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Abstract Public transit is a critical component of a
smart and connected community. As such, citizens ex-
pect and require accurate information about real-time
arrival/departures of transportation assets. As transit
agencies enable large-scale integration of real-time sen-
sors and support back-end data-driven decision sup-
port systems, the Dynamic Data-Driven Applications
Systems (DDDAS) paradigm becomes a promising ap-
proach to make the system smarter by providing online
model learning and multi-time scale analytics as part of
the decision support system that is used in the DDDAS
feedback loop. In this paper, we describe a system in use
in Nashville and illustrate the analytic methods devel-
oped by our team. These methods use both historical as
well as real-time streaming data for online bus arrival
prediction. The historical data is used to build clas-
sifiers that enable us to create expected performance
models as well as identify anomalies. These classifiers
can be used to provide schedule adjustment feedback
to the metro transit authority. We also show how these
analytics services can be packaged into modular, dis-
tributed and resilient micro-services that can deployed
on both cloud back ends as well as edge computing re-
sources.

1 Introduction

Emerging trends and challenges. Public transit rid-
ership in the United States increased by 37% from 1995-
2015, which is roughly twice as much as the country’s
population growth (21%) in the same years [14]. In 2013
alone, there were 10.7 billion trips taken on U.S. public
transportation [13]. Meanwhile, people in the U.S. have
been reducing the use of personal vehicles [12]. Public
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transportation has become an essential part of commu-
nities and cities.

Bus services, which is one of the most important seg-
ments of public transportation, are vulnerable to delays
and congestion due to traffic congestion, weather con-
ditions, special events, etc. Travel and arrival time vari-
ation was found to have a substantial impact on com-
muter satisfaction [16]. Moreover, people’s tolerance to
errors in bus time predictions is quite low [25]. Pro-
viding real-time bus schedules reduces this uncertainty
and improves passenger experience and increases rider-
ship. A direct benefit of increased ridership on public
transport is the reduced use of personal vehicles and
hence reduction in both traffic congestion and green-
house emissions.

Recently, transit agencies have been integrating real-
time sensors into public transit systems. A number of
technological systems have been developed by academic
researchers and commercial companies to utilize this
real-time data. For instance, AVLs (Automatic Vehi-
cle Location) and APCs (Automatic Passenger Cou-
nter) can provide real-time data such as vehicle travel
time, arrival and departure time, and passenger board-
ing counts. This data can be used for at-stop displays
[23], bus time prediction [17; 48; 15], schedule plan-
ning optimization [30; 22], real-time control strategies
[24; 39], etc.

However, these sensors have some problems. Accu-
rate real-time bus arrival and departure data that many
prediction systems use is not always available. In Nashville,
for example, only special bus stops called timepoints are
equipped with sensor devices that record exact times.
There are over 2,700 bus stops all over the city but only
573 timepoints. In addition, the timepoint dataset is not
real-time. It is available at the end of each month when
the Nashville Metropolitan Transit Authority (MTA)
summarizes and analyzes the historical data. APCs can
help provide accurate timing of when a bus stops at a
transit stop, which can be used in analysis. On the con-
trary, AVLs do not provide that. Many transit systems,
including the city of Nashville, do not have APCs on
buses and use automatic vehicle location (AVL) data
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to estimate the arrival and departure time at bus stops
and use the estimated data for bus delay prediction in
real-time. The issue with this approach is that the lack
of quality data results in worse predictive analytic per-
formance. Even for systems with APCs, real-time sensor
systems can have many problems in the real world [2; 1],
due to reasons, such as low networking bandwidth and
delays in uploads. As a result, often GPS position data
is noisy.

A typical mechanism for handling noise is to nor-
malize the data. However, normalization requires large
data sets, often clustered around transit routes. This
is helpful because the transit data of preceding buses
may be used to create the models for the current trip
on that route. However, if a city does not have high fre-
quency operations across its routes, then such data is
not available.

Solution Approach and Contributions. To ad-
dress the lack of quality data for transit data analyt-
ics, yet make effective predictions for bus arrivals, we
surmise that the Dynamic Data Driven Applications
Systems (DDDAS) paradigm [21] holds promise as a
solution approach. In DDDAS, both real-time and/or
historical data is used to learn the model of the system
that must be controlled, and subsequently a decision
support system uses these learned models to make in-
formed decisions and control the system in a feedback
loop. This is the approach we utilize in this paper. It in-
tegrates historical and streaming real-time bus location
data from multiple routes for short-term delay predic-
tion as well as long-term delay pattern analytics. We
also use the data feedback loop to provide results to
city planners and end users.

This paper significantly extends our prior work on
Transit-Hub [42; 38] and provides the following contri-
butions to the study of real-time and predictive analyt-
ics for public transportation using DDDAS principles:

– We present a better short-term delay prediction model
that combines clustering analysis and Kalman filters
and uses real-time data from shared route segments.

– We show the efficacy of our short-term delay pre-
diction model. When predicting the travel time de-
lay of segments 15 minutes ahead of scheduled time,
our model reduced the root-mean-square deviation
(RMSD) by about 30% to 65% compared with a
SVM-Kalman model [15]. The SVM-Kalman model
that we used for comparison is a dynamic predic-
tion model that combines SVM and Kalman filters,
two of the most widely used models in bus delay
prediction [45; 17; 47; 19].

– We provide an algorithm that generates shared bus
route segment networks from standard General Tran-
sit Feed Specification (GTFS) datasets.

– We illustrate how the analytical algorithms can be
packaged into independently deployable and self-
contained micro-services.

