
Improving the Usability of a Graph

Transformation Language

Attila Vizhanyo1, Sandeep Neema, Feng Shi,
Daniel Balasubramanian, Gabor Karsai

Institute for Software Integrated Systems
Vanderbilt University

Nashville, TN 37235, USA

Abstract

Model transformation tools implemented using graph transformation techniques are often expected
to provide high performance. For this reason, in the Graph Rewriting and Transformation (GReAT)
language we have supported two techniques: pre-binding of selected pattern variables and explicit
sequencing of transformation steps to improve the performance of the transformation engine. When
applied to practical situations, we recognized three shortcomings in our approach: (1) no support
for the convenient reuse of results of one rewriting step in another, distant step, (2) lack of a
sorting capability for ordering the results of the pattern matching, and (3) absence of support for
the distinguished merging of results of multiple pattern matches. In this paper we briefly highlight
the relevant features of GReAT, describe three motivating examples that illustrate the problems,
introduce our solutions: new extensions to the language, and compare the approaches to other
languages.

Keywords: Model Transformations, Graph Transformations, Usability

1 Introduction

Model transformation tools are expected to work reliably and provide high
performance. When model transformation is used for tool integration (as in
[1]), or when it is used in an interactive tool to assist a modeler, we expect
that the transformation is rapidly executed. On the other hand, the develop-
ers (the ”programmers”) of the model transformation also expect high perfor-

1 viza{,sandeep,fengshi,daniel,gabor}@isis.vanderbilt.edu

Electronic Notes in Theoretical Computer Science 152 (2006) 207–222

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.10.026

file:viza@isis.vanderbilt.edu
http://www.elsevier.com/locate/entcs


mance from the language: they want to express complex transformations in
a concise, yet understandable form, without having to deal with low-level im-
plementation details, and with relying on the constructs of the transformation
language.

In the first generation of the GReAT (Graph Rewriting and Transforma-
tions) language [2], we have provided a number of capabilities to address the
first concern, at the expense of the second. The performance improvements
were made using the following techniques: 1. To cut down on the search in or-
der to find matching subgraphs in the host graph, we support the pre-binding
of selected graph pattern elements to well-known nodes in the host graph.
These pre-bound elements change the search into a local graph search prob-
lem. Furthermore, the pre-bound elements and new elements created by the
rewriting rule can also be reused in a subsequent rewriting rule. 2. To elimi-
nate the search for rule activations at execution time, we explicitly sequence
the rewriting rules. The sequencing is specified by passing the bound host
graph elements discussed above from rule to rule. Special rules, called ”tests”
are used to provide conditional execution paths. 3. To improve performance
further, we generate executable code in a procedural language (C++) that is
compiled with a standard compiler [3]. Techniques 1 and 2 will be described
in the following section, which details the semantics of the GReAT language.

While these techniques provided us with a language in which we could im-
plement transformations executing with acceptable performance, there were a
number of shortcomings that we discovered in practice. This paper will intro-
duce three motivating examples that illustrate what the problems were, along
with the improvements we made to the language to address those problems
and the implementation of the languages improvements. This is followed by
a short comparison with related work, and the summary and conclusions.

2 GReAT

GReAT is suitable for the formal specification of model transformations, where
UML class diagrams are used to represent the abstract syntax of the input and
the output models of the transformation. The abstract syntax of a model de-
fines its modeling concepts, their relationships, and their integrity constraints
[8]. We regard the UML classes as the nodes of a type-graph [9], and the vari-
ous associations between these classes as the edges of the graph. In this paper
only the necessary language constructs are explained, [4] describes the full
approach and support tools. The operational semantics of GReAT is formally
defined in [5].

