
Proceedings of the ASME 2012 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2012
August 12-15, 2012, Chicago, IL, USA

DETC2012-71464

TOWARDS AUTOMATED EXPLORATION AND ASSEMBLY
OF VEHICLE DESIGN MODELS

Ryan Wrenn Adam Nagel Robert Owens
Di Yao Himanshu Neema Feng Shi

Kevin Smyth Chris vanBuskirk Joseph Porter
Ted Bapty Sandeep Neema Janos Sztipanovits

Institute for Software Integrated Systems
Vanderbilt University

Nashville, Tennessee 37212
Email: rwrenn@isis.vanderbilt.edu

Johanna Ceisel Dimitri Mavris

Aerospace Systems Design Laboratory
Georgia Institute of Technology
Atlanta, Georgia 30332-0150

Email: jceisel@asdl.gatech.edu

ABSTRACT

We describe the use of the Cyber-Physical Modeling Lan-
guage (CyPhyML) to support trade studies and integration ac-
tivities in system-level vehicle designs. CyPhyML captures in-
tegration interfaces across multiple design domains for system
components, and generic design assembly rules given in terms
of architecture alternatives. The CyPhyML tools support auto-
mated exploration of system-level architectural and parametric
tradeoffs using a suite of design exploration tools that can be
applied to models at different levels of fidelity and scale. Our
overall approach includes exploration over the space of potential
designs by evaluating structural combinations and then compar-
ison of designs by simulating the dynamics of systems and sub-
systems with varying degrees of detail. In that flow, we use the
DESERT toolkit for design tradeoffs that can be evaluated from
the structure of the design model (i.e. interconnections of compo-
nents and their parameters). DESERT extends a graphical mod-
eling language with concepts and relations to define structural
alternatives and constraints on system properties. Alternatives
are given in an abstract way, decoupled from the details of the
encoding of the combinatorial design space problem for the un-
derlying binary decision diagram (BDD) solver. For desirable
design instance models, the tools automatically assemble com-
plete vehicle or subsystem computer-aided design (CAD) models

from the associated component CAD models, and likewise create
detailed finite-element structural analysis (FEA) models for se-
lected component assemblies. Evaluation results are presented
in a dashboard display which provides comparisons between dif-
ferent valid designs over all specified design metrics.

INTRODUCTION
The DARPA AVM project aims to reduce the typical spec-

ification, design, analysis, construction, and manufacturing time
and cost for a new military vehicle design by a factor of five. Two
significant challenges that impact development cost and schedule
are 1) system-level integration and 2) evaluation of design alter-
natives. Integration, or the resolution of details between design
domains and subsystems in an engineered system is frequently
cited as a principal source of schedule and cost overruns [1].
Tackling integration issues early in the design cycle goes a long
way towards producing the expected gain. Second, the num-
ber of potential vehicle designs which could be built from a
set of existing components is very large, even when consider-
ing only macro-component choices such as engines, transmis-
sions, hull, and chassis options. Evaluation of possible candidate
designs against the system requirements enables the decision-
making necessary to converge to a final design candidate. Au-

1 Copyright c© 2012 by ASME



tomated design space exploration (DSE) has been identified as a
key problem in Model-Based System Engineering (MBSE) [2].
As for integration, the early pruning of candidate designs dra-
matically reduces the effort required to complete the end-to-end
design and development processes. However, early design can-
didates usually lack the details necessary to effectively prune the
design space, suggesting an iterative approach.

In this work, we describe the Cyber-Physical Modeling Lan-
guage (CyPhyML) and tools that use model-integrated comput-
ing techniques to support the design-time integration of numer-
ous aspects of a system-level vehicle design, and the automated
exploration of design alternatives. CyPhyML integrates models
from existing engineering design and analysis tools to seamlessly
support design work across multiple domains.

FIGURE 1. DESIGN SPACE REFINEMENT

CyPhyML supports integration and evaluation efforts using
a few key concepts:

1. Model-Integrated Computing (MIC) is the core technology
on which CyPhyML and its tools are built [3].
The use of MIC in system-level design moves many of the
detailed design decisions normally resolved during lengthy
integration (and often redesign) phases forward to the design
and analysis stage of a system design, or often even prior to
design activities. These details are resolved by an up-front
concerted modeling effort which captures concepts and re-
lations from design models in different design and analy-

sis domains, representing each domain in a formal language
description known as a metamodel. These metamodel de-
scriptions are then integrated into a single language (in this
case, CyPhyML) that precisely represents the relationships
between the metamodels for the different domains. Model
interpreters automatically import language and analysis ar-
tifacts from existing design tools into models in the inte-
grated language, and can also be created to generate required
design models. Both CyPhyML and its integrated domain-
specific metamodels are defined using the Generic Modeling
Environment (GME). GME also provides tools and APIs to
develop the model interpreters required to realize the bene-
fits of the MIC approach.