– We describe how the system’s data feedback loop
works to provide decision support to city planners
by assisting Metro Transportation Authority (MTA)
in identifying real-time outliers and optimizing bus
timetables to improve bus services and availability.
Paper organization. The remainder of this pa-

per is organized as follows: Section 2 compares the en-
hanced Transit-Hub system with related work, specifi-
cally how we differentiate from and improve on a SVM-
Kalman model that also used bus data from multiple
routes; Section 3 outlines the key challenges faced in
realizing a DDDAS-enabled system for accurate pre-
diction of bus schedules; Section 4 describes the inte-
grated data sources and potential feedback mechanism
to MTA; Section 5 describes how we construct the bus
delay models and integrate real-time bus data to predict
arrival delay in real-time; Section 6 presents the system
deployment; Section 7 describes the performance evalu-
ation of travel time delay in route segments and arrival
time delay at bus stops; and finally Section 8 presents
concluding remarks and future work.

2 Related Work

This section compares Transit-Hub with related work
on transit data analysis using different models. In the
end, we explain the differences between Transit-Hub
models and a SVM-Kalman model that also used shared
route segment data.

2.1 Statistical Models

The basic average models directly use the average de-
lay from historical data as the estimated delay for future
and are often constructed for performance comparison
purposes. For example, Jeong et al. [27] developed a
basic average model and found that the basic average
model was outperformed by regression models and arti-
ficial neural network (ANN) models for bus arrival time
prediction. The reason is that the basic average mod-
els only use historical data and perform simple average
analysis, the model does not reflect real-time conditions
and is limited by the consistency of route delay pat-
terns.

Many researchers have conducted studies that uti-
lize both historical and real-time bus data. Weigang et
al. [44] presented a model to estimate bus arrival time at
bus stops using the real-time GTFS data. Their model
contains two sub algorithms to determine the bus speed
using the historical average speed and the real-time
speed information from GPS. Their main algorithm uti-
lizes the calculated real-time speed to predict the arrival
time. Sun et al. [40] proposed a prediction algorithm
that combines real-time GPS data and average travel
speeds of route segments.
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Regression models are also used to explain the im-
pact of variables for delay prediction. Since the variables
in transit systems are correlated [20], regression mod-
els are typically limited to delay prediction. Patnaik et
al. [32] presented a set of regression models that predict
bus travel times on a route segment. The data they
used is real-world data (number of passengers board-
ing, stops, dwell time and weather) collected by Au-
tomatic Passenger Counters (APC) installed on buses.
They also found that weather did not have a significant
effect on the prediction.

2.2 Kalman Filter Models

Kalman filters have been used widely for bus delay pre-
diction because of their ability to filter noise and con-
tinuously estimate and update actual states from ob-
served real-time data. Chien et al. [19] presented a dy-
namic travel time prediction model that used real-time
and historical data collected on the New York State
Thruway (NYST). Shalaby et al. [37] proposed a bus
delay prediction model based on two Kalman filter al-
gorithms: one for estimating the running time and an-
other for estimating the dwell time at bus stops. Yang
et al. [46] developed a discrete-time Kalman filter model
to predict travel time using collected real-time Global
Positioning System (GPS) data. Bai et al. [15] proposed
a dynamic travel time prediction model that employed
support vector machines to provide a base time esti-
mate and a Kalman filter to adjust the prediction using
the most recent bus trips on multiple routes.

2.3 Machine Learning Models

Artificial Neural Network (ANN) [18; 27; 47] and sup-
port vector machine (SVM) [45; 17; 47; 15] are two of
the most popularly used machine learning techniques
in bus delay prediction. For example, Jeong et al. [26]
developed an ANN model for bus arrival time predic-
tion using Automatic Vehicle Location (AVL) data. Ma-
zloumi et al. [29] used real-time traffic flow data to de-
velop ANN models to predict bus travel times. Yu et
al [47] proposed a machine learning model that used bus
running times of multiple routes for predicting arrival
times of each bus route and proposed bus arrival time
prediction models that include Support Vector Machine
(SVM), Artificial Neural Network (ANN), k-nearest neigh-
bors algorithm (k-NN) and linear regression (LR).

2.4 Comparison with Our Work

Prior work emphasized long-term and short-term tran-
sit data analysis and prediction. However, most of them,
as mentioned above, focused on a single route and few
noticed that many bus routes share segments with other

routes. In 2011, Yu et al. [47] recognized that the data
from multiple routes can help to improve the delay pre-
diction. In 2015, Bai et al. [15] proposed a dynamic
travel time prediction model that combines SVM and
Kalman filter using multiple bus routes data. However,
when solving the shared-segment prediction problem,
they only used the actual travel time of preceding buses
and did not consider the scheduled time difference of
separate bus routes. Also, their model included the data
of all recent preceding buses, which may contain outliers
that should be excluded. Transit-Hub extends these con-
cepts, presents a solution to generate shared route seg-
ment network (explained later in Section 5.2.1) using
standard static GTFS dataset, and provides transit data
predictive analysis at multiple timescales. The benefit
is that the analysis results can be used to provide sched-
ule adjustment feedback to MTA, and real-time delay
prediction to commuters.

3 Building Multi-timescale Analytical Services
for Public Transit

In this section, we present the key problems associated
with building multi-timescale analytics models for pub-
lic transportation systems.