The applicability of graph transformation techniques to model transfor-

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222208



mation problems can be understood by regarding the models as vertex and
edge labeled multi-graphs, where the labels are referring to the corresponding
types in the type-graph, that is the UML class diagram. If we represent the
models with graphs, then the graphs can be considered as object networks,
whose ”schema” is represented using UML class diagrams. UML class dia-
grams can play the role of a graph grammar in that they can describe all
the ”legal” object networks that can be constructed with the domain. There-
fore, it is plausible to formulate the model transformation problem as a graph
transformation problem.

Model transformations in GReAT are represented as explicitly sequenced
elementary rewriting operations, called productions or rules. A production
contains a pattern graph that consists of pattern vertices and edges. GReAT
uses the UML class diagram notation to specify the pattern vertices and edges.
Each pattern element in a GReAT rule can play one of three roles: Bind,
Delete, or CreateNew. The role specifies how an element is used during the
transformation. The execution of a rule involves matching every pattern ob-
ject marked as either Bind or Delete. The pattern matcher will return the set
of all possible matches for the given pattern that are found in the host graph.
The matches are then evaluated with respect to the optional guard condi-
tion, and matches for which the guard evaluates to false are discarded. Then,
for each match which satisfies the guard condition, graph objects marked as
Delete are deleted from the graph, and objects marked as New are created.
Finally, the attributes of the graph objects can be manipulated by an optional
AttributeMapping (AM) specification. The attribute mapping uses program-
matic access to the graph objects through a well-defined C++ API.

Consider the simple rule shown in Figure 1. ”Container” has the Bind
role, ”LP” and the ”Container/LP” composition have the Delete role, and
”Inport” and the ”Container/Inport” composition have the CreateNew role.
The semantics of this rule is: find all ”CompoundComponent”-s, along with
all of the ”LocalPort”-s contained inside each ”CompoundComponent”. Next,
evaluate the guard condition. Let this condition be, ”Container.name ==
LP.name”. Thus, only matches in which the name of the ”LocalPort” is the
same as the name of the Container will pass the guard, and the rest will
be discarded. Finally, the ”LocalPort” objects of the valid matches will be
deleted, and a new ”InputPort” will be created in the ”CompoundContainer”.
As stated in the introduction, GReAT supports the pre-binding of selected
graph pattern elements to well-known nodes in the host graph. This provides
a rule with an initial partial match of its pattern, which significantly reduces
the search space. The initial matches are provided to a transformation rule
with the help of input ports that form the input interface of a transformation

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222 209



Fig. 1. A Simple Rule in GReAT

step. Similarly, output ports can be used to pass matched or newly created
objects to a subsequent rules. For a transformation rule to be applied to the
host graph, graph objects must be supplied to each input port of the rule; if
there are no objects supplied to a rule’s input ports, the rule is not executed.

While specifying a transformation involving multiple domains (i.e. multi-
ple, unrelated type-graphs), it is often necessary to associate objects of differ-
ent domains with each other. GReAT supports the specification of associations
between UML classes belonging to different domains by allowing the user to
specify crosslink diagrams. Such associations cross-cutting individual domains
(referred to as ”crosslinks” in GReAT) can then be created and manipulated
during the execution of the transformation, just like ordinary associations.

To illustrate the use of ports and crosslinks, consider the rule shown in
Figure 2. (Here, we are assuming that the UML classes ”LocalPort” and
”Transmitter” belong to different domains.) In1 is used to provide an initial
binding for ”LocalPort”, and In2 is used to provide an initial binding for
”Actor”. In other words, when the rule fires, selected ”LocalPort” and ”Actor”
graph objects are readily available for pattern matching. The rule then finds
all ”Transmitter”-s contained in the ”Actor”, and creates crosslinks between
all matched ”Transmitter” and the ”LocalPort” objects, which is denoted
by a tick mark right next to the association in the figure. Finally, matched
”Transmitter” objects are passed along to the subsequent rule via the output
port Out1. The dataflow in GReAT also implies an execution order for the
rules as follows. If the output ports of RuleA are connected to the input
ports of RuleB, then RuleA must execute before RuleB. Each rule can have
an arbitrary number of ports, and each port is supplied with graph objects
from (possibly various) sources. If one source rule supplies objects for an
input port of a destination rule, it must supply objects for all input ports of
the destination.

