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Abstract. Several localization algorithms exist for wireless sensor net-
works that use angle of arrival measurements to estimate node position.
However, there are limited options for actually obtaining the angle of
arrival using resource-constrained devices. In this paper, we describe a
radio interferometric technique for determining bearings from an anchor
node to any number of target nodes at unknown positions. The underly-
ing idea is to group three of the four nodes that participate in a typical
radio interferometric measurement together to form an antenna array.
Two of the nodes transmit pure sinusoids at close frequencies that in-
terfere to generate a low-frequency beat signal. The phase difference of
the measured signal between the third array node and the target node
constrains the position of the latter to a hyperbola. The bearing of the
node can be estimated by the asymptote of the hyperbola. The bearing
estimation is carried out by the node itself, hence the method is dis-
tributed, scalable and fast. Furthermore, this technique does not require
modification of the mote hardware because it relies only on the radio.
Experimental results demonstrate that our approach can estimate node
bearings with an accuracy of approximately 3◦ in 0.5 sec.

1 Introduction

Spatial coordination in wireless sensor networks (WSNs) has received a lot of
attention in recent years. In typical solutions, one or more nodes emit a signal,
and some property of that signal (e.g. angle of arrival (AOA), time of arrival
(TOA), received signal strength (RSS), etc.) is measured and used to derive
bearing or range. Angulation or lateration techniques can then respectively be
used to estimate a node’s position.

Although several techniques exist for determining node position based on
bearing information [1], [2], [3], [4], [5], there are few options for actually mea-
suring signal AOA in WSNs. Currently available methods for bearing estimation
require a heavy-weight infrastructure [6], rotating hardware [7], [8], directional
antennas [9], and/or expensive and sophisticated sensors [10]. Furthermore, such
techniques typically require participating nodes to be stationary for extended pe-
riods of time. These constraints are often undesirable for WSN deployments, in



which node size and cost must be kept to a minimum. An AOA approach that
does not require additional hardware, runs on the nodes themselves, and is fast
enough to support tracking in addition to static localization would be a major
step forward.

In this paper, we propose a novel AOA approach for WSNs that uses radio
interferometry [11]. The basic idea is to group together three of the four nodes in-
volved in a typical radio interferometric measurement to form an antenna array,
which acts as an anchor node. Two transmitters and one receiver are arranged
in such a manner that their antennas are mutually orthogonal to minimize par-
asitic antenna effects (see Figure 1.) The measured phase difference between the
receiver in the array and a target node constrains the location of the latter to a
hyperbola. The bearing of the target node can then be estimated by computing
the angle of the hyperbola asymptote, assuming the target node is not too close
to the array.

Fig. 1. Antenna array implementation using three XSM motes.

We present several new contributions for estimating the angle of arrival in
wireless sensor networks.

1. We describe an RF-based technique for determining target node bearing.
2. We provide a detailed analysis that shows our bearing estimation algorithm

is robust to measurement noise and approximation error.
3. We design a real-world implementation using COTS sensor nodes, in which

bearing estimation is performed entirely on the resource-constrained motes.
4. We present experimental results that show our approach can rapidly and

accurately estimate node bearing.

The remainder of this paper is organized as follows. In Section 2, we discuss
other angle of arrival techniques for WSNs. Section 3 describes our proposed
system, followed by an error analysis in Section 4. In Section 5, we describe our
implementation on a real-world WSN platform. In Section 6, we evaluate our
system based on experimental results. Section 7 concludes.



2 Related Work

The RF method we use for determining AOA is based on radio interferometry.
The Radio Interferometric Positioning System (RIPS) provides accurate RF-
based localization in WSNs [11]. The main idea is that the resource-constrained
nodes cannot sample a pure RF signal fast enough, but can process the lower-
frequency envelope of the beat signal that results from the interference of two
high-frequency signals. The difference in signal phase measured by two other
nodes is a linear combination of the distances between the transmitters and
receivers, modulo the wavelength, and can be used for localizing all participat-
ing nodes by solving an optimization problem. Although RIPS has centimeter-
accuracy and can support inter-node distances of greater than twice the com-
munication range, it requires centralized processing, suffers from high latency,
and involves sampling at several frequencies.