3.1 Problem 1: Integrating and Managing
Heterogeneous Data from Multiple Sources

Transportation agencies are employing advanced tech-
nologies, such as automated vehicle locators (AVL) and
automated passenger counters (APC) to monitor and
manage bus services to improve service quality. How-
ever, the data collected from multiple data sources may
require significant effort to be integrated in order to
learn a model for the following reasons: (i) Data are
collected at different sampling rates: systems such as
AVL and APC have different hardware specifications.
Data from different sources need to be sampled before
being used by the system; (ii) Data may be missing,
duplicated or faulty: these issues need to be detected
and handled differently before conducting the data an-
alytics.

Furthermore, the scale of the transit system brings
its own challenges and requires efficient and reliable
data storage management for the following reasons: (i)
Data is large-scale: the real-time transit data, for in-
stance, is accumulated at the scale of several gigabytes
per day currently. If Nashville MTA expands its services
and updates the devices for faster data rates, more data
will be generated and may require more sophisticated
management; (ii) Data replication is also required since
the system is accessible by the public and needs to be
fault-tolerant and reliable.
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We address these challenges in Section 4 by describ-
ing the heterogeneous data sources and how we inte-
grate, store, and prepare the data for use.

3.2 Problem 2: Utilizing Real-time Bus Data for
Multiple Routes that Sharing Similar Segments

Delay prediction models rely on training data. The pre-
diction accuracy depends greatly on the quality of train-
ing data. However, the data quality varies for the fol-
lowing reasons: (i) The bus timing is vulnerable to var-
ious conditions such as accidents, congestion, road con-
structions, weather conditions, etc. Therefore, the bus
travel time of the preceding bus on the same route
may just be an outlier and not reflect the future delay
trends; (ii) In mid-sized cities there are limited public
resources to support public transportation compared to
large metropolis. For example, route 3 (one of the bus-
iest bus routes in Nashville) has 37 trips on weekdays
in “From Downtown” direction [8], while M15-SBS in
New York has 144 trips in one direction [6]. The quan-
tity of data available for historical analysis and future
time prediction in mid-sized cities is less than those in
their larger counterparts, which makes it harder to learn
accurate models of the system; and (iii) Software bugs,
hardware malfunctions and wireless communication is-
sues may occur occasionally and result in missing or
faulty real-time data. For example, during our exper-
iments, often AVL data was not uploaded in proper
sequence and often had repetitions. Curating such data
becomes a challenge in itself.

We address these concerns in Section 5.2.1 by dis-
cussing how our short-term prediction model improves
the data quality by dividing all bus routes in the city
into shared route segments and utilizing real-time bus
data from segments shared by multiple routes.

3.3 Problem 3: Providing Schedule Adjustment
Feedback to Metro Transit Authority

Improving existing bus schedules is a critical task for
metro transportation authorities such as Nashville MTA.
MTA regularly examines the historical bus operation re-
ports and updates its bus schedules. Recently real-time
sensors are being installed on buses and MTA can track
the bus operation in real-time. However, it is still diffi-
cult for them to be aware of the actual bus status. For
example, by combining real-time bus location feed and
static bus schedule, it is not difficult to tell if a bus has
deviated from its schedule or not. However, the capa-
bility to differentiate a delay event from a normal delay
that fits historical delay patterns and thereby identify
outliers that need to be further investigated is still lack-
ing at present.

We present our solution to this challenge in Section
4.3 to by designing a data feedback loop for metro trans-
portation authority that tracks the real-time status of
the bus operating using analytics result from both his-
torical as well real-time prediction models.

3.4 Problem 4: Building and Deploying the System
with High Availability and Scalability

Traditional applications are often built in a monolithic
style where all logic for handling requests runs in a sin-
gle service process. Even though the monolithic archi-
tecture is easy to develop, deploy and it is also easy
to scale if a load balancer is used, when the scale of
the application increases, it will become too large and
complex for developers to understand, improve and con-
duct continuous deployment [34]. Also, the reliability of
the monolithic application will be a problem because a
break down in one component has the potential to im-
pact the entire application [36].

To improve the scalability and availability of the sys-
tem, we adopted a microservice architecture, which is
a modular architectural pattern for building and de-
ployment [31; 43]. The microservice architecture is well-
suited for cloud environments and has many advantages
over traditional architectures: (1) Smaller modules are
easier to develop and therefore improve the productiv-
ity of developers, (2) Services can be developed and de-
ployed independently, (3) The source of faults is more
apparent.

However, the microservice pattern is not perfect. It
has some unique drawbacks including (1) it is not easy
to partition an existing large-scale system into microser-
vices, (2) additional inter-microservice communication
mechanism is needed, (3) memory consumption may in-
crease especially if the microservices do not share the
same environment. In our current implementation, the
microservices are deployed in a single environment to
avoid this problem.

Section 6 explains how we addressed this challenge
by using a microservices architecture to develop and
deploy the back-end services.

4 Data Management and Feedback

In this section, we first present the heterogeneous data
sources that the system is using and then describe how
we integrate and manage the collected data to address
the issues raised in Section 3.1.

4.1 Data Sources

We have been collaborating with the Nashville Metropoli-
tan Transit Authority (MTA) for accessing the static
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Bus Schedules
Format Static GTFS
Source Nashville MTA
Update Every public release
Total Size 193 MB (Version: Mar. 9 2016)

Real-time Transit
Format Real-time GTFS
Source Nashville MTA
Update Every minute
Total Size 278 GB

Time Points
Format Excel
Source Nashville MTA
Update Every month
Monthly Size 300,000 entries/month

Table 1: Realtime and Static Datasets Collected and
Stored in the System.

and real-time transit data all across the Nashville city.
The data sources that we are collecting are as follows
(Table 1).