In order to manage the complexity of transformations, GReAT provides

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222210



Fig. 2. Input Ports and Crosslinks

the user with higher-level constructs, such as hierarchical rules and control
structures. High-level rules can be created through the composition of a se-
quence of primitive rules. There are two kinds of high-level rules in GReAT:
Blocks and ForBlocks, both of which contain primitive rules. The difference
between the two is that a Block passes all inputs to the first contained rule,
the output created by this first rule are passed to the second rule, and so on.
A ForBlock passes one input all the way through its contained rules, then
passes the next packet, and so on.

3 Global container

As introduced above, the control flow language of GReAT specifies an exe-
cution order of the elementary transformation steps. A transformation step
always starts the pattern matching with an initial context. By context we
mean the pre-binding of some pattern variables to host graph vertices. This
context (i.e. the initial binding) is passed along from rule to rule via ports dur-
ing the transformation, similar to parameter passing in procedural languages.

The main weakness of this approach is that the programmer needs to
specify the context passing through several rules, even if the context is actually
used only in one remote, non-adjacent, step. To simplify development, we have
introduced the concept of the global container. The input(s) and the output(s)
of the transformations reside in containers that hold objects and links of the
input and output graphs. These containers are selected at the beginning of the
transformation, and each production matches/deletes/creates objects within
these implicit containers.

We defined the global container as an object network whose ”root” object
(that contains all objects within the container) is accessible throughout the
entire transformation, and thus it is not necessary to pass the root object along
as the context. The global containers consist of temporary, non-persistent

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222 211



objects that exist only during the execution of the transformation. It is the
programmer’s task to define the ”syntax” (i.e. the type-graph) of the container
by drawing a UML class diagram, much like when defining the input and
output domain(s) of the transformation. The programmer can specify the
syntax of an arbitrary number of global containers, and GReAT will manage
the instances (i.e. the containers) of these. One can create an arbitrary type
system for a global container, including defining new classes with attributes,
associations, etc. with all the capabilities of a standard UML class diagram.
The only globally accessible object per container is a singleton instance of the
root type, called global root object or global object. From this single global
object, other model objects can be reached via pattern matching, whose type
in turn can be either a new type or be part of any type-graph defined for the
transformation (including that of the input and output domains).

Global containers are most useful in large transformations, when they can
eliminate a large portion of context passing, or recurring complex pattern
matching. One example is generating code from models, where components
are used to model the functional decomposition of a system. Suppose that
the transformation consists of several rules, and the leftmost and rightmost
rules are as shown in Figure 3. Furthermore, suppose that the model contains
hundreds of components, and some of them were incorrectly named for code
generation (e.g. their name begins with a number). We need to perform mul-
tiple operations on the set of these incorrectly named components in different
transformation steps. The number of such components is negligible compared
to the total number of components, so it makes sense to reuse the pattern
matching results to cut down on the search time. However, it is also inconve-
nient to specify context passing all over dozens of rules, especially when the
context is used only in the last rule. To save the programmer from doing the
excess work, the global container feature can be used.

The left rule in Figure 3, (1) associates components that have invalid names
with a global object ”NSRootObject”, (2) counts them using the counter at-
tribute of ”NSRoot”. The right rule, which can be far away, in a distant
part of the transformation program, renames these selected components to
conform to the target language naming conventions. Notice that the pattern
matching finds the components through the ”NSRootObject-Component” as-
sociation starting from ”NSRootObject”, as there is no pattern containment
relationship specified starting from ”RootFolder”.

The disadvantage of the global container feature is that it still uses pat-
tern matching to find previously found results, although the search time is
considerably lower (as in our example). In comparison, context passing does
not need pattern matching, but it requires memory space to store the results.