A broad spectrum of acoustic beamforming techniques have been proposed
to find the angle of incidence of a signal at an array of sensors. The most com-
mon techniques include delay-and-sum beamforming, Capon beamforming [12],
MUSIC [13], ESPRIT [14] and min-norm [15] algorithms. Since the time of flight
of the signal from the source to sensors in the array varies based on their pair-
wise distances, sensors receive the signal with different phases. While all of these
methods compute the bearing of the source from the data streams sampled at
the individual sensors, they differ greatly with respect to their angular resolu-
tion as well as their computational requirements. In WSNs, angular resolution
is typically within 10◦ [16].

The Cricket Compass [17] is a device which uses ultrasound to determine
orientation with respect to a number of ceiling-mounted beacons. Two receivers
are mounted a few centimeters apart on a portable device, and the phase differ-
ence of the ultrasonic signal is measured to determine bearing. Although both
the Cricket Compass and our approach measure signal phase difference to derive
AOA, the two systems use different hardware, signal modalities, phase disam-
biguation techniques, and bearing derivation algorithms. The Cricket Compass
has an accuracy of between 3◦ and 5◦, depending on the orientation of the com-
pass.

Angle of arrival can be used in different ways for spatial coordination. Tri-
angulation, for example, is the process of determining the position of an object
from the bearings of known reference positions. Two such reference positions (or
three non-collinear ones in degenerate cases) are enough to localize any number of
nodes within range. In [2], a method is given to determine position based on the
angular separation (the difference in bearings) between beacons. Other angle of
arrival positioning approaches have been developed, including multiangulation
using subspace methods [4], anchor bearing propagation [1], and semidefinite
programming [3]. Bearing estimates can also be useful when anchor positions
are unknown. In [18] and [19], mobile robot navigation methods are presented
for arriving at a target position by only observing angular separation between
two pairs of landmarks.
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Fig. 2. Array containing a master node (M) and two assistant nodes (A1, A2). A target
node (R) computes its bearing (β) from the array.

3 System Overview

Radio Interferometric Measurements. Our system consists of a station-
ary antenna array and cooperating wireless sensor nodes at unknown positions.
We assume that the position of the midpoint of the array is known, as well
as the distance between the antennas in the array. The array contains three
nodes, a master (M) and two assistants (A1, A2), as shown in Figure 2. At a
predetermined time, the master, M , and one of the assistants, A1, transmit a
pure sinusoidal signal at slightly different frequencies, which interfere to create a
low-frequency beat signal whose phase is measured by the other assistant in the
array, A2, and a receiver node, R, at an unknown position. Such a measurement
is termed a radio interferometric measurement (RIM).

The difference in phase, ∆ϕ = ϕR − ϕA2
, measured by receiver nodes R

and A2 is a linear combination of the distances between the transmitters and
receivers,

∆ϕ =
2π

λ
(dMA2 − dA1A2 + dA1R − dMR) (mod 2π),

where λ is the wavelength of the carrier frequency, dMR is the distance be-
tween the master node and target receiver node, dA1R is the distance between
the assistant transmitter and the target receiver node, and dMA1

, dMA2
, and

dA1A2 are the respective distances between all pairs of nodes in the array.
Note that the nodes in the array are equidistant from each other, and there-
fore dMA2

− dA1A2
= 0, so the phase difference can be simplified:

∆ϕ =
2π

λ
(dA1R − dMR) (mod 2π). (1)

We denote the distance difference dA1R − dMR by dA1MR and refer to it as
a t-range. From Equation (1), we can see that if −λ2 < dA1MR < λ

2 , the phase
difference will fall in the interval (−π, π). When this is not the case, the possible
range of ∆ϕ will exceed 2π, which results in a modulo 2π phase ambiguity. To
avoid this, we would like the maximum possible distance difference to be less
than λ

2 . The maximum distance difference will occur when the receiver node
is collinear with the transmitters M and A1. dA1MR then corresponds to the



distance between the master and assistant. Therefore, to eliminate the modulo
2π phase ambiguity, we require the distance between antennas in the array to
be less than half the wavelength of the carrier frequency.