– Static GTFS data sets: Static bus schedules and
associated geographic information in the General
Transit Feed Specification (GTFS) [5] are collected.
The data sets include routes, trips, stops, stop times
and physical layout.

– Real-time GTFS data feed: Real-time transit fleet
feed in GTFS real-time [4] format that contains three
types of data: service alerts, trip updates and vehi-
cle positions. The data source of the feed includes
streaming Automatic Vehicle Location (AVL) data
on operating buses.

– Time point data sets: Time point Datasets are the
historical bus data at time points, including route
ID, trip ID, drive ID, actual departure and arrival
time, etc. This data is not available in real-time and
is only made available at the end of the month.

– Crowd-sourced Data Feed: Crowd-sourced data feed
is collected anonymously from the Transit-Hub mo-
bile app. Anonymous data generated by users is up-
dated to the server when a user uses the app for
route planning and navigation. It should be noted
that this data set is not being used in the system
described in the paper, however, we will exploit the
integration of user-supplied data for closing the loop
to the users in the future release.

4.2 Data Management

Data Collection. We have to handle data from each
source differently as they have different update rates
and formats. For example, (i) Bus schedule data (static
GTFS) is updated only when MTA modifies its bus
routes or schedules; (ii) Historical time point data set
is collected by MTA at the end of the month and is then
manually transferred and imported into our MongoDB
database. On an average, we collect approximately three

hundred thousand entries each month; and (iii) For the
real-time transit data, our back-end server requests the
data from these real-time feeds every minute and stores
the responses in the database (see Table 1).
Data Cleaning. Data cleaning is a crucial step for data
pre-processing to handle the following issues:

– Duplicated data. Detecting and eliminating dupli-
cated data is one of the major tasks for data clean-
ing. We compare and remove data with the same
time stamps and key-value pairs.

– Data with logistic errors. This type of data exists
mainly in the real-time bus location data. To deal
with it, for example, we remove the records where
a bus’ distance from a stop changes too fast, or if
it moves in the wrong direction. This is done using
some custom filters created by us.

– Missing data. This can happen for various reasons,
which are: (a) operational disruptions due to service
alerts, (b) hardware failures, or (c) data transmis-
sion issues. The missing data is filled in using linear
interpolation on the sampled data.

Data Storage. The large scale of the historical
and real-time transit data that are accumulated over
time requires efficient storage and management meth-
ods. Also, the stored data must be accessible to multi-
ple clients in the system at the same time. To meet this
scale requirement, we employ JSON as the data struc-
ture and MongoDB [7] for data storage. MongoDB is a
distributed NoSQL database that can efficiently store
and query data on the scale of terabytes.

4.3 Opportunities for Closing the DDDAS Loop

This section shows how data feedback in the transporta-
tion Decision Support System can be used to help metro
transportation authority (MTA) to identify real-time
outliers and perform long-term delay optimization to
improve bus services and availability.

Figure 1 illustrates the data feedback cycle. We uti-
lize the multi-source data from Nashville MTA to con-
duct real-time and long-term data analytics, and the
results can be sent back to them as feedback in differ-
ent ways:

– Metro Transportation Authority (MTA). By doing
long-term bus data analysis, our models can find the
delay patterns that are associated with seasons, day
of the week, and time of day. This feedback can be
used by MTA to identify bottlenecks within routes
and adjust the bus timetable or route layout accord-
ingly. Also, by tracking the real-time bus data and
comparing it with the historical delay patterns, we
are able to find the outlier trips that deviate from
the normal ones, which will be used to inform MTA
to investigate and avoid these in the future.
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Fig. 1: Proposed DDDAS Loop in Transit-Hub
Transportation Decision Support System between
MTA, Transit-Hub and end users.

– End Users. We are collecting anonymous usage and
location data from application users. This data can
be used to provide an alternative real-time data source
for buses. If a user plans to take a bus that is full of
people, the system can send notifications to advise
him/her to take some other bus or routes. In addi-
tion, it can also help to optimize the bus route net-
work and reduce rider walking distances as it shows
the origins of users to the bus stops and helps MTA
to identify areas with low/high transit service avail-
ability.

5 Model Construction

In this section, we present how we construct the long-
term delay model, short-term travel-time model and
arrival delay prediction model. In particular, we solve
Problem 2 described in Section 3.2 by creating a shared
route segment network and utilize real-time data from
multiple routes.

5.1 Building Model for Analyzing Long-term Delay
Patterns

The section describes a long-term analytics model that
constructs historical bus delay patterns at time points.
In this model, clustering methods are applied to histor-
ical arrival delay and travel delay data.

5.1.1 Clustering Analysis

For each weekday, K-means clustering algorithm [28]
is used to obtain the cluster of the delay data in accor-
dance with the delay and time of the day by minimizing

Fig. 2: Cluster historical delay data according to the
delay and time in the day at time point “HRWB” on
route 3. The figure shows that there are two active
delay patterns, one before and one after 2 PM. The
blue dots are outliers identified by analysis in
Section 5.1.3

the within-cluster sum of squares (WCSS).

argmin
S

k∑
i=1

∑
x∈Si

‖x− µi‖2 (1)

where µi denotes the mean of all points in the cluster
Si.

Silhouete analysis [35] is an approach to measure
how close each point is to others within one cluster.

s(i) = b(i)− a(i)
max{a(i), b(i)} (2)

where for each data point i in the cluster, ai is the av-
erage distance between i and the rest of data points in
the same cluster, bi is the smallest average distance be-
tween data point i and every other cluster, and s(i) is
the Silhouete score. We calculate the silhouette scores
for 2 to 5 clusters derived from K-means algorithm to
find the optimal number of clusters with the lowest sil-
houette score.