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222212



(a) (b)

Fig. 3. Using global containers

The primary advantage of using global containers is reduced development time
through supporting a convenient reuse of results of one rewriting step in re-
mote step. Global containers also help to remove superfluous details from the
transformation for the sake of a cleaner program structure.

4 Sorting

GReAT is built upon a graph pattern specification language and pattern
matching. The pattern matching is deterministic in the sense that it returns
the set of all the valid matches for a given pattern, and that set of matches
will always be the same for a given pattern and host graph. Pattern matching
is non-deterministic in the sense that the order of the elements (matches) in
the set may vary between different executions. This kind of non-determinism
is not acceptable in some model transformations, where certain elements need
to be processed in a fixed order. Recall that the rule performs the actions on
the set of matches in the same order as the pattern matching found them.

One example when deterministic order of matches is compulsory is inter-
preting hierarchical concurrent state machines, e.g. Matlab’s StateFlow [6].
The operational semantics of StateFlow prescribes that parallel (AND) states
are evaluated and executed from left to right and top to bottom. In other
words, every concurrent (AND-decomposed) compound state has multiple ac-
tive sub states, and is responsible for executing all its children in this specific
order during performing a state machine step.

In one of our previous works, we have implemented a StateFlow to C code

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222 213



Fig. 4. Create State execution functions

generator in GReAT [7]. The code generator essentially produces a C function
definition for each StateFlow state. For concurrent compound states, the
generated C function is responsible for calling the functions representing the
child states. For example, suppose that the concurrent state ”Parent” contains
three parallel states from left to right and top to bottom: ”ChildA”, ”ChildB”
and ”ChildC”. Then the generated state execution function is expected to look
like:

void ParentExec() { ChildA(); ChildB(); ChildC(); }
Note that the first ”ChildA” is executed, then ”ChildB” and last ”ChildC”,

and any other state evolution order does not conform to the StateFlow op-
erational semantics. In our implementation, we created a metamodel that
captures the abstract syntax of a stylized subset of C. Then, during the trans-
formation steps we create model elements representing C code segments. The
resulting model is then printed out into C text format in a post-processing step.
Figure 4 shows our original solution for concurrent state code generation. The
specified pattern finds all children of ”ParentState”, and the associated state
function definition for ”ParentState” (through a cross link generated earlier
in the transformation). Then those matches with sequential (non-concurrent)
compound states are discarded by evaluating the guard condition. Finally,
state execution function definitions and function callers referring to the func-
tions definitions are created in the last step. The problem with this pattern
specification is that the function callers are created in a random order, so
nothing will enforce the correct execution order of the parallel states. In the
case of the previous example, if the pattern matcher returns with the set:
{(Parent, ChildB, Prg, ParFunc), (Parent, ChildA, Prg, ParFunc), (Parent,

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222214



(a) (b)

Fig. 5. Create ordered State execution functions

ChildC, Prg, ParFunc)}, then the generated code will look like:

void ParentExec() {ChildB(); ChildA(); ChildC();}
Clearly, we need to specify an ordering of parallel states, based on the

”Order” attribute of the ”ChildState”-s. In other words, we want to reorder
the set of matches using some ordering criteria, e.g. sort the matches based
on the ”Order” attribute of ”ChildState”-s. This sorting step should take
place after pattern matching, or even after the effector, so that newly created
objects can also be reordered. This implies that the sorted matches can be
used only in subsequent transformation steps. The sorting step is the last
operation executed before leaving the rule.

