbersome (especially since moving it in parts would create dangling edges). The
group operator allows us to group all these matches together, so that the selected sub-
graph is the entire chain, as opposed to pairs of nodes. Using the group operator, the
entire chain can be selected and copied in a single rule.

412 D. Balasubramanian et al.

Fig. 1. A chain of arbitrary length

Fig. 2. Graph rule for matching a connection

Consider a container that contains a number of nodes, with a “name” attribute as-
sociated with each node. Multiple nodes are allowed to have the same “name”, and
the container can have any number of nodes, with any number of different “name”
attributes. Fig. 3 (a) shows such a container. Suppose that we wish to sort the nodes
with the same “name” into a single container, as shown in Fig. 3 (b). This involves
creating an arbitrary number of containers (depending upon how many different
“name” values are present), and moving an arbitrary number of nodes into each con-
tainer. The group operator allows us to accomplish this in a single rule, when we use
the “name” attribute as the grouping criterion. For the example shown in Fig. 3, the
rule produces four matches of different sizes (one match containing four nodes, one
with three, and two matches containing two nodes).

Fig. 3. Sorting items into containers

As shown above, it is useful to specify queries that can produce matches of differ-
ent, arbitrary sizes in a single rule. The group operator is a new construct introduced
into the GReAT language to allow the results of multiple matches to be combined so
that larger graph patterns could be specified in a compact manner. In comparison,
queries in PROGRES[12] allow the use of complex logic statements to construct a

 Applying a Grouping Operator in Model Transformations 413

result set, which can contain elements of different and arbitrary sizes. Our approach
provides a graphical abstraction that is easier to visualize and use. Similar to GReAT,
AGG[14] allows the specification of additional conditions on the attributes of pattern
objects in a rule, but the matches are still isomorphic.

In general, a transformation can benefit from the group operator if the user must
have the ability to specify a pattern that will match a variable number of objects. This
often includes chains of objects with connections between them, such as the first
example above, or large groups of objects that need to be separated into smaller
groups based on common attributes, as in the second example given above. Also, a
group operator should be used if sub-graphs (composed of multiple matches) need to
be moved or copied into different containers, as these patterns can be difficult to spec-
ify in GReAT without this construct.

Specifying a rule with a group operator is relatively simple. The user adds one
group operator to the rule, and then specifies two additional items:

1) Which elements of the overall pattern will be used to form the subgroups that
are the subgraphs formed from the individual matches. For instance, in Fig. 2,
Connection, Node1 and Node2 must be selected. The purpose of the rule
should make the selection of which pattern objects are needed obvious.

2) The Boolean expression that will determine when two matches should be
placed into the same subgroup (we use the prefixes “the_” and “other_” to iden-
tify the matches). In Fig. 2, this would simply be true, since all the connections
form a single group. In Fig. 3, we would use “the_Node.name() ==
other_Node().name”. This step is the crucial part of using the group op-
erator. Matches from individual rules are often inserted into subgroups based
on an attribute value of one of the objects, as in the second example above. In
cases such as these, the Boolean expression is quite simple, and can even be
written by novices who have limited experience with GReAT. Examples of
both simple and complex Boolean expressions for subgroup formation are
given in the following sections. Detailed information about subgroup formation
can be found in [3].

After all matches are found, each match is placed into precisely one subgroup by
evaluating the Boolean expression using this match and the matches already placed in
subgroups. If the expression evaluates to true, then the current match is placed into
the subgroup against which the Boolean expression was evaluated. If the expression
yields a “false” for all of the matches in existing subgroups, then the current match is
placed in a newly created subgroup. Finally, the rule’s action is performed on a per-
subgroup basis instead of a per-match basis. In this manner, one can effectively com-
bine several matches into one “larger” match and then perform actions on that larger
match. Additionally, the user can also choose to move or copy the elements of the
subgroups to another parent container.