The normal distribution of the clustered data helps
to identify the typical delay patterns of previous buses,
which can be given to users when they want an estimate
for a future time, or if there is no real-time data avail-
able. The time point data is imported into the database
at the end of each month. Then the data is stored ac-
cording to weekday. We subsequently generate the clus-
ters and normal distributions for all the route segments
in each group. Meanwhile, the clustered data and nor-
mal distributions are cached and stored in the database.
Thus, when we have to query the model, there is no need
to run clustering analysis again.
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Example Consider a time point ’HRWB’ on route
3 in Nashville. The historical bus arrival delay data we
select is for Wednesday, outbound direction, between
June 1 2016 and June 30 2016 (for a total of 185 points).
Figure 2 displays the delay data for a day during that
month. In the figure, there are two obvious groups (yel-
low and red), one is between 5 AM - 2 PM and the other
one is between 2 PM and 12 AM. The two groups re-
veal that there exist two different delay patterns which
happen in the morning and in the afternoon separately.
This information can be provided to end users to help
them plan trips.

5.1.2 Normality Test and Analysis.

The analytics is based on the assumption that histor-
ical delay data has a normal distribution. In order to
ensure this, we perform normality test on each cluster
that we get in the previous step. We can calculate the
confidence interval for long-term delay analysis from the
distribution curve.

Fig. 3: Normal distribution of the clustered historical
delay data at time point “HRWB” on route 3

Example: These are the two normal distributions
in Figure 3 that we obtain after performing the nor-
mality test on the clusters generated from the data de-
scribed in the previous example. The cluster for the de-
lay in the afternoon has a higher mean value (92.0 sec-
onds vs. 58.0 seconds) and a wider normal distribution
curve, which indicates that buses on route 3 are more
likely to be on time in the afternoon. In the afternoon,
the 95% confidence interval of delay is between -60.4
seconds to 244.4 seconds while in the morning the 95%
confidence interval of delay is between -73.5 seconds to
189.6 seconds (the negative seconds mean the buses are
predicted to arrive earlier than scheduled time).

5.1.3 Outlier Analysis.

In order to identify outliers from historical bus data, the
first step is to generate the normal distribution for each
of the clustered data groups described in the former
sections. Since for a normal distribution where µ is the
mean value and σ is the standard deviation, 95% of all
data is within the confidence interval of [µ-2σ, µ+2σ],
we define that the outliers are the historical data with
delay greater than µ+2σ or less than µ-2σ in the dis-
tribution.

Example: For the dataset mentioned in the previ-
ous two examples, there exist some outliers (blue points)
in Figure 2. These outliers belong to the two clusters
obtained from clustering analysis and are identified by
outlier analysis. The outliers mostly emerged during
rush hours in the morning and in the evening. One hy-
pothesis is that during rush hours, there are more pas-
sengers and more traffic congestion on the route, which
will increase the boarding time at stops and travel time
on the road. Since our back-end server is monitoring
the real-time transit feeds and in the meantime records
real-time data, trips that have severe outliers and do not
fit in the typical delay pattern can be easily detected
and used for further investigation.

5.1.4 Bottleneck Identification

After mean delay patterns of all time points and all
route segments are derived, we can then identify the
bottlenecks along the routes by using those patterns.
This also helps so that actions to optimize the route
performance can be taken afterwards.

Timepoints
WE23 WE31 HRWB WHBG

Morning 116.90 127.71 93.14 443.52
Afternoon 121.03 146.28 114.48 545.49

Table 2: Mean value of the delay data distributions for
4 time points on route 3 in morning and afternoon in
June.

There are 4 time points “WE23”, “WE31”, “HRWB”
and “WHBG” on route 3 (traveling away from down-
town Nashville). Table 2 shows the findings that the
typical arrival delay for “WHBG” is 443.52 seconds
in the morning and 545.49 seconds in the afternoon.
Considering the fact that the typical arrival delays for
“WE23”, “WE31” and “HRWB”, timepoints before “WHBG”,
in the morning and afternoon are all below 150 seconds,
we can draw the conclusion that the bus stops between
“HRWB” and “WHBG” are the bottlenecks for route
3.
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5.2 Real-time Data Integration

This section describes a short-term bus arrival delay
prediction model that we have developed to address
the challenges presented in Section 3. The model inte-
grates real-time bus location data of shared route seg-
ments and combines clustering analysis and Kalman fil-
ters for delay prediction.

5.2.1 Utilizing Shared Route Segment Data

Fig. 4: Finding shared route segments between two
bus routes. The segment that contains the three center
points is shared by route 1 and route 2.

Problem 2 from Section 3.2 describes the issue that
real-time bus data is not always available due to infre-
quency of buses. To address this challenge, the short-
term delay prediction model in Transit-Hub creates a
shared bus route segment network, and uses the real-
time data from shared route segments for short-term
predictive analysis.

Our prior work [42] was based on shared route seg-
ments, but at that time we used shared segments that
were manually selected and we did not provide a solu-
tion to automatically identify shared route segments. In
this paper we present an algorithm to create a shared
bus route segment network for all the existing routes in
the city [41]. Also, the data that the algorithm uses is in
standard GTFS format, so the algorithm can be easily
applied to other cities that use the same data format.