2. Components in CyPhyML correspond (in most cases) to real
physical components. CyPhyML aggregates the different
domain models associated with each component using care-
fully designed interface abstractions for each domain, so
that larger design models can be assembled automatically
using the multi-domain component definitions and descrip-
tions of acceptable interconnections. We say that CyPhyML
is compositional with respect to well-formed domain mod-
els. CAD models comprise one design domain that is in-
tegrated by CyPhyML. Designers create component speci-
fications which link to CAD models stored in a repository,
and annotate the component description in CyPhyML with
interface ports which represent the possible interconnection
points for that component. Similar modeling structures are
used to define compatibility and assemble designs.

3. CyPhyML supports automated exploration of possible de-
sign alternatives, and the automated realization of selected
configurations as complete design models. CyPhyML en-
codes valid design alternatives by specifying component as-
semblies in terms of multiple candidate components and
rules for their assembly. Integrated tools allow the auto-
mated exploration of valid candidates based on structural
information available in the component integration model.
The design process supports additional pruning of the design
space by generating more detailed simulation and analysis
models which can be evaluated against test cases to deter-
mine suitability and performance of candidate designs.

4. CyPhyML allows users to specify test bench models to sim-
ulate model behavior or perform detailed model analysis. A
test bench provides a context in which the details of a ve-
hicle or particular subsystem can be evaluated. Designers
can assess correctness and compare different design config-
urations with respect to design metrics, which are the key
performance parameters for the design.

Figure 1 illustrates the general process of defining a design
space to identify and compare design candidates which satisfy
the requirements, and then the refinement steps to narrow the
set of candidate designs down to a manageable set of alterna-

2 Copyright c© 2012 by ASME



tives. First, domain-specific component models (such as CAD
parts/assemblies, dynamics simulations, etc...) are captured in a
data repository, and their interfaces are represented in the cor-
responding CyPhyML component library. System requirements
drive the specification of component assemblies and design al-
ternatives. Requirements also serve as constraints during auto-
mated DSE processes. The constraints eliminate some designs
from the set of feasible design candidates, leaving a smaller set
of designs for more detailed evaluation. Repeated simulation and
analysis steps driven by test specifications further reduce the set
of possible design candidates, while providing metric values to
compare between remaining candidates. The summary metrics
are displayed in a dashboard to visualize the trade-offs.

Many design requirements can be expressed as constraints
on the structure of design models. The importane of structural
constraints in the design flow is that constraint-based design
space exploration tools can efficiently restrict the design space
using computationally inexpensive techniques, relying solely on
details readily available in component and design specifications.
As a simple example, if each component and assembly in the
component library is annotated with metadata which allows the
tools to estimate its cost, then the total estimated cost can be
computed for any candidate design. Comparing estimated design
costs against budget thresholds and between candidate designs
allows the designers to eliminate candidates which are clearly
out of range for a particular project. This determination is based
solely on information computed from properties stored directly
in the model, without executing simulations of model behavior.

As opposed to structural constraints, behavioral constraints
such as performance requirements call for behavioral analysis of
designs using simulation or other analysis tools. Since simula-
tion for large models is expensive, it is a good strategy to restrict
the design space first by means of structural constraints before
exploring the remaining (smaller) candidate designs using simu-
lation (e.g., as shown in Fig. 1).

We will cover a specific subset of the CyPhyML design flow
which relates to the specification and evaluation of physical mod-
els in the form of CAD and associated structural analysis tools.