The next several sections give examples of the use of the group operator. The ex-
amples presented here were derived from actual experience with real-life modeling
and model transformations. However, for the sake of brevity they have been simpli-
fied to a presentable form. Note also that model transformations are often applied to
legacy modeling paradigms that are imperfect, yet cannot be discarded because of the
investment in the models.

414 D. Balasubramanian et al.

3 Separating a System into Its Subsystems

A system may be comprised of various subsystems which share common components.
For instance, in a building, the electrical, plumbing, and networking subsystems all
use rooms as a common component for distribution hubs and endpoints. Because of
this, a model for such a system will necessarily have all subsystems represented, over-
lapping one another on top of their common components. However, at some point it
may be necessary to separate the individual subsystems for the purposes of verifica-
tion, construction, or clarity. GReAT, with its group operator, can be used to specify
such a transformation compactly. To demonstrate this, both a “building” meta-model
and a building model based on this meta-model, are presented, along with a GReAT
transformation rule that makes use of the group operator to separate the model-
building’s electrical subsystem from its other subsystems.

Fig. 4. Building Meta-Model

Fig. 4 shows a meta-model for buildings with electrical, plumbing, networking,
and room-connectivity (i.e., door) subsystems. Room is the component they share as
their infrastructural basis. For instance, Electrical connections are between rooms, i.e.
between the rooms’ sockets and switches, as are Network connections, for example,
between a server room and other rooms’ network ports. Note also that the meta-model
has components (DoorGroup, NetworkGroup, ElectricalGroup, and PlumbingGroup)
that can contain copies each of these subsystems in isolation.

The left side of Fig. 5 shows a simple model based on the building meta-model of
Fig. 4. Electrical connections are drawn with dashed lines, while the solid connections
represent other types of connections. As can be seen, multiple subsystem types are
represented and are overlapping on top of their common Room components. For the
purposes of building construction, it would be of great utility to be able to separate
out these subsystems. For instance, the electrical subsystem (ElectricalGroup) in
isolation could be given to an electrician for wiring purposes. Similarly, the room-
connectivity (DoorGroup) subsystem could be presented to an inspector or put
through a model checker to make sure the building conforms to certain safety codes.

 Applying a Grouping Operator in Model Transformations 415

Fig. 5. Building Model (left) and Grouping Rule to Isolate the Electrical Subsystem (right)

The right side of Fig. 5 shows a rule in a GReAT transformation that uses the
group operator to separate out the electrical subsystems of the model to its left. The
rule creates a new ElectricalGroup model that will hold a copy of this subsystem.
The group operator contains any Electrical connections matched by the rule, along
with the rooms connected by these connections. The Boolean expression the group
operator uses to group matches together is trivial: it is simply the value “true”, indi-
cating that any and all Electrical connections and their associated rooms should be
included -- this results in a single group that is the entire electrical subsystem. For a
more complex setup, the grouping rule could group electrical connections based on
the breaker from which they originate, or based on the voltage they carry. Rules for
isolating other building subsystems are similar.

Fig. 6 shows the results of applying the GReAT transformation rule in Fig. 5 to the
model on its left. The electrical subsystem is successfully separated from the other
subsystems. Such a diagram could be useful for an electrician or inspector.

Plumbing
Hub

Conference
Room

Bathroom

Office One

Office Two

Electrical
Hub

Server
Room

Fig. 6. Building Model's Electrical Subsystem

4 Creating Proxies for Distributed Communication

Models of control systems often consist of dataflow blocks representing mathematical
functions that manipulate data obtained from the environment or other input sources
to achieve some desired output effect on the controlled system. Control designers
initially formulate their controllers with no concern regarding the eventual deploy-
ment architecture; however, the implementation is commonly distributed over

Plumbing
Hub

Conference
Room

Bathroom

Office One

Office Two

Electrical
Hub

Corridor

Server
Room

416 D. Balasubramanian et al.

separate physical nodes (called ‘components’) that must pass data between their con-
tained functions over a bus infrastructure in a timely and predictable manner to
achieve the desired controlled outputs. To facilitate software abstraction and reusabil-
ity [13][7], direct dataflow connections between functional blocks deployed on
different components are often managed using a proxy on the component hosting the
receiver blocks. The bus implementation and the proxy are responsible for marshal-
ling and transferring data between components, thereby allowing the receiver blocks
to interact with the proxy through an interface identical to that of the original sender
without concern of how to access data from the bus.