A Route segment is defined as a maximal part of
bus route that is shared by a set of bus routes. In GTFS
format, the physical path of bus routes is described us-
ing a sequence of coordinate points (in the shapes.txt
file) on the map. If there are two segments from two
bus routes that share the same sequence of coordinate
points, then we can assume that the routes share that
road segment. The outline of the algorithm to generate
the share route segment network is described as below
(The key steps are illustrated in Figure 4):

Input: Static GTFS dataset. Static bus and associ-
ated geographic information are loaded from database.

Output: Shared route segment network. Segment
layout for each bus route is saved in the database.

Step 1: Map grid initialization. The Nashville map
is divided into map grids of squares. The length of each
square is about 8.97 meters, so each grid cell covers
about 80.51 square meters on the map.

Step 2: Route path re-sampling and smoothing. The
sequences of points in all bus routes are re-sampled to
the centers of grid cells if the point is covered by the
cell. Also, if the distance between adjacent points in the
sequences is larger than the width of a grid cell, points
will be interpolated to fill the cells that are missing
points. The re-sampled points of each route are cached
in the database for determining the shared route seg-
ments in the later step. As shown in Figure 4, the paths
of route 1 and 2 are re-sampled to the center points of
grid cells.

Step 3: Calculating segments for bus routes. Each
cell is tagged by every route that uses that cell. If a
cell contains tags from multiple routes then it becomes
part of a new shared segment. For example, the three-
point segments in Figure 4 are shared by route 1 and
2, so this segment is marked as a shared route segment.
New segments are checked to make sure no duplicated
segments are generated.

Step 4: Segment length limitation. Any segment
that has a length that is greater than 1 mile is divided
into smaller segments. because our model is based on
the assumption that the travel delay within each seg-
ment is equally distributed, and hence the division of
larger segments into smaller ones will satisfy this as-
sumption and reduce prediction error.

Using Nashville’s static GTFS (version of March
9, 2016), we generated a shared route segment net-
work shown in Figure 5. The 57 bus routes in Nashville
city were divided into 5139 segments. The lines in dif-
ferent colors show different route segments. Since the
static bus schedules are updated regularly by MTA, the
shared route segment network should be updated when
new schedules are released.

There are many benefits to using real-time data of
shared route segments, such as: (1) Utilizing the real-
time data from other routes can greatly increase the vol-
ume of data that are available for short-term delay pre-
diction analysis. For example, the route 3 in Nashville
from White Bridge to Downtown has a schedule inter-
val of 40 minutes at holiday and weekends. Only using
route 3 data means the most recent data is at least
40 minutes old, which is not recent enough to predict
the currently delay on route 3. (2) The length of each
segment in the network can be controlled by the one-
mile limitation mentioned in the last step of the algo-
rithm. Since the delay pattern varies along a bus route,
segments with longer length are divided by the algo-
rithm to produce more accurate analytics results. (3)
By creating a shared route segment model, the divide
and conquer design pattern is used. Individual and self-
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Fig. 5: Generated shared bus route segment network in Nashville. The lines with different colors represent the
5139 shared route segments in all 57 bus routes in the network. The length of the segments are limited to less
than 1 mile.

maintained microservice model can then run for each of
the segments concurrently.

5.2.2 Estimating the Arrival Time at Bus Stops

Since the actual arrival time at bus stops are not in-
cluded in the real-time GTFS feed in Nashville, we in-
tegrate the real-time bus location data and the static
bus stop locations to estimate the arrival time of buses.

From the real-time bus location feed, we can get the
bus location and timestamps in the following array for-
mat: [(t1, d1), ..., (tk, dk), ...]. Because the update rate
of the original data varies from seconds to minutes, we
first aggregate the collected data into 1-minute average
data using sliding time windows. Then, we assume that
bus speed is approximately the average of the two ad-
jacent data points and apply the following equation

to calculate the bus arrival time at stops:

tstop = tk−1 + (tk − tk−1)dstop − dk−1

dk − dk−1
(3)

where tstop denotes the estimated arrival time, dk is the
bus’s distance from the current location to the first bus
stop of the route along the route path at time tk. Also,
dk−1 <= dstop < dk.

5.2.3 Updating the Travel Delay Prediction Using
K-means Algorithm and Smoothing Filter

Excluding the outliers. If the travel time of a pre-
ceding bus differs greatly from other preceding buses,
we consider this point an outlier and exclude it from
the model computation.

To identify the outliers from the data, we employ
K-means algorithm to cluster the preceding bus data
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according to travel time and time in the day. The Sil-
houette analysis that was introduced in equation 2 is
also used here to find the optimal number of clusters.
We choose the cluster whose time of day is closest to
the current time. The data points from that cluster are
smoothened through the filter described in the next sec-
tion and used as an estimate for the current travel time
on that segment.

Smoothing the preceding bus data. By compar-
ing the travel time of preceding buses and the scheduled
travel time within the route segment, we compute the
travel delay of the preceding buses in the segment. The
travel delay data is then through a filter to eliminate
noise and predict the segment’s current travel delay.
The state transition equation is:
xk = xk−1 + ωk−1 (4)
where the state variable xk denotes the time step for
which the travel delay needs to be predicted, ωk denotes
the zero mean normal distribution noise with covariance
Qk.

The observation equation used is:
zk = xk + νk (5)
where variable zk represents the observation of delay
at time step k. νk represents the zero mean Gaussian
distribution observation noise with covariance Rk. ωk

and νk are assumed to be independent.