BACKGROUND
Model-Integrated Computing

In model-based design, systems are described by models ex-
pressed in domain specific modeling languages (DSML). For-
mally, a DSML is a five-tuple of concrete syntax (C), abstract
syntax (A), semantic domain (S) and semantic and syntactic map-
pings (MS, and MC):

L =<C,A,S,MS,MC > (1)

The concrete syntax C defines the specific (textual or graph-

ical) notation used to express models, which may be graphical,
textual or mixed. The abstract syntax A defines the concepts,
relationships, and integrity constraints available in the language.
Thus, the abstract syntax determines all the (syntactically) cor-
rect “sentences” (in our case: models) that can be built. (It is
important to note that the abstract syntax includes semantic el-
ements as well. The integrity constraints, which define well-
formedness rules for the models, are frequently called “structural
semantics.”) The semantic domain S is usually defined by means
of some mathematical formalism in terms of which the meaning
of the models is explained. The mapping MC : A→ C assigns
syntactic constructs (graphical, textual or both) to the elements
of the abstract syntax. The semantic mapping MS : A→ S relates
syntactic concepts to those of the semantic domain.

FIGURE 2. METAGME EXAMPLE

Any DSML requires the precise specification (or model-
ing) of all five components of the language definition. The lan-
guages which are used for defining components of DSMLs are
called meta-languages and the concrete, formal specifications of
DSMLs are called metamodels [3].

The models and languages we will describe were created us-
ing the ISIS Generic Modeling Environment tool (GME). GME
allows language designers to create stereotyped Unified Model-
ing Language (UML) class diagrams defining metamodels. The
metamodels are instantiated into a graphical language, and meta-
model class stereotypes and attributes determine how the ele-

3 Copyright c© 2012 by ASME



ments are presented and used by modelers. The GME metamod-
eling syntax may not be entirely familiar to the reader, but the
syntax is well-documented [4]. Class concepts such as inher-
itance can be read analogously to UML, as shown in Fig. 2.
Class aggregation represents containment in the model editing
environment, though an aggregate element can be flagged as a
port object. In the model editing environment a port object will
be visible at the next higher level in the model hierarchy, and
available for connections. The dot between the ValueFlowTarget
class and the AnalyticalBlock class, together with the ValueFlow-
ToAnalytical association class represent a line-style connector in
the modeling environment. When a connection is drawn in the
model, the corresponding object is an instance of the association
class connected via the dashed line to the dot (in this case, the
class ValueFlowToAnalytical).

GME and related tools facilitate the model-integrated com-
puting [3] approach to system-level design. We build up custom
domain-specific modeling languages (DSMLs) in GME by cre-
ating metamodels for individual domains, whether describing a
component interface language or the language required by an ex-
isting analysis tool. These metamodels capture the model struc-
ture and relationships to formally represent concepts and rela-
tions in each particular domain. Model integration occurs when
we use those specific metamodels as sublanguages to build up
a larger language to support system integration activities, engi-
neering design flows, and multi-domain analysis. GME allows a
DSML designer to use existing language constructs as building
blocks in the new language, and to relate those language con-
structs to others to define their proper relationship and use in an
integrated model. As a simple example, consider the metamodel
fragment shown in Fig. 2 which describes concepts for parame-
ter calculation and propagation during formula evaluation. The
metamodel relates the class Component (which is used in many
domains) to child elements Limit and TransferFunction from the
Bond Graph domain for defining dynamics. Each of these class
types is also a reference (denoted by the arrow) to an object of
type unit, indicating that each can have a physical units specifi-
cation as well.

Once the integration language has been defined to associate
models in the various design domains, GME provides application
programming interfaces (APIs) which allow developers to write
software that manipulates, analyzes, or transforms models con-
forming to the language. We refer to these software components
as model interpreters.

AUTOMATED DESIGN SPACE EXPLORATION
Reuse of existing model components in the design process

significantly decreases the cost of constructing models in MBSE.
Model structures for vehicle design are specified as refinements
of a generic architecture. Each top-level model component, such
as engine, transmission, chassis, etc..., has many alternative re-

alizations with different parameters and internal structure - ar-
ranged in a refinement hierarchy. Accordingly, components at
any level in the refinement hierarchy may have alternative im-
plementations. We call components with alternative implemen-
tations templates. At the leaf nodes of the refinement hierarchy
are the primitive model components, which may also be tem-
plates with alternative (primitive) implementations. In our spe-
cific application context, the primitive model components are ei-
ther individual physical components or integrated assemblies of
physical components. The template concept has a significant im-
pact on the structural semantics of models. Without templates,
each model m is unique and represents a single point design. By
introducing templates in the specification of the modeling lan-
guage, each model including templates defines a set of models
MD which we call a design space. A model instance in the design
space (m ∈ MD) is defined by binding the component templates
to one of the alternative implementations and by the binding the
parameter values of the parameterized components to a specific
value.