The GReAT programmer can specify sorting by setting the attribute ”Com-
pare function” of an output port in a rule. In Figure 5, the compare func-
tion ”StateOrder” is used to order the parallel states. The compare function
is coded in a procedural language (here: C++), and its two arguments are
the two objects to compare. An example compare function is shown in Fig-
ure 6. The programmer needs to specify only the function name and the
body, the function signature is automatically generated. If sorting is re-
quired, the matches produced by the pattern matching are reordered and
sorted such that ordering relation specified by the compare function holds be-
tween the elements. In our example, {(Parent, ChildB, Prg, ParFunc), (Par-
ent, ChildA, Prg, ParFunc), (Parent, ChildC, Prg, ParFunc)} is reordered
yielding {(Parent, ChildA, Prg, ParFunc), (Parent, ChildB, Prg, ParFunc),
(Parent, ChildC, Prg, ParFunc)}. These matches are then passed along in the

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222 215



template <class T>

bool StateOrder (const T& lhs, const T& rhs) {
return lhs.Order() < rhs.Order();

}
Fig. 6. Predicate for comparing States by using the Order attribute

same order to the next rule as shown in Figure 5. Finally, ”StateFunction”-s
and ”StateFunctionCall”-s are created for each match in the correct order,
ensuring that the generated C function will execute the parallel states in the
correct order.

As a side note, there was another implementation initiative to integrate
sorting into the pattern matching, such that the pattern matching should find
the matches in the specified order. This proposal would have permitted the
use of sorted matches inside the same rule. However, we have dropped the
idea, because this change would have required the pattern matching to tra-
verse the pattern graph in a specific direction. This requirement involves a
preprocessing step of analyzing the pattern graph and computing a traversal
path, which in turn introduces a substantial computational overhead in the
pattern matching. Clearly there is also a runtime overhead associated with
reordering the matches, but (1) this overhead is typically smaller than com-
puting the traversal path (2), reordering needs to be performed only when
sorting is specified vs. the traversal path would be required to be computed
in all cases for each pattern graph.

5 Distinguished merging

The fundamental approach to managing the inherent complexity of a program
is to separate the program into distinct subsystems (a.k.a. module, library
or component). The separated parts are connected only by a well-defined
interface. In graphical languages, subsystems typically expose their interfaces
with the help of ports. For example, in signal flow languages, data ports
indicate the types of signals the component accepts. The programmer specifies
the signal flow by connecting the output ports of the source component to the
input ports of the destination component. As the interface gets larger, the
number of connected ports increases rapidly. Connecting each pair of source-
destination ports manually becomes cumbersome and tedious, thus the process
necessitates automation.

Notice that this problem can be regarded as a model transformation prob-
lem: new signal flow connections need to be added between selected ports
specified by some criteria. The solution is not trivial using graph transforma-
tions, however. The pattern matching algorithm must find and return pairs of

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222216



Fig. 7. The Port Connection Problem

ports that need to be connected. The search space is the cross product of all
output ports of the source by all input ports of the destination. The challenge
lies in how to match those distinguished pairs of porst to be connected. For
example in Figure 7, the total search space is the all possible combinations of
ports, that is {(O1,I1), (O1,I2), (O1,I3), (O2,I1), (O2,I2), (O2,I3), (O3,I1),
(O3,I2), (O3,I3)}. What we need is some pattern and/or guard condition
that discards the unwanted combinations, and keep only those matches that
represent the ports to be connected. A general-purpose pattern matcher can-
not figure out automatically which are the ports to be connected, so some
restricting criteria are needed to specify the acceptable combinations. A sim-
ple criterion can be given by using the physical layout ordering of the ports:
the topmost output port should be connected with the top most input port,
the second output port from the top should be connected with the second
input port, and so on. Using this criteria the search space is restricted to
{(O1,I1), (O2,I2), (O3,I3)}, and this set indeed represents the desired port
connections.

While this criterion is clear and simple, it is very difficult to specify it in
stateless graph transformation languages. The problem is that the criterion
involves comparing matches with each other, and thus introduces memory
requirements for the pattern matching. The pattern matching must remember
if it has already found a topmost port, and if so, discard the current match (e.g.
I2, I3 must be discarded for O1, because I1 has already been found). Even
if we introduce memory into the pattern matching algorithm, the language
also needs to be augmented with new elements that let the user refer to and
discard matches previously found by the pattern matching. We found that
these new language features would be extremely complex compared to the
existing language semantics, so we tried to find another solution which would
have a natural syntax and an intuitive semantics.