Assume we have a system deployed across a set of distributed nodes called Com-
ponents. Each component contains a dataflow graph consisting of Functions that pass
data to and from each other through Ports. A connection between two ports is called a
Dataflow, and it connects only one sending port to one receiving port. Still, one port
can send data to multiple receiving ports through multiple dataflows from the port to
each receiver. Dataflows can also connect ports of two functions deployed on separate
components.

To implement a modeled distributed system described previously, a Proxy for a
function should be created in all components that receive input from that function.
The sending function should be connected to receiver functions through its proxy
instead of direct dataflows to the receivers’ ports. The Group operator provides a
means to perform this operation within GReAT by creating a single proxy of a func-
tion on other components that use the function’s output within their respective
dataflow graphs. The proxy inserted into a component will have an input port and an
output port for each output port in the sending function connected to inputs of receiv-
ing functions on one component. This implements a mirroring of the interface of the
sender’s ports that concern the functions on the target component.

Fig. 7 shows the Group rule in GReAT for starting this transformation. It is respon-
sible for creating a single proxy for Function1 within Component2 if output ports of
Function1 are connected to input ports of Function2 within Component2. The rule
takes in the top-level System object as its input. The rule first finds all the component
objects in the system, and the Guard condition code, Component1.uniqueID() !=
Component2.uniqueId(), removes matches where Component1 and Component2
are the same component. Now, the rule returns the set of dataflow connections between
function ports within these unique components. Once the dataflows, DataflowFF, that
connect ports of Function1 and Function2 are matched, the subgroups consisting of the
sending functions’ output ports, F_Output, must be formed. The grouping criterion of
the group operator restricts membership to a subgroup to unique F_Output objects in
the same function, Function1. A single subgroup holds the output ports needed by a
single proxy on a component. According to the Group rule execution semantics, ob-
jects with the CreateNew action (marked with a checkmark) will be created for each
subgroup. This creates a single Proxy object within Component2 for each subgroup,
and the Group action of copy will copy the ports in the subgroup into the proxy. The
output packets of the rule will consist of the ports holding the dataflows across separate
components and the components where these ports are located. All Component2 ob-
jects found in the match will now contain appropriate proxies, and each proxy will
contain the output ports copied from its representative function, Function1.

 Applying a Grouping Operator in Model Transformations 417

Fig. 7. Group Rule for Creating Proxies with Ports

For each proxy, direct dataflow connections from the original sending function to
the receiving functions need to be replaced by the appropriate connections from the
proxy to the receiving functions. Also, the same output ports of the sending function
must be connected to appropriate input ports of the proxy. The rules to create these
dataflows and the input ports of the proxy are shown below in Fig. 8, and they can be
executed in parallel.

The left rule of Fig. 8 creates the dataflow connections from a proxy’s output ports to
the receiver functions’ input ports. The output packets from the rule in Fig. 7 contain all
of the dataflow connections between Function1 and Function2. The Guard condition
restricts found matches to those where the output port of the proxy, P_Output, has the
same name as the output port of Function1, F_Output. The resulting matches are the
correct ports since the output ports copied into the proxy were the output ports of Func-
tion1 in the previous rule, i.e., they will have the same name. Once matched correctly,
the connection from the F_Output to the input port of Function2, F_Input, is replaced
by the connection from the output of the proxy, P_Output, to F_Input through a data-
flow, Dataflow_PF. The procedural code (contained in AttributeMapping) renames the
proxy object to be “P” plus the name of its corresponding function, Function1, to make
it identifiable in the resulting model.