The DEsign Space ExploRation Tool (DESERT) encodes
the structures and constraints into Binary Decision Diagram
(BDD) models of the component design space. The BDD model
represents the set of candidate designs. Exploration is performed
as the BDD solver applies constraints to prune the space [5].

FIGURE 3. DESIGN FLOW SUPPORTING DESIGN SPACE EX-
PLORATION AND CAD SYNTHESIS

4 Copyright c© 2012 by ASME



DESIGN USING CYPHYML
Design Flow Supporting CAD Assembly

For the subset of the CyPhyML language and tools covered
in this article, we present design qualities and features that can be
determined from details specified in CAD models. The interface
models for elements of the component library include the details
required to compose CAD models and to translate CAD assem-
blies into structural finite element analysis (FEA) models. FEA
of vehicle subsystems is driven by test bench models. Figure 3
highlights details of the CAD integration features of CyPhyML
into the overall design evaluation flow shown in Fig. 1. In the
sequel we use two examples from different parts of the vehicle
design in order to illustrate different concepts. A single exam-
ple would have been preferable, but the availability of detailed
models for different parts of the design was limited.

FIGURE 4. METAMODEL FOR COMPONENT CAD INTEGRA-
TION INTERFACE

Integration Using Component Models
A CAD modeler specifies feature points which define the in-

tegration details between components in the CAD model. These
features are stored as metadata in the CAD model and are refer-
enced in CyPhyML as the component integration interface. As
shown in Fig. 4, structural interfaces are included with compo-
nent definitions, and in the structural aspect of the model the fea-
ture points are visualized as ports on a component block. Com-
pound assemblies are built up by selecting parts and connect-
ing points to describe how the parts fit together physically. For

FEA, additional structural features may be added to define sur-
faces or regions to be evaluated. These are called out in a test
bench model as depicted in Fig. 10.

A CAD modeler would uniquely name geometry features
(i.e. points/axes/surfaces) within the CAD model, and those
named features would be used to specify how parts could be po-
sitioned relative to one other in the CAD assembly. For example,
three orthogonal planes in one part could be mated to three or-
thogonal planes in another part. A combination of the named
geometry features sufficient to position a part is termed a struc-
tural interface role as shown in Fig. 4. A structural interface
role in CyPhyML would be composed of the names of the CAD
geometry features along with orientation information where ap-
propriate. The above discussion applies equally well to multi-
level assemblies, where sub-assemblies would be oriented rela-
tive to each other. A CAD assembly would be defined within
CyPhyML by specifying components along with lines connect-
ing ports on the components, where the ports would be structural
interface roles. For FEA, additional structural features may be
added to define surface regions to be evaluated. These are called
out in the test bench as shown Fig. 10.

FIGURE 5. METAMODEL DEFINING DESIGN SPACE

Definition of Component Assemblies and Design
Space

Fig. 5 depicts the CyPhyML mechanism for defining design
alternatives. Anywhere in a CyPhyML model that a component
can appear, we can also substitute a design container. A design
container contains other components and specifies the relation-
ship between the included components and the design space. The
ContainerType attribute indicates its interpretation in the design
space – A Compound container simply aggregates components
and design containers, an Optional container indicates that the
contents may be excluded, and an Alternative container indicates

5 Copyright c© 2012 by ASME



that any one (and only one) of the contained components may be
used.

FIGURE 6. TRANSMISSION ALTERNATIVES - STRUCTURAL
ASSEMBLY ASPECT

The alternative containers are key to the design space explo-
ration process. For initial design space pruning, we use lower-
fidelity parameterized component models which can share com-
mon physical and parametric interfaces. The common interfaces
allow the generation tools to operate orthogonally to the design
space exploration process, so that any feasible model from the
design space can be generated to either CAD or to simulation
accordingly.

FIGURE 7. TRANSMISSION ALTERNATIVES - DYNAMICS AS-
PECT

AUTOMATED DESIGN SPACE EXPLORATION
Modeling Alternatives in CyPhyML

DESERT uses an abstract domain-independent meta-model,
which separates its internal algorithms from domain-specific
constructs. The Design-Space Abstraction tool provides two-
way model translation between the Design-Space Models in Cy-
PhyML and the abstract design-space models in DESERT.