Having removed the modulo operator, we can rearrange Equation (1) so that
known values are on the right hand side.

dA1MR =
∆ϕλ

2π
(2)

The t-range dA1MR defines an arm of a hyperbola that intersects the position
of node R, and whose asymptote passes through the midpoint of the line A1M ,
connecting the master and assistant nodes. Figure 3 illustrates such a hyperbola
with foci A1 and M . The absolute value of the distance differences between the
foci and any point on a hyperbolic arm is constant, formally defined as

x2

a2
− y2

b2
= 1

where (x, y) are the coordinates of a point on the hyperbola, a is the distance
between the hyperbola center and the intersection H of the hyperbola with the
axis connecting the two foci, and b is the length of the line segment, perpendicular
to the axis connecting the foci, that extends from H to the asymptote.

R

d
MR

d
A
1
R

H
a

c
β

O MA
1

A
2

b

Fig. 3. The t-range defines a hyperbola that intersects node R, and whose asymptote
passes through the midpoint of the two transmitters in the array.

Bearing Approximation. The hyperbola in Figure 3 is centered at O, and
the distance between O and either focus is denoted by c. Furthermore, it can
be shown that c2 = a2 + b2 [20]. From the figure, we see that the bearing of



the asymptote is β = tan−1( ba ). Therefore, in order to solve for β, we must
determine the values of b and a.

We can solve for a by observing that

dA1R − dMR = dA1H − dMH

because, by definition, the distance differences between the foci and all points
on the hyperbola are constant. From Figure 3, we see that we can substitute
(c+ a) for dA1H and (c− a) for dMH , and therefore,

dA1R − dMR = (c+ a)− (c− a) = 2a.

From Equation (2), we know the value of dA1R−dMR, which is the t-range, and

therefore a =
dA1MR

2 . We can then solve for b, using b =
√
c2 − a2. In terms of

known distances, the bearing of the asymptote is then defined as

β = tan−1


√(

dA1M

2

)2
−
(
dA1MR

2

)2
(
dA1MR

2

)
 . (3)

In Figure 3, we see the case where dA1MR > 0, and the position of R lies on
the right arm of the hyperbola. If the phase difference is negative (i.e., ϕR < ϕA2

)
then the position of R will lie on the left arm of the hyperbola. When this is the
case, β is taken clockwise, and we must adjust it by subtracting it from π.

The line A1M connecting the two foci is called the transverse axis of the
hyperbola, and is a line of symmetry. This implies that although we know b, we
do not know its sign, because mirrored positions on either side of the transverse
axis will result in the same dA1MR. Therefore, the asymptote bearing β we
obtained using this method could be either positive or negative. To find which
bearing is correct, we can switch the roles of the assistant nodes in the array and
perform another RIM. This will generate a different t-range, and hence another
hyperbolic arm with foci A2 and M .

Each hyperbola provides us with two angles ±βi, where βi is the angle of the
asymptote with the transverse axis, AiM . Of course, these angles will be offset
from the global x-axis, because the orientation of AiM may not be 0. Adjusting
for this, one of the β1 bearings, and one of the β2 bearings will point in the
same direction, which will approximate the actual bearing of R, as illustrated in
Figure 4. Due to the position difference between the centers of the two hyperbo-
las, we do not expect these two angles to be equal, therefore we define a small
threshold εβ , such that if |β1−β2| < εβ , these two angles are considered a match.

We then take the average of the two angles to obtain our bearing estimate, β̂.
Because points on the hyperbola converge with the asymptote as their dis-

tance from the hyperbola center increases, the bearing approximation error is
larger when R is close to the array. We therefore make the assumption that node
R is a sufficient distance from the array. In Section 4, we show that this distance
does not need to be large when using small-aperture arrays.
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Fig. 4. Determining the true bearing of R is accomplished by selecting +β or −β from
each master-assistant pair, such that the difference between the two angles is below
the threshold εβ .