5.2.4 Example

In this section we use an example to explain the work-
flow of Transit-Hub multi-timescale analysis services.
Figure 6 illustrate a common scenario where a bus b1 is
running along a bus route r1 and the system needs to
predict on request, the expected delay for a bus at stop
si:
1. Creating shared route segment network. From the

figure we can see that routes r1 and r2 are divided
into 5 segments: seg1, seg2, seg3, seg4, seg5. The
segment seg2 is shared by the routes.

2. Getting preceding buses using static bus schedules.
From the static bus schedules we find that there are
many buses (b2, b3, etc.) from route r1 and r2 that
have passed through segment seg3

3. Estimating travel time of the buses in segments. Pre-
ceding buses’ travel time can be estimated using the
collected real-time bus location data.

4. Predict travel delay in segments. The data from re-
cent buses are clustered by travel time and time
in the day. The group of data whose mean value
(time in the day) is closed to the current time will
be smoothed with a Kalman filter.

5. Getting arrival delay at bus stop. The sum of the de-
lays for each segment between the current bus posi-
tion and the target stop sn is the model’s prediction
for arrival.

Fig. 6: Use Case: Example of Using Shared Route
Segment Data to Predict a Bus’s Delay at a Bus Stop

6 Deployed Architecture

In this section, we describe the implementation archi-
tecture for the short term online delay prediction ser-
vice, which addresses problem 4 described in Section 3.4
concerning scalability and availability.

Section 3.4 compared two deployment patterns: tra-
ditional monolithic style and microservice style. Mi-
croservice deployment is an application architectural
pattern where independently deployable and self-contained
services can work together, which may be more suitable
for complicated web applications [34; 36; 31]. Microser-
vices communicate with each other via lightweight net-
work mechanisms, such as using REpresentational State
Transfer (REST) API, message broker, etc. Figure 7
illustrates the overall architecture of the Transit-Hub
analytics.

Fig. 7: Microservice architecture of Transit Hub
back-end analytics services

Microservice 1: Smoothing the real-time GTFS data.
Microservice 1 first cleans the raw real-time GTFS data
by removing the duplicate and missing data, and then
re-sample it to estimate the bus arrival time on bus
routes. This microservice tracks real-time bus location
and when a new bus travels through a route segment,
it will inform Microservice 2 which updates the travel
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time delay for this route segment. Microservice 1 is ac-
tivated by a scheduler every 5 minutes.

Microservice 2: Predicting arrival delay at seg-
ments. Microservice 2 collects the data processed by
Microservice 1 and employs short-term delay predic-
tion (Section 5.2) to update the estimated delay for the
route segments. When Microservice 2 receives a predic-
tion update request for a route segment, it wakes up
and runs the prediction process to update the travel
delay prediction for that route segment.

Microservice 3: Predicting arrival time at bus stops.
Microservice 3 combines the current delay of all buses
and the predicted travel delay for all route segments to
produce the arrival delay prediction at all bus stops for
all routes. This microservice is activated every minute
and stores the prediction results in the database. Note
that Microservice 2 runs per route segment whereas ser-
vice 3 runs to update the arrival time for all routes.

Representational state transfer (REST) API and mes-
sage broker are two of the popular approaches for pro-
viding a communication mechanism between microser-
vices. The REST approach is synchronous by default
and uses DNS or a registry for service discovery, and
supports load balancing by using software like Ribbon [11].
The message broker is an asynchronous mechanism, which
uses queues to manage message queues and can achieve
load balancing very easily. Asynchronous message pass-
ing is a better choice for microservices because: (1) the
individual microservice that sends a message will not
be blocked before the other microservice responds; (2)
using asynchronous communication can help to reduce
unnecessary duplicate computation. For example, in our
architecture, microservice 1 is continuously sending the
IDs of route segments that need to update prediction
to microservice 2. If we find that there are two identical
segment IDs in the message queue, then the duplicate
can be removed to avoid duplication of work. Based on
these considerations, we use RabbitMQ [10], which is a
message broker that provides asynchronous messaging.

The microservices are deployed on an OpenStack [9]
cloud operating system. We created a m1.large nova
computing instance for the microservices which has 4
virtual CPUs, 8GB RAM and runs Ubuntu 14.04 (LTS).
The microservices all together use 10.9% CPU resources
and 28% RAM on average. The performance and re-
source consumption of the microservices will not be af-
fected by user interactions. They run separately and
repeatedly in the back end and store analysis results
for later use. When an end user sends a prediction re-
quest for a route, an independent service in the system
will fetch the prediction results from the database and
provide the information to the end user.

7 Prediction Performance Evaluation

This section presents experimental results from Transit-
Hub’s real-time delay prediction model. These results
empirically evaluate Transit-Hub’s bus travel time delay
prediction ability against a SVM-Kalman model [15]
using real-time data collected in Nashville. Compared to
the SVM-Kalman model, our model takes the scheduled
time of preceding buses into consideration, and since we
are clustering the data of preceding buses according to
time of day and delay, only clusters with an average
time of day close to the current time of day will be
used. We also evaluate how well our model predicts
arrival delay comparing it against real-world data.

7.1 Experiment 1: Evaluating the Travel Time Delay
Prediction

The first experiment is designed to evaluate Transit-
Hub’s ability to predict travel time delay, using its pre-
diction model and comparing against other prediction
models using the same real-world data.

Experiment Setup. Routes 3 and 5 are two of the
major bus routes in Nashville. As shown in Figure 8,
they share the same route segment between time point
WES23AWN and time point WES31AWN along West
End Avenue. We select this route segment of route 3
and 5 towards WHITE BRIDGE to test our proposed
model.