FIGURE 8. AUTOMATED CAD ASSEMBLY

Figures 6 and 7 show two aspects from the alternative design
container for transmission components. The container holds two
transmissions, CX28 and CX31. The CyPhyML Structural as-
pect shown in Fig. 6) defines the common interface required
to compose CAD models for either component. The Power
In and Power Out objects shown in the figure are presented
as connectable ports at the level of hierarchy above the model
shown. These ports encode structural compatibility between ei-
ther transmission component and other drive train components
which could be physically connected to a transmission. In this
aspect of CyPhyML, a connection drawn between the Power In
port of the transmission and a Power Out port of an engine com-
ponent would represent the CAD-model details of the physical
coupling between two components. Such a connection is only
allowed if the structural information in the two ports is compati-
ble.

Likewise, the CyPhyML Dynamics aspect (Fig. 7) specifies
a behavioral interface for either transmission alternative. Each
has two rotational power connections (purple port objects out-
side the component) and two fluid power connections (blue port
objects). Each of these power objects will appear as ports at the
next higher level of the model hierarchy. The ports encode be-
havioral compatibility between physical components. Continu-
ing the example, if the Input Shaft port of a transmission is con-
nected to the rotational power output port of the engine, then
the connected structure would represent an acausal, simultaneous
power-sharing connection between the two components. This
means that for the connected shaft, torque and angular velocity
variables are considered common between the two components.
Their respective equation sets are merged to represent a single
mutual set of behaviors.

Because alternative components in the design space have
common multi-aspect interfaces, model operations such as pa-
rameter calculation (e.g., for weight) and simulation generation

6 Copyright c© 2012 by ASME



are orthogonal to the specification of the design space. In Cy-
PhyML we can define an assembly generically, representing all
of the possible component combinations among the parts needed
to define the assembly. Note that this interface commonality is
only strictly possible for low-fidelity component models, but that
is exactly the objective of the first stages of design space reduc-
tion. Low-cost, low-fidelity models are used to narrow the set
of candidates down to a small set for the high-cost, high-fidelity
simulation and analysis required for detailed design.

FIGURE 9. DESIGN SPACE FOR CHASSIS AND DAMPERS

FIGURE 10. CAD TEST BENCH EXAMPLE

MODEL SYNTHESIS AND ANALYSIS

CAD Model Assembly

Once DSE is complete, the CyPhyML tools elaborate the
abstract high-level system design model instances with CAD
model details and construct the CAD assembly model. The key
to achieving development schedule gains is in the ability of the
CyPhyML tools to automate the processes of creating assemblies
and synthesizing detailed analysis models. For example, building
a CyPhyML model for a single assembly would be more labori-
ous than building the single assembly via the native CAD system;
however, once the initial setup was completed, hundreds of simi-
lar assemblies could be built programmatically with little human
intervention. Likewise, once the CAD assembly information has
been modeled in CyPhyML, building a FEA test bench would
require a similar level of effort as using a native CAD package
to compose a FEA analysis. The major advantage is that once
the CyPhyML test bench model was built, hundreds of analyses
could be run with minimal human intervention.

Figure 9 contains the design space specification for the chas-
sis and damper model assembly. In this example the design is
a singleton as each component has only a single alternative in
the component library. The connections are structural (as in Fig.
6), so the component models and their connections represent the
physical assembly of any compatible parts in the design space. A
ChyPhyML model interpreter automates this assembly process.
Fig. 8 shows an assembled chassis model from Creo together
with damper components attached at the proper points.

7 Copyright c© 2012 by ASME



FIGURE 11. STRUCTURAL ANALYSIS RESULTS

Structural Analysis
Figure 10 shows a test bench model for defining structural

analyses. The test bench model calls out specific surfaces (se-
lected by the modeler), selects a shape for those surfaces (in
this case the shapes are polygonal), and specifies either forces
to be applied to or physical constraints for those surfaces. The
tested components (VU Chassis 8x8 and VU Damper 1 – only
one damper is shown to save space) each represent the entire
design space for those types of components, as any of the alter-
native components may be substituted into the design. After the
automated DSE step, a new test bench model is created from this
test bench model. The components in the new test bench are as-
sembled according to the design space assembly rules for CAD
models, but in the new test bench the generic components have
been substituted for specific component instances. This process
of automatically specializing generically defined test bench mod-
els to specific design candidates is key to the refinement process
supported by the CyPhyML language and tools (see Figs. 1 and
3).

The basic process for producing a FEA model from the com-
ponent CAD models and the CyPhyML integration and design
space data is as follows:

1. From CyPhyML, export to an XML file the hierarchy and
structural interfaces of the CAD assembly along with the
FEA constraints and loads information.