The right rule in Fig. 8 matches the sending function’s output ports, F_Output, to
their copied instances within a proxy on another component. The Guard condition
restricts found matches to those where the output port of the proxy, P_Output, has the
same name as the output port of Function1, F_Output. For each match, a new input
port, P_Input, is created within the proxy. This provides an input interface in the proxy
that mirrors its output ports. Each output port of the sending function, F_Output, is
then connected to its corresponding proxy input port. The procedural code (Attribute-
Mapping) renames a created input port to be “In_” followed by the name of the output
port, F_Output, it is now connected to through a dataflow, Dataflow_FP.

Fig. 9 shows an example input model that needs proxies included in the compo-
nents. The boxes labeled C1, C2, and C3 represent components, those labeled F1,
F2… F9 represent functions, and arrows within functions represent ports. The arrow
indicates the directional flow of data, and directed lines between ports are dataflow

418 D. Balasubramanian et al.

Fig. 8. Rules for Creating Connections to/from a Proxy

connections. The circles represent system inputs and outputs and are of no concern
regarding the transformation. The functions F5 and F7 appear twice in components
C2 and C3, respectively, as unique instances of the same function block.

Looking at the input model, we see that functions F2 and F3 are the only functions
with connections across different components; therefore, proxies must be created for
these functions.

Fig. 10 shows the resulting output model of the system after the rules above are
applied. During the execution of the first rule, a total of three subgroups would be
created for the entire system model. Each subgroup has a corresponding proxy, PF2
and PF3 in this model, where the number identifier for each proxy matches the num-
ber identifier for its corresponding function, e.g., PF3 F3.

Fig. 9. Sample Input Model

Fig. 10. Sample Output Model

 Applying a Grouping Operator in Model Transformations 419

Notice that the proxies’ port interfaces are not the same on different components,
e.g. PF2 in C2 has a two port interface whereas PF2 in C3 has a one port interface.
This occurs since the ports copied into a proxy are the ones explicitly needed by func-
tions on the same component and not the entire set of output ports of the sending
function.

5 Shared Variables in a Dataflow Model

A dataflow model consists of Blocks, which are connected through Ports. Connec-
tions between these ports are called Lines, which represent flow of data between the
blocks through their ports. While the ports may be classified as input and output ports,
the flow of data may be from one input port to another (or one output port to another),
as in the case of a hierarchical block, where a top level input port may be passing
information along to the lower level blocks.

A single port may be connected to multiple ports through multiple lines. In gener-
ating code from such models, we would like to use a single shared variable to repre-
sent all such lines. We would also like to make a temporary ‘cross-link’ association
between each line and its shared variable, for specific purposes necessary later in the
code generation. The Group operator offers a convenient way to achieve this in
GReAT. We will see how a Group rule can be used to identify groups of such lines
and create a new variable for each such group, and generate the cross-links.

Fig. 11. Group Rule for Creating a Shared Variable

Fig. 11 shows the Group rule in GReAT for creating a single shared variable for a
group of lines. For each block, we take the ports contained in that block and group the
lines originating from that port. Note that the port may be connected to other ports
which are not contained in the same block. Port1, Port2 and Line are added to the
Group object, and the grouping criterion is set as: the_Port1 == other_Port1.
This results in multiple lines originating from a single Port object in a Block being

420 D. Balasubramanian et al.

grouped together. A new variable is then created inside Program. Since this is a
Group rule, the CreateNew action fires once for each subgroup that has been created.
This means that a single variable will be created for each set of lines that have been
grouped together.

After creating the new variable, we associate it with its Line, using a cross-link.
This is indicated by the line with the role names ref and sharedVar. Since the cross-
link is a simple association, it will be created for each match, between the Line in that
match, and the StateVar created for the group that this match is placed in.

Fig. 12 shows a section of a dataflow diagram. The port Res has three Lines and the
port Con has two Lines coming from it. Let the Line connected to port Pi be called Li.
Then, L1, L2, L3 will be in one subgroup, and L4 and L5 will be in another subgroup.

The group rule creates a new shared variable Var1 for the subgroup {L1, L2, L3},
and another shared variable Var2 for the subgroup {L4, L5}. The output packets gen-
erated from the group rule are {L1, Var1}, {L2, Var1}, {L3, Var1}, {L4, Var2} and
{L5, Var2}.