4 Error Analysis

In this section, we present an error analysis of the proposed bearing estimation
technique. It is important to note that, although we use phase differences as in-
put to our bearing estimation algorithm, the algorithm is generalizable to small-
aperture sensor arrays that can derive distance differences using any means.
For instance, RF ultra wide band antenna arrays, acoustic or ultrasonic sensors,
and other types of arrays that can yield time-difference-of-arrival (TDOA) mea-
surements from (sufficiently) distant sources fall into this category. Therefore, in
this section, we assume the inputs to be distance differences. Notice that the dis-
tance differences are linearly related to RIM measurements (see Equation (2)),
and therefore the error sensitivity results presented below remain valid. In the
generalized case, the same applies to TDOA measurements, from which the dis-
tance differences can be computed via multiplication of the respective signal
propagation speed (speed of sound for acoustic, speed of light for RF).

Typically, bearings are computed from distance differences by solving a non-
linear set of equations using iterative techniques. Such techniques are prohibitive
on low-end microprocessors due to their computational cost. We make a set of
assumptions that allows us to compute bearing estimates in a reasonably simple
way. While our bearing estimation technique is computationally less expensive
than traditional nonlinear optimization techniques, our simplifying assumptions
introduce estimation errors, which we identify below.

– Measurement noise. The distance differences observed by the receiver nodes
contain measurement noise. The measurement noise can be attributed to, for
instance, non-ideal signal propagation, noise from the electrical circuitry of
the receiver, sampling error and quantization error of the analog-to-digital
converter (ADC).

– Asymptote approximation. For a pair of transmitters, we approximate the
bearing of the receiver with the angles of the asymptotes of the hyperbola.



This is a good approximation if the receiver is sufficiently far from the trans-
mitters, because the hyperbola converges on its asymptote. However, for
close receivers, errors due to this assumption will not be negligible.

– Translation of bearing candidates. At least two transmitter pairs are required
to unambiguously compute the bearing because, for just one transmitter pair,
the angles of both asymptotes are possible solutions. We refer to the two so-
lutions as bearing candidates. Since, for a transmitter pair, we compute the
bearing candidates with respect to the midpoint of the segment defined by
the two antennas, fusing bearing candidates from two different transmit-
ter pairs is not possible without knowing the distance of the receiver. We
use the far-field assumption (i.e., that the receiver is infinitely far from the
transmitter array) to carry out the disambiguation and fusion of bearings,
introducing an error this way.

We intentionally omit the analysis of array position and orientation errors
and instead make the following assumptions:

– Antenna configuration is known. The transmitter locations are assumed to
be given. It is assumed that the transmitter nodes are fabricated with a
prescribed antenna separation.

– Relative bearings. We assume that the computed bearings are given in the
local coordinate system of the array. Hence, the location and orientation
errors of the array are not considered in the error analysis of the bearing
estimation.

We first analyze the sensitivity of the bearing estimates to noise in the dis-
tance difference inputs. Second, we analytically derive the errors related to the
asymptote approximation and to the translation of bearing candidates. These
errors depend on the bearing and distance of the target receiver, relative to the
transmitter array. Finally, we provide an analysis of the total bearing estimation
error resulting from both noise in the inputs and the errors due to the asymptote
approximation and the translation of bearing candidates.

Sensitivity of bearing to measurement noise. A distance difference from
a pair of transmitters in the array constrains the location of the receiver to one
arm of a hyperbola, the foci of which are the positions of the two transmitters.
For the sake of simplicity, let us assume that the two transmitters M and A1

are located at (c, 0) and (−c, 0), respectively (see Figure 3). If the measured
distance difference is positive, the receiver is constrained to the right arm of the
hyperbola, while if the distance difference is negative, the receiver is located on
the left arm. We approximate the bearing of the receiver using the asymptote
angles as follows:

β̂ =


±tan−1

(√
c2−a2
a

)
, if a > 0

±π2 , if a = 0

π ∓ tan−1
(√

c2−a2
a

)
, if a < 0

(4)



We analyze the sensitivity of the bearing estimates β̂ to noise in the distance
difference by taking the partial derivative of Equation (4) with respect to the
distance difference. To see what amplification effect an error in a given distance
difference d produces on the bearing estimate, we need to evaluate the partial
derivative at d.