2. Programatically invoke the CAD application and build the
assembly, create a FEA mesh of the assembly, and add con-
straints and loads to the mesh resulting in a completely de-
fined FEA input deck.

3. Submit the FEA input deck to a solver.
4. Post process the results for consumption by the dashboard.

Evaluating Design Alternatives
Table 1 displays values from the dashboard that can be de-

termined by component properties, the assembly rules, and the
selection of a particular design candidate. For space we only

include two design candidates. Note that these values are only
representative.

Providing access to relevant predictive data is not sufficient
to enable users to make informed decisions. Decisions are hard to
make on poorly-visualized raw data. A multi-disciplinary trade-
off tool that dynamically varies design requirements and quickly
filters cost and performance metrics puts this predictive power
into the hands of not only design engineers, but of Integrated
Product Teams and stakeholders across multiple disciplines.

In order to use the data to its full potential, AVM developed
a trade-off tool that possesses the capability to display and com-
pare several different concepts side by side through relevant vi-
sualizations. Graphs, diagrams and constraint plots help the en-
gineer evaluate their decisions comparatively, enabling them to
make more informed decisions. Visualizations tend to provide a
higher bandwidth flow of information: communicating more in a
short period of time that traditional raw data ever could. Visual
communication also grants the ability to communicate advanced
engineering concepts and their effects to a non-technical audi-
ence. An image of the overall dashboard is shown in Fig. 12.

TABLE 1. DASHBOARD RESULTS FOR STRUCTURAL PROP-
ERTIES

Design ID C012 C019

Vehicle Height (m) 3.41807 3.84590

Vehicle Length (m) 5.32698 6.70708

Vehicle Width (m) 3.72523 3.69449

Vehicle Weight (kg) 14705.9 14602.3

Tire Radius (m) 0.60809 0.61524

Final Gear Ratio 3.74 4.34

Diesel Engine C7 Diesel C13 Diesel

Fuel Weight (kg) 266.059 227.953

No. of crew 3 3

No. of passengers 9 9

Hull Steel/Welded Composite/Bonded

Transmission CX28 CX31

Transfer Case 484 484

RELATED WORK
State of Current MBSE Tools

Reichwein and Paredis offer a canonical overview of con-
cepts, history, and directions for the field of Model-Based Sys-

8 Copyright c© 2012 by ASME



FIGURE 12. DESIGN SPACE VISUALIZATION

tems Engineering (MBSE) [2] - their work surveys some of the
basic terminology and fundamental issues. Our work has much
in common with current research efforts in SysML and related
tools.

In contrast to current MBSE approaches, our integration
methods aim towards a more strict ’glue’ role, which does
not prescribe particular technologies/standards, but picks and
chooses [and integrates] from best of breed alternatives for at-
tacking particular aspects of the problem. We use abstractions for
each of the integrated capabilities (component definition, DSE,
and generation) so that users can work in different modeling tools
and integrate their existing component libraries.

The Core Product Model (CPM) from NIST is a standard
which covers many of the same design issues covered by Cy-
PhyML and its associated tools [6] [7]. CPM defines a meta-
model to capture components and their features, as well as the
design of assemblies using those components. CPM is multi-
domain, and seeks to separate the specification of function (i.e.,
intended behavior), form (i.e., physical realization), and behav-
ior (i.e., implemented behavior) within design models. CPM and
CyPhyML are both component-based and support different lev-
els of model refinement. The Open Assembly Model (OAM)
for CPM defines component interfaces for creating physical as-
semblies (i.e. for CAD and FEA models) from models for com-
ponents [8], in the same way that CyPhyML allows designers
to specify physical assembly interfaces. One key difference be-
tween CPM and CyPhyML is that CPM seems to be designed to
support the evolution of a component definition within the con-
text of an evolving design, where CyPhyML relies on a semi-
static component library where component variants are versioned
and typed, and stored as separate components in the library.