Fig. 12. Sample Dataflow Diagram

6 Ordered Binary Decision Diagram Reduction

Ordered Binary Decision Diagrams (OBDDs) [4] are used for representing and evalu-
ating Boolean functions. Arbitrary OBDDs can often be reduced, using algorithms
such as those described in [9], to a more compact representation. This example de-
scribes how the group operator simplifies the specification of a transformation that
performs this reduction algorithm.

An OBDD can be thought of as a rooted tree consisting of nodes that have variable
assignments. A node whose variable is 0 or 1 is called a terminal node, and is called a
non-terminal node otherwise. Each non-terminal node contains two outgoing connec-
tions: one “low” connection and one “high” connection. If a node’s variable is as-
signed a value of 0, then the low connection tells which node to evaluate next, and if a
node’s variable is assigned a value of 1, then the high connection tells which node to
evaluate next. The value of the function for a particular assignment of values to vari-
ables is given when a terminal node is reached.

The reduction algorithm in [9] begins by assigning an integer label to each of the
nodes in the diagram in the following manner. The first 0-node that is encountered
receives the first label (for instance, #0). All of the other terminal 0-nodes have the
same value, so they also received the same label. In the same way, all of the terminal

 Applying a Grouping Operator in Model Transformations 421

1-nodes receive the next label (#1). Next, we define two terms: given a non-terminal
node n, lo(n) is defined to be the node pointed to by the low connection from n
(drawn here using dashed lines), and hi(n) is defined to be the node pointed to by the
high connection from n (drawn here using solid lines).

The rest of the algorithm proceeds in a bottom-up manner as follows. To assign a
label to each of nodes at level i, we assume that we have already assigned a label to
all of the nodes at all levels j such that j > i. That is, we assume that all of the nodes
on levels below the current level have been labeled. A node n at level i receives its
label in one of the following three ways:

1. If the label of the node lo(n) is equal to the label of the node hi(n), n also re-
ceives this same label

2. If there is another node m such that n and m have the same variable xi, and
the labels of lo(n) and lo(m) are equal and the labels of hi(n) and hi(m) are
equal, n receives the same label as m.

3. Otherwise, n receives the next unused integer as its label.

0 1 0 0

z z z

y y

x

z

11 10
#0 #0 #0 #0#1 #1

#3 #3 #2 #2

#4#5

#6

#1 #1

0 1 0 0

z z z

y y

x

z

11 10

Fig. 13. Unlabeled OBDD (left) and Labelled OBDD (right)

Fig. 13 shows an example OBDD both before and after the labeling algorithm has
been applied. In the rest of this example, we assume that the input to our transforma-
tion rules is the labeled OBDD on the right of Fig. 13.

After the labeling of the OBDD, the next step of the reduction algorithm of [9], and
the transformation we will describe below, removes redundant nodes based on their
labels. That is, for each group of nodes with the same label, it creates one new node
with that same label and creates the connections between these “reduced” nodes ap-
propriately.

There are two re-writing rules we must write to perform this transformation:

1. Determine which nodes are equivalent based on their labels, and for each set
of equivalent nodes, create a new node.

2. Create the low and high connections between the newly created nodes based
on the low and high connections that exist between the old nodes.

Fig. 14 shows a rule that performs the first step of our transformation. The incom-
ing context for the rule (the objects bound to the input ports) are the diagrams in
which the nodes are found. The diagram named OldDiagram is the non-reduced
OBDD, and the diagram named Diagram will be the reduced OBDD. This rule first
finds all of the nodes in OldDiagram. A group operator is present, and contains as its

422 D. Balasubramanian et al.

only members the nodes found in OldDiagram. The subgroups are formed by
iterating over each match (which each consist of a single node found in OldDiagram)
and evaluating the user-specified grouping criteria against matches already in sub-
groups; in our case, two matches should be inserted into the same subgroup if the
values of their labels are equal.