The data used in this experiment is the real-time
and static GTFS data for routes 3 and 5 that we col-
lected from Nashville MTA in June 2016. We divide the
data into two parts: a training dataset and a validation
dataset. The training dataset contains bus data from
June 6th to June 12nd and the validation dataset con-
tains data from Jun 13rd to Jun 15th. Our model and
the SVM-Kalman are evaluated using the same valida-
tion dataset. From our previous paper [42] we learned
that only data 120 minutes old or newer is important
for real-time delay prediction. Therefore, in this exper-
iment we use the data for buses in the past 2 hours.

Comparing with a SVM-Kalman Model. In or-
der to evaluate the performance of the proposed short-
term delay prediction model, we chose and implemented
a dynamic SVM-Kalman model that was proposed by
Bai, et al. in 2015 [15]. The dynamic model consists
of a support vector machines (SVM) model that uses
historical data to estimate the current travel time as
a baseline prediction, and a Kalman filter model that
uses real-time preceding bus data to adjust the base
time. The features that they use in the SVM model
include: (1) time of the day, (2) road segment ID, (3)
weighted average bus travel time of preceding buses,
and (4) the travel time of the preceding buses on the
same route.
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Fig. 8: Studied road segment shared by route 3 and 5

Fig. 9: RMSD of travel time delay prediction for each
day when comparing the Transit-Hub model with the
SVM Kalman model proposed in 2015. Transit-Hub
model outperforms the SVM-Kalman model: (1)
RMSD values are smaller (2) it shows less variation on
different days.

Results. Figure 9 shows the root-mean-square devi-
ation (RMSD) of the travel time delay prediction results
for three days in June. The RMSD of travel time delay
is calculated using the following equation:

tact tra
ij = tact arr

j − tact dep
i (6)

Fig. 10: Arrival time delay prediction for a bus stop of
a trip: (1) actual arrival delay, (2) predicted mean
value - standard deviation, (3) predicted mean, (4)
predicted mean value + standard deviation.

RMSD =

√∑n
i (tact tra

ij − tpred tra
ij )2

n
(7)

where i and j are indexes of the timepoints along the
route, and i < j. Variable tact arr

i and tact dep
i represent

the actual arrival and departure time at timepoint i,
tact tra
ij and tpred tra

ij represent the actual and predicted



travel time at the segment between timepoint i and j,
respectively. n is the number of bus trips in the dataset.

Since the SVM model ignores the differences that
exist in the scheduled travel of preceding buses and the
model does not exclude outliers, we expect our model to
outperform the SVM model from [15]. The experimen-
tal results validate our hypothesis. When predicting the
travel time delay 15 minutes ahead using collected data
from Jun 12 to Jun 15, the RSMD of the our model is
about 30% to 65% lower compared to the SVM-Kalman
model.

7.2 Experiment 2: Evaluating the Arrival Time Delay
Prediction

The second experiment is designed to evaluate the short-
term prediction model’s performance when the predic-
tion horizon changes. For this experiment, we choose a
trip from route 3 on June 14th 2016. The studied seg-
ment is shown in Figure 11.

Results. Figure 10 shows the actual delay and the
predicted arrival delay with confidence interval as the
prediction horizon decreases from 19 minutes to 0 min-
utes (the time just before the bus arrived).

Since our model integrates the predicted the travel
delay in route segments and estimated arrival delay at
the most recent bus stop that the bus passed, we expect
the predicted confidence interval will become smaller
and the error will decrease as the prediction interval
reduces, i.e., as we make the prediction closer to the
scheduled time of arrival.

This example shows that when predicting 19 min-
utes before the actual arrival time, the confidence in-
terval is 226.5 seconds and the interval decreases to 2.1
seconds. We notice a 27.8 seconds difference between
predicted delay and actual delay when the bus arrives,
we attribute this to normal system variance.

8 Conclusion and Future Work

In this paper, we presented research on a DDDAS-enabled
smart public transportation decision support system
that significantly extends our prior work on Transit-
Hub [42] by illustrating and validating the methods de-
veloped for long-term and short-term predictive analyt-
ics services. Table 3 summarizes the work by present-
ing the challenges we resolved, the corresponding design
principle used, and approaches when developing the sys-
tem. Our long-term delay analysis service excludes the
noise of outliers in the historical dataset and identifies
the delay patterns of time points and route segments
that are associated with different times of day, day of
the week and seasons. The city planners can utilize the
feedback data to optimize the bus schedules and im-
prove rider satisfaction. Residents and travelers in cities

like Nashville can also benefit from our short-term delay
prediction services.

In the future, the work presented in the paper can
be extended in the following ways: (1) We want to in-
tegrate more data sources into the analysis and pre-
diction models. New data sources, such as traffic flow,
weather conditions, special events, can impact public
transportation and can be used as new feature vectors
to improve the current services. The crowd-sourced data
is being collected and the integration of user data will be
explored in the future. (2) The services can be deployed
further in edge devices using tools like Apache Edgent
[3] to reduce the data transmission between edge nodes
and a central analytics engine. (3) The system can fit
into a smart city platform called Cyber-pHysical Appli-
cation aRchItecture with Objective-based reconfigura-
Tion (CHARIOT) [33], which will improve the system’s
resilience and communication heterogeneity. (4) Storm
is a scalable, fast and distributed computation system.
In order to scale the Transit-Hub system to serve multi-
ple cities in the future, Storm can be integrated into the
system to consume the distributed streaming real-time
data feeds, run the multi-timescale analytics and then
make the results available to all users.
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