CAD Integration

The Initial Graphics Exchange Specification (IGES) and the
Standard for the Exchange of Product Model Data (STEP) are
generic formats for CAD models or assemblies, and are used
to translate CAD models between systems. An example would
be translating a Creo model to IGES and reading that IGES
file with SolidWorks. For part models, the IGES file contains
graphical entities (e.g. surfaces, lines, points...) and for assem-
blies, IGES contains a list of part/sub-assembly names along
with positioning information (i.e. transformation matrix). Cy-
PhyML is similar to an IGES assembly in that it contains the
list of part/sub-assembly names along with positioning informa-
tion, where the positioning information is based on aligning fea-
tures of parts. Additionally, the CyPhyML contains parametric
information (e.g. thickness of hull, length of passenger compart-
ment...) about parts, which would not be part of an IGES file. In
general, the strength of our approach is not about the representa-
tion format (CyPhyML/IGES), but that we can programmatically
build and analyze CAD assemblies based on synthesized designs.

Gross et al describe the use of UML to integrate CATIA
CAD models with Matlab/Simulink simulations for satellites [9].
The presented CAD integration approach captures many details
for each part and integrates parts using constraint classes. Matlab
serves as an algebraic engine to calculate part properties between
reference frames. The Matlab interface also provides configura-
tion parameters to an existing Simulink simulation, and controls
the invocation of the simulation. Model and analysis workflows
are captured directly in UML activity diagrams, allowing the
evaluation of multiple geometric configurations of parts in the
system design for a particular workflow.

9 Copyright c© 2012 by ASME



Design Space Exploration
Shah et al discuss the integration of nonlinear solvers with

a SysML-based design process to explore the sizing of hydraulic
components in a mechanical design [10]. Selection among alter-
natives seems to be based on size. Their approach creates a meta-
model describing the constraints and objectives in the generic
GAMS optimization language, and calls out the solvers to be
used for particular models. The paper gives a design example
of sizing components for a hydraulic log splitter. The approach
presented here is generic in the sense that it can use different
solvers, but constraints and objectives are limited to those that
can be modeled in GAMS and addressed by the available solvers
(which is true for any integrated solver-based approach). The
sizing problem is constrained by different quantities, but the con-
straint model as displayed in the SysML essentially contains the
elements of a script.

ACKNOWLEDGMENT
This work was supported by DARPA under contracts

FA8650-10-C-7082 and FA8650-10-C-7075.

REFERENCES
[1] Sangiovanni-Vincentelli, A. L., 2007. “Quo Vadis SLD:

Reasoning about Trends and Challenges of System-Level
Design”. Proc. of the IEEE, 95(3), March, pp. 467–506.

[2] Reichwein, A., and Paredis, C. J., 2011. “Overview
of Architecture Frameworks and Modeling Languages for
Model-Based Systems Engineering”. In Proc. ASME 2011
International Design Engineering Technical Conf. & Com-
puters and Information in Engineering Conf.

[3] Karsai, G., Sztipanovits, J., Ledeczi, A., and Bapty, T.,
2003. “Model-integrated development of embedded soft-
ware”. Proc. of the IEEE, 91(1), Jan, pp. 145–164.

[4] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett,
J., IV, C. T., Nordstrom, G., Sprinkle, J., and Volgyesi, P.,
2001. “The generic modeling environment”. Workshop on
Intelligent Signal Processing, May.

[5] Neema, S., Sztipanovits, J., Karsai, G., and Butts, K., 2003.
“Constraint-based design-space exploration and model syn-
thesis”. In Embedded Software, R. Alur and I. Lee, eds.,
Vol. 2855 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, pp. 290–305.

[6] Fenves, S., 2001. A Core Product Model for Representing
Design Information. Tech. Rep. NISTIR 6736, NIST.

[7] Fenves, S., Foufou, S., Bock, C., and Sriram, R., 2008.
“CPM2: A Core Model for Product Data”. Journal of Com-
puting and Information Science in Engineering, 8(1).

[8] Rachuri, S., Han, Y.-H., Feng, S., Roy, U., Wang, F., Sri-
ram, R., and Lyons, K., 2003. Object-oriented representa-

tion of electro-mechanical assemblies using UML. Tech.
Rep. NISTIR 7057, NIST, Oct.

[9] Gross, J., Reichwein, A., Rudolph, S., Bock, D., and
Laufer, R., 2009. “An Executable Unified Product Model
Based on UML to Support Satellite Design”. In AIAA
SPACE 2009 Conference & Exposition.

[10] Shah, A. A., Paredis, C. J., Burkhart, R. M., and Schae-
fer, D., 2010. “Combining Mathematical Programming and
SysML for Component Sizing of Hydraulic Systems”. In
Proc. ASME International Design Engineering Technical
Conf. & Computers and Information in Engineering Conf.
(IDETC/CIE 2010).

10 Copyright c© 2012 by ASME