Fig. 14. Rule to Create Nodes

The grouping criteria code that will accomplish this is: the_OldNode.Label()
== other_OldNode.Label(). After subgroup formation, new objects are created
on a per subgroup basis, and new associations are created on a per match basis. Thus,
our rule creates one new node in our reduced OBDD (Diagram) for each group of
nodes that have the same label in the unreduced OBDD, and also creates a temporary
association between the newly created nodes and the node in the unreduced OBDD to
which the new node corresponds; this temporary association will be matched in the
next rule to connect the new states together. Finally, the procedural code (Attribute-
Mapping) takes care of setting the values of the attributes (the label and variable val-
ues) of the newly created nodes.

The next rule in the sequence, shown in Fig. 15, is responsible for connecting the
nodes of the reduced OBDD. The incoming context consists of two elements: a node
from the unreduced OBDD (labeled OldNode) and the corresponding node in the
reduced OBDD (labeled NewNode). The rule finds all of the connections in the unre-
duced OBDD such that OldNode is the destination of the connection; it then finds the
node in the reduced OBDD that corresponds to this “source” node in the unreduced
OBDD by matching the association created in the previous rule (labeled with the
rolenames src and dst in both places). Remember that NewNode is already the node in
the reduced OBDD corresponding to OldNode because they are passed from the pre-
vious rule together. The AttributeMapping block takes care of setting the connection
to the proper type, low or high, with the following code: NewConnection.Type()
= OldConnection.Type().

 Applying a Grouping Operator in Model Transformations 423

Fig. 15. Rule to Connect States in the Reduced OBDD

The resulting connected and reduced OBDD is shown in Fig. 16.

0 1 0 0

z z z

y y

x

z

11 10
#0 #0 #0 #0#1 #1

#3 #3 #2 #2

#4#5

#6

#1 #1

z

y y

x

z

10
#0

#3 #2

#4#5

#6

#1

Fig. 16. Connected and (Partially) Reduced OBDD

7 Related Work

Hoffman et al. [5] introduced transformations on frame bounded subgraphs which re-
strict graph edges from crossing frame boundaries. The copying of such a delimited
subgraph permits copying only the nodes and edges contained within a frame. The
group operator uses a similar idea when performing actions on grouped objects: only
user selected nodes and edges that belong to a group under the membership criterion
will have the group action (bind, move, or copy) performed on them. Following the
application of the action specified for the group, all edges with an endpoint outside of a
subgroup, including those to other formed subgroups in the same rule, will be removed.

Van Gorp et al. [11] implemented the copying of subgraphs in the MoTMoT pro-
ject [8] using the “copy” and “onCopy” operators. The “copy” and “onCopy” opera-
tors provide means to perform deep copies on models and/or copying specified nodes
and edges within a rule; however, it is not obvious how a user could implement in
MoTMoT transformations presented above using the group operator within the
GReAT language. The difficulty for MoTMoT to recreate the same transformations
in an equally small number of rules would arise because it does not appear to have the

424 D. Balasubramanian et al.

ability to subdivide the set of all matches in a rule based on a conditional expression
and perform actions only on the formed subgroups instead of every match. The group
operator extends the normal rule execution semantics in GReAT by allowing the
application of copying, or other actions, on a per set/group basis.

As alluded to previously, the ability to handle and manipulate matched objects as
sets is a prerequisite to match the capabilities of the group operator. Even though
they rely on textual specification of transformations, ATL [2] and VIATRA2 [15] do
not appear to be less expressive or powerful than graphical languages such as
GReAT. VIATRA2 explicitly uses an Abstract State Machine (ASM) based language
and ATL matches many of the ASM constructs; therefore, it is no surprise that both
languages provide a data type for handling sets and other mathematical multi-object
types, and providing a grouping criterion as a Boolean expression would require no
extension to the languages. Also, performing actions on a per group basis would
involve using the “foreach” command, common to both languages.