Figure 5a shows the relation between the measured distance difference d and
the bearing candidates β̂ when the antenna separation is half the wavelength

(λ2 ). Notice the ambiguity of the bearing candidates. Figure 5b plots δβ̂
δd for each

solution of β̂. This figure shows that when the absolute value of the measured
distance difference is close to the antenna separation, the computed bearing
candidates are very sensitive to measurement noise. For instance, if the distance
difference is 80% of the antenna separation, an infinitesimally small error in the
measurement will be amplified ten-fold in the bearing estimate.

−λ/2 −λ/4 0 λ/4 λ/2
0

60

120

180

240

300

360

Distance Difference
(a)

B
ea

rin
g 

(d
eg

re
es

)

−λ/2 −λ/4 0 λ/4 λ/2
−50

0

50

Distance Difference
(b)

E
rr

or
 S

en
si

tiv
ity

Fig. 5. (a) Relationship between measured distance difference and computed bearing.
(b) Sensitivity of the computed bearing to measurement noise.

Asymptote approximation. The error of approximating a hyperbola with its
asymptote is the difference between the approximated bearing β̂ and the actual
bearing β of the receiver. Assuming that the receiver R is located at (u, v),
the actual bearing will be β = tan−1( vu ). Hence, the error ε introduced by the
asymptote assumption is

ε = β̂ − β =


±tan−1

(
v
u

)
∓ tan−1

(√
c2−a2
a

)
, if a > 0

0, if a = 0

∓tan−1
(
v
u

)
± tan−1

(√
c2−a2
a

)
, if a < 0

(5)

Figure 6a shows the error introduced by the asymptote approximation when
the receiver is located respectively one, two, and three times the antenna dis-
tance away from the midpoint of the segment connecting the two antennas. As



expected, the error of the approximation decreases as the distance of the receiver
from the transmitter array increases, that is, as the hyperbola converges on its
asymptote. As we can see, the maximum error introduced by the asymptote
assumption is less than 0.6◦, as little as three antenna distances away.

Translation of bearing candidates. For a pair of transmitter antennas, it is
not possible to unambiguously approximate the bearing of the asymptote. Be-
cause the hyperbola arm has two asymptotes, the angle of either one can be the
correct bearing estimate. Hence, we need two transmitter antenna pairs for dis-
ambiguation. Let us treat the bearing candidates (computed from the t-ranges
of both transmitter antenna pairs) as vectors of unit length, with bases at the
center of the hyperbolas, and whose angles are the computed bearing candidates.
Since these vectors are given in the coordinate system of the respective hyper-
bolas, we need to transform them to the coordinate system of the array. This
transformation includes a translation and a rotation. Then, we translate each
vector such that its base is at the origin. Clearly, the bearing vector translated
this way will not point directly toward the target receiver anymore, but if the
receiver is sufficiently far from the transmitter array, the introduced angular er-
ror will be small. Finally, we disambiguate the bearing candidates by finding two
that have approximately the same value.

Let us now express the angular error caused by the translation of bearing
candidates. We assume that the transmitter is a uniform circular array of three
antennas, with pairwise antenna distance of λ

2 . The coordinate system of the
array is set up such that the midpoint of the array is at the origin, and antenna
M lies on the positive side of the x-axis. Let us consider only the correct bearing
candidate (the other will be discarded later) for transmitter pair M and A1.
Furthermore, let us assume for now that the bearing candidate has no error.
The difference between the actual bearing of the target receiver and the angle
of the bearing candidate translated to the origin gives the angular error of the
far-field assumption.