As described above, what we really need is to find a distinguished subset
of matches in the original search space. The two most prominent properties
of this subset are: (1) each port occurs only once in the set (2) the ports
are sorted: they are paired up to form elements in a specific order. Next we
will show that these two properties together are sufficient to select the dis-
tinguished subset. The selection algorithm, called distinguished merging, is

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222 217



Input: {(O1,I1), (O1,I2), (O1,I3), (O2,I1), (O2,I2), (O2,I3), (O3,I1),
(O3,I2), (O3,I3)}
After step 1: X={O1,O1,O1,O2,O2,O2,O3,O3,O3},
Y={I1,I2,I3,I1,I2,I3,I1,I2,I3}
After step 2: X={O1,O1,O1,O2,O2,O2,O3,O3,O3},
Y={I1,I1,I1,I2,I2,I2,I3,I3,I3}
After step 3: X= {O1,O2,O3},Y={I1,I2,I3}
After step 4 & output: D={(O1,I1), (O2,I2), (O3,I3)}

Fig. 8. Connecting Ports

outlined below:

Name: Distinguished merging
Inputs: P(I x O) : Cross product of input and output ports, or any subset
of P; s: sorting criteria
Output: D(I x O): Distinguished subset of the cross product, where the ele-
ments represent the wanted connections
Algorithm:
Step 1: Break apart the elements of the cross product and create two corre-
sponding bags for input and output ports.
X = first(P); // first elements of the pairs in P

Y = second(P); // second elements of the pairs in P

Step 2: Sort the elements of the input port bag and output port bag inde-
pendently using the sorting criteria.
X = sort(X,s); Y =sort(Y,s);

Step 3: Remove duplicates of consecutive elements with the same value.
X = remove duplicates(X); Y = remove duplicates(Y);

Step 4: Compute the distinguished subset, by forming pairs from the ele-
ments of the ordered sets.
D = form pairs(X,Y);

Figure 8 demonstrates the algorithm with the ports shown in Figure 7,
and sorting ports based on their vertical position.

Distinguished merging can easily be extended to multiple sets. Suppose
we want to execute the algorithm on N sets. Then we have an input set
containing N-ary tuples as elements, which is broken down into N individual
bags during step 1. After sorting and creating ’unique’ bags, we form N-ary
tuples by taking the elements of each set vertically.

Note that the algorithm fails if the number of elements of the individual
sets differ after step 3. Indeed, step 4 needs sets of the same size to complete

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222218



Fig. 9. Rule that selects connecting ports

forming tuples, otherwise it will produce incomplete tuples. In GReAT, it is
the user’s responsibility to ensure that each set will contain the same number
of elements after step 3. For the port-connection example this means that the
source must have as many output ports as the destination has inputs.

Also note that the algorithm does not necessarily select a subset in the
input, but rather computes new elements out of the constituent parts, i.e. the
graph objects. For example, consider the following input (I1,O2),(I2,O1). The
algorithm output is going to be (I1,O1),(I2,O2), demonstrating that neither of
the elements of the distinguished subset is contained in the input set. Instead,
graph objects have been reorganized or merged to form new elements, hence
the name distinguished merging.

Next we discuss how GReAT implements the distinguished merging algo-
rithm. The pattern matching is left intact, because the distinguished merging
is performed as a separate step in the last phase of the rule execution. The
input set is provided by the pattern matching, but the sorting criteria must be
specified by the programmer. He can provide the sorting criteria by compare
functions, like in the case of sorting, only that all the output ports must have
a compare function specified, so that each set can be sorted and made unique
during steps 3 and 4, respectively. Figure 9 shows a pattern that selects
”OutputPort”-s and ”InputPort”-s in ”BaseComponent”-s. Here, the same
predicate ”YPosCmp” used as a compare function for both output ports. In
addition, a rule attribute ”distinguished” must be set to true (not shown in
the figure). The selected component ports are connected in a subsequent rule.