8 Summary and Conclusions

This paper has shown examples for the practical application of a high-level grouping
operator in a graph-transformation based model transformation language. The examples
provided were derived from practical problems and clearly show the use of the operator
to allow more abstract and concise descriptions of complex transformation steps. This
simplifies the transformation specification, making it easier to write and maintain.

We have implemented the operator in the GReAT interpretive transformation en-
gine (GRE), and we have a prototype implementation of a code generator that com-
piles the rules with the group operator into executable code. However, it is the topic
of further research how to generate efficient executable code from such rewriting
rules. Another research topic is related to the restrictions we have placed on the group
operator: these restrictions make the implementation of the group-rules straightfor-
ward, but it is not clear how well they stand up in practice. We plan to investigate
how these restrictions can be weakened while maintaining the powerful properties of
the grouping operator.

Acknowledgements

The research described in this paper has been supported by a grant from NSF/CSR-
EHS, titled "Software Composition for Embedded Systems using Graph Transforma-
tions", award number CNS-0509098, and by NSF/ITR, titled "Foundations of Hybrid
and Embedded Software Systems", award number CCR-0225610.

References

1. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The Design of a Language for
Model Transformations. Journal on Software and System Modeling 5(3), 261–288 (2006)

2. ATL Project. An ECLIPSE GMT Subproject,
http://www.eclipse.org/m2m/atl/

 Applying a Grouping Operator in Model Transformations 425

3. Balasubramanian, D., Karsai, G., Narayanan, A., Shi, F., Thibodeaux, R.: A Subgraph Op-
erator for Graph Transformation Languages. In: GT-VMT 2007 Workshop at ETAPS
(2007), http://www.cs.le.ac.uk/events/GTVMT07/

4. Bryant, R.E.: Graph Based Algorithms for Boolean Function Manipulation. IEEE Transac-
tions on Computers C-35(8), 677–691 (1986)

5. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical Graph Transformation. Journal of
Computer and System Sciences 64, 249–283 (2002)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Trans-
formation. Series: Monographs in Theoretical Computer Science. Springer, Heidelberg
(2006)

7. Farcas, E., Farcas, C., Pree, W., Templ, J.: Transparent distribution of real-time compo-
nents based on logical execution time. In: Proceedings of the 2005 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools For Embedded Systems,
LCTES 2005, Chicago, Illinois, USA, June 15-17, 2005, pp. 31–39. ACM Press, New
York (2005)

8. Van Gorp, P., Schippers, H., Jannsens, D.: Copying Subgraphs within Model Repositories.
In: 5th International Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT), Vienna, Austria (2006)

9. Huth, M., Ryan, M.: Logic in Computer Science: Modeling and Reasoning about Systems.
Cambridge University Press, Cambridge (2000)

10. Personal communications with developers and researchers from industrial labs
11. Schippers, H., Van Gorp, P.: Model Driven, Template Based, Model Transformer (MoT-

MoT) (2005), http://motmot.sourceforge.net/
12. Schürr, A., Winter, A., Zündorf, A.: Graph grammar engineering with PROGRES. In: Bo-

tella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp. 219–234. Springer, Heidel-
berg (1995)

13. Silva, A.R., Rosa, F.A., Gonalves, T., Antunes, M.: Distributed Proxy: A Design Pattern
for the Incremental Development of Distributed Applications. In: Emmerich, W., Tai, S.
(eds.) EDO 2000. LNCS, vol. 1999, pp. 165–181. Springer, Heidelberg (2001)

14. Taentzer, G.: AGG: A Graph Transformation Environment for Modeling and Validation of
Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062.
Springer, Heidelberg (2004)

15. VIATRA2 Framework. An ECLIPSE GMT Subproject,
http://www.eclsipse.org/gmt

	Applying a Grouping Operator in Model Transformations
	Introduction
	Recap of Group Operator
	Motivation for the Group Operator

	Separating a System into Its Subsystems
	Creating Proxies for Distributed Communication
	Shared Variables in a Dataflow Model
	Ordered Binary Decision Diagram Reduction
	Related Work
	Summary and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