Figure 6b shows the error introduced by the far-field assumption when the
receiver is located respectively one, two, and three times the antenna distance
away from the midpoint of the segment connecting the two antennas. As we can
see, as few as three antenna distances away, the maximum error introduced by
the antenna assumption is less than 5◦. In this particular antenna arrangement,
the maximum errors are at 15◦ and 225◦, respectively.

Compound bearing estimation error. Since one transmitter pair reports
two bearing candidates, at least two transmitter pairs are required to resolve this
ambiguity. For the sake of simplicity, let us assume that we have two transmitter
pairs. Clearly, there must be one bearing candidate for each transmitter pair
that is close to the true bearing. Except for some degenerate cases, the other
two bearing candidates will be significantly different than the true bearing, and
will not be close to each other (see Figure 4). Therefore, in order to disambiguate
between the correct and incorrect bearing candidates, we take all possible pairs
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Fig. 6. Error in bearing (in degrees) caused by (a) the assumption that the receiver lies
on the asymptote, and (b) assuming that bearing from the midpoint of the segment
connecting the two antennas equals the bearing from the origin of the array coordinate
system.

of bearing candidates, one from the first transmitter pair and the other from
the second transmitter pair, and find the pair with the least pairwise angular
difference. The reported bearing estimate is computed as the average of the two
closest bearing candidates.

Figure 7 shows the bearing estimation errors considering the above three
types of error sources, averaged over 500 simulation rounds. We added a Gaussian
noise to the distance differences, with mean zero and standard deviation set to 5%
of the antenna distance. The plot suggests that the expected bearing estimation
errors are below 5◦, and peak around 30◦, 150◦, 240◦ and 330◦, exactly where
the individual transmitter pairs exhibit high error sensitivity.

5 Implementation

Our system is implemented using Crossbow ExScal motes (XSMs) [21], which
use the Texas Instruments CC1000 radio chip and transmit in the 433 MHz
range. Three XSMs form the array. Because the two transmitting antennas are
close to each other, they will suffer from parasitic effects [22]. To minimize this
negative interference, we place the nodes in a mutually orthogonal configuration.
All sensor nodes are elevated approximately 1.5 meters to reduce ground-based
reflections. The antenna array is pictured in Figure 1. All nodes in our system
execute the same distributed application, coded in nesC, and run the TinyOS
operating system. All operations run locally, and there is no offline or PC-based
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Fig. 7. Absolute error of bearing estimation (in degrees) caused by noisy distance
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processing involved. The entire application requires 3 kilobytes of RAM and 55
kilobytes of program memory (ROM).

Run-time. Figure 8 is a sequence diagram of the system run-time components
using a setup of one array and a single target receiver node. Because phase
difference is used to determine bearing, each node must measure the signal phase
at the same time instant. This requires synchronization with accuracy on the
order of microseconds or better. A SyncEvent message [23] is broadcast by the
master transmitter, and contains a time in the future for all participating nodes
to start the first RIM. Each array then performs two RIMs, one for each master-
assistant pair. Signal transmission involves acquiring and calibrating the radio,
transmitting the signal, then restoring the radio to enable data communication.
The assistant nodes in the array store their phase measurements until both
master-assistant pairs have finished their RIMs, at which point they broadcast
their phase measurements to the target nodes. The target nodes then calculate
their bearings from the array.

6 Evaluation

To evaluate the accuracy of our system, we perform two experiments. In Ex-
periment 1, we measure the bearing accuracy of six receiver nodes, which are
evenly spaced around the array every 60◦ at a distance of ten meters from the
array center. This experiment demonstrates how the bearing error changes with
respect to array orientation. In Experiment 2, we measure the bearing accuracy
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Fig. 8. Sequence diagram of RIM schedule with one array (dotted box) and the target
receiver node (R).

of 14 receiver nodes from three arrays surrounding the sensing region in an out-
door, low-multipath environment. This experiment is more representative of a
real-world deployment with multiple anchors. Figure 9 illustrates our setup for
the two experiments.
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Fig. 9. Experimental setup. (a) Experiment 1. Bearing accuracy of one array. Six re-
ceiver nodes (R1 . . . R6) are placed 10 meters from array (A), with angular separation
of 60◦. (b) Experiment 2. Three arrays (A1 . . . A3) surround the 20 x 20 m sensing
region containing 14 receiver nodes (R1 . . . R14).