It is interesting that distinguished merging can also be used for selecting
the source and destination components in another rule earlier in the transfor-
mation. Figure 10 shows a rule that selects component pairs that are laid out
horizontally right next to each other. Figure 11 shows how the rule works.
Let us denote the four input components to connect as C1, C2, C3 and C4.
The pattern matching first finds all possible ordered pairs from the set of in-
put components (there are 4!/2!=12 such pairs). To ensure that component

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222 219



Fig. 10. Rule that selects adjacent component pairs

Input: {(C1,C2),(C1,C3),(C1,C4),(C2,C1),(C2,C3),(C2,C4),
(C3,C1),(C3,C2),(C3,C4),(C4,C1),(C4,C2),(C4,C3)}
After Guard: {(C1,C2),(C1,C3),(C1,C4),(C2,C3),(C2,C4),(C3,C4)}
After step 1: X={C1,C1,C1,C2,C2,C3}, Y={C2,C3,C4,C3,C4,C4}
After step 2: X={C1,C1,C1,C2,C2,C3}, Y={C2,C3,C3,C4,C4,C4}
After step 3: X={C1,C2,C3},Y={C2,C3,C4}
After step 4 & output: D={(C1,C2), (C2,C3), (C3,C4)}

Fig. 11. Selecting source-destination rule pairs

”From” lies to the left of component ”To”, we utilize the compare function
”XPosCmp” in a guard condition ”From is left to To”, which discards all pairs
where ”From” is right to ”To”. Finally, the distinguished merging gets rid of
all non-adjacent pairs. These source-destination component pairs are then
passed along one-by-one to the rule depicted in Figure 9 shown above.

We believe that distinguished merging is a powerful concept and its ap-
plication is not limited to a specific problem. Besides selecting ports to be
connected and identifying adjacent components, we used distinguished merg-
ing to form pairs of data read and write blocks, where blocks with identical
names were selected to implement object (un)marshalling between remote
components. Formally, the distinguished merging defines a bijective mapping
between the elements of two sets. In the language of graph theory, the distin-
guished merging finds a perfect match in a complete bipartite graph.

We realize that restricting the resulting sets to be of the same size is a
strong constraint, and we plan to relax this by allowing the user to specify
an action that will be executed when the sets are of uneven size (e.g. ignore
incomplete tuples, throw an exception, etc.)

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222220



6 Related work

Similar graph transformation tools such as AGG [9], PROGRES [10], Fujaba
[11] and VIATRA [12] offer various levels of support for the features we have
described here. The concept of a global containers is readily supported in all
of these languages because the search for a given pattern graph is always per-
formed on the entire host graph. However, this also implies that the search for
a given pattern graph will be exponential in the number of objects contained
in the pattern graph in the worst case.

In regards to sorting and distinguished merging, there is no direct support
for either of these features in the above tools, though it seems possible to
sort matches with a complex sequence of ordered rules. VIATRA provides
a similar control flow language for explicit rule sequencing, and also allows
the pre-binding of incoming objects, but does not directly support the sorting
of pattern matches. AGG, Fujaba and PROGRES provide capabilities for
deterministic rule sequencing, but do not support the pre-binding of objects
to rules, so a sequence of rules could possibly be used to implement sorting.

Also, most of the above tools allow the user to specify whether a given pat-
tern in the pattern graph should be an isomorphic or non-isomorphic image in
the host graph, but the isomorphic matching is done non-deterministically;
thus, the deterministic distinguished merging as we have described above
would have to be implemented in several rules.

In general, our experience brings up a highly relevant question for the graph
transformation-based languages: if we want to implement complex transfor-
mations in them, what is the minimal set of capabilities that is simple enough
to be part of the core semantics of the language, yet powerful enough such
that complex transformations can be implemented using them in a compact
manner? We believe answers to these questions are not readily available and
require further research.

7 Summary and Conclusions

In this paper we have identified three shortcomings with the original design
of a graph transformation language and showed how the language could be
improved to address those problems. The improvements were made by in-
troducing new constructs in the language, and were orthogonal: all programs
written with the earlier version preserved their semantics. We believe these
extensions were necessary because the early version either simply did not have
support for them, or they could be used only in a very inconvenient way. We
have applied the extensions in developing some specific model transformation

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222 221



solutions and their application lead to smaller and cleaner programs.

A number of research questions remain that we would like to address in
future research. These questions are related to the extensibility of the trans-
formation language, and include such issues as: How to provide ways to extend
a transformation language with constructs similar to the ones presented here?
How can one precisely describe the semantics of the extensions? How can
we extend the execution environment (interpreter and the code generator) to
support the extensions? We hope that answering these questions will lead to
a new degree of extensibility and capabilities for model transformation tools.

References

[1] Karsai, G., Lang, A., Neema, S.: Design Patterns for Open Tool Integration, Vol 4. No1, DOI:
10.1007/s10270-004-0073-y, Journal of Software and System Modeling, 2004.

[2] Karsai, G., Agrawal, A., Kalmar, Z., Neema, S., Shi, F., Vizhanyo, A.: The Design of a Simple
Language for Graph Transformations, in review for Journal on Software and System Modeling,
preliminary version is available from www.isis.vanderbilt.edu

[3] Vizhanyo, A., Agrawal, A., Shi, F.: Towards generation of high-performance transformations.In:
Proc. Generative Programming and Component Engineering. Lecture Notes in Computer
Science, Springer-Verlag (2004)

[4] Agrawal A., Karsai G., Shi F.: Graph Transformations on Domain-Specific Models, Technical
report ISIS-03-403, Vanderbilt University, November, 2003.

[5] Karsai G., Agrawal A., Shi F., Sprinkle J.: On the Use of Graph Transformations for the Formal
Specification of Model Interpreters, Journal of Universal Computer Science, Special issue on
Formal Specification of CBS, 2003.

[6] Mathworks Stateflow semantics documentation,
http://www.mathworks.com/access/helpdesk/help/toolbox/stateflow/semantics.html

[7] Neema, S., Kalmar, Z., Shi, F., Vizhanyo, A., Karsai, G.: A Visually-Specified Code Generator
for Simulink/Stateflow , in review for IEEE Symposium on Visual Languages and Human-
Centric Computing, 2005.

[8] Agrawal, A., Karsai, G., Ledeczi, A.: An End-to-End Domain-Driven Software Development
Framework. Conference on Object Oriented Programming Systems Languages and Applications,
2003.

[9] Taentzer, G.: AGG: A Tool Enviroment for Algebraic Graph Transformation. In Proc. of
Applications of Graph Transformation with Industrial Relevance, Kerkrade, The Netherlands,
LNCS, Springer, 2000.

[10] Schurr, A.: PROGRES for Beginners. 1997. http://www-i3.informatik.rwth-aachen.de/
tikiwiki/tiki-download file.php?fileId=232

[11] Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: The FUJABA environment, Proc. ICSE:
The 22nd International Conference on Software Engineering, Limerick, Ireland, ACM Press,
2000.

[12] Varró, D., Pataricza, A.: Mathematical model transformations for system verification. Tech.
rep., Budapest University of Technology and Economics, 2001.

A. Vizhanyo et al. / Electronic Notes in Theoretical Computer Science 152 (2006) 207–222222

http://www.mathworks.com/ access/helpdesk/help/toolbox/stateflow/semantics.html
http://www-i3.informatik.rwth-aachen.de/tikiwiki/tiki-download_file.php?fileId=232
http://www-i3.informatik.rwth-aachen.de/tikiwiki/tiki-download_file.php?fileId=232

	Introduction
	GReAT
	Global container
	Sorting
	Distinguished merging
	Related work
	Summary and Conclusions
	References