For Experiment 1, we perform 50 bearing estimates for each node surrounding
the array. The average bearing errors are displayed in Figure 10a. For Experiment
2, we perform approximately 35 bearing estimates from each anchor to all target
nodes, resulting in a total of 105 estimates per target and 1470 estimates total.
Figure 10a shows the average error for each bearing from Experiment 1, and
the distribution of bearing estimate errors from Experiment 2 are shown in
Figure 10b. The average bearing estimation error is 3.2◦ overall, with a 6.4◦

accuracy at the 90th percentile. The errors from both experiments are consistent
with our bearing error analysis in Section 4.
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Fig. 10. Experimental results. (a) Experiment 1 average bearing error with respect
to array orientation (sample size of 50). (b) Experiment 2 bearing error distribution
(sample size of 1470).

In addition, we evaluate the latency of this method. Because we would like to
use this system for mobile sensors in addition to stationary nodes, the array must
perform its RIMs as fast as possible so that the sensor has not had a chance to
significantly change its position. In order to keep the latency to a minimum, we
perform an analysis of the different component execution times. Table 1 lists the
execution deadlines of the RIM tasks. These deadlines are enforced via software
interrupts and were chosen to give each task enough time to complete, assuming
a reasonable amount of jitter.

Task Latency (ms)

Clock synchronization 162

Acquire and calibrate radio 6.48

Transmit / Receive 63.2

Restore radio driver 49.91

Report phase 250

Bearing estimation 5
Table 1. Latency of bearing estimation tasks.

The array sends one synchronization message and performs two RIMs, for a
total time of 401 ms. An additional 255 ms is required for communication and
bearing estimation. Because the target nodes are receivers, no additional latency
is incurred by introducing more targets to the sensing region.



7 Conclusion

In this paper, we present a method for rapid distributed bearing estimation in
WSNs. The anchor array in our system consists of three nodes, two of which
transmit at frequencies that interfere to create a low-frequency beat signal. The
phase of this signal is measured by the third node in the array, as well as by multi-
ple target nodes at unknown positions. The phase difference defines a hyperbola,
and bearing can be approximated by calculating the angle of the asymptote. Our
experimental results show that this technique has an average bearing estimation
accuracy of 3.2◦, and measurements can be taken in approximately 0.5 sec.

Our system is designed to overcome several challenges in WSN AOA determi-
nation. The array prototype is easily constructed by fixing three motes together
with antennas at orthogonal angles. It is comprised entirely of COTS sensor
nodes, and no additional hardware is required because RIM-based ranging only
requires use of the radio. Unlike other radio interferometric techniques, our sys-
tem avoids the modulo 2π ambiguity, and therefore the need to perform RIMs
on multiple channels, by separating the two transmitting antennas less than half
the wavelength of the carrier frequency. Similarly, by constraining the location
of one of the RIM receivers to the array, it becomes possible to approximate the
bearing of the other receiver without prolonged computation or having to rely
on a base station for processing. Our experimental results demonstrate that the
accuracy of our prototype implementation is on par with other state-of-the-art
AOA techniques.

It is worthwhile noting that this system is designed for eventual use with mo-
bile sensors. Mobility demands rapid localization so that the position estimate is
still valid by the time it is computed. Up until now, radio interferometric ranging
techniques have been unable to achieve periodic distributed localization at rates
fast enough for mobile devices, even slow-moving ones. With this system, we are
able to estimate target bearing rapidly enough to support mobile entity local-
ization and navigation. Although at this stage we have not performed tracking
or navigation using mobile nodes, we plan on doing so in the near future.
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