
Institute for Software Integrated Systems
Vanderbilt University

Nashville, Tennessee, 37235

Towards Incremental Cycle Analysis in ESMoL

Distributed Control System Models

Joseph Porter, Daniel Balasubramanian, Graham

Hemingway, and János Sztipanovits

TECHNICAL REPORT

ISIS-11-106

1

Abstract

We consider the problem of incremental cycle analysis for dataflow
models in the Embedded Systems Modeling Language (ESMoL). We give
a general form of a cycle enumeration algorithm that makes use of graph
hierarchy to improve analysis efficiency. Our framework also stores simple
connectivity information in the model to accelerate future cycle analyses
when additional components are added or modifications are made. Finally
we give a mapping from a term algebraic model of the ESMoL component
model and logical dataflow sublanguages to the analysis framework, and
an evaluation on a fixed-wing aircraft controller model. This is part of a
larger effort to integrate cycle analysis into the ESMoL tool suite to aid
well-formedness checking during model construction.

1 Introduction

High confidence embedded control system software designs often require for-
mal analyses to ensure design correctness. Detailed models of system behavior
include numerous design concerns, such as controller stability, timing require-
ments, fault tolerance, and deadlock freedom. Models for each of these domains
must together provide a consistent and faithful representation of the potential
problems an operational system would face. This poses challenges for struc-
tural representation of models, as components and design aspects are commonly
tightly coupled. The ESMoL language is built on a platform which provides in-
herent correctness properties for well-formed models. The properties include
functional determinism, deadlock freedom, and timing determinism. We also
rely on decoupling methods such as passive control design (decoupling con-
troller stability from network effects) and time-triggered models of computa-
tion (decoupling timing and fault tolerance from functional requirements) and
on compositional and incremental analysis to enable rapid prototyping in our
design environment. As design paradigms become more fully decoupled and
analysis becomes faster (and therefore cheaper), we move closer to the goal of
“correct by construction” model-based software development.

In compositional analysis for graphical software models, sometimes the na-
ture of the analysis does not easily lead to a clean syntactic decomposition in
the models. Examples include end-to-end properties such as latency, and other
properties which require the evaluation of particular connections spanning mul-
tiple levels of components. One approach for dealing with such properties in
hierarchical dataflow designs is the creation of interface data for each compo-
nent which abstracts properties of that component. Hierarchical schedulability
models defined over dataflows are a particular example[14] – each composite
task contains a resource interface characterizing the aggregate supply required
to schedule the task and all of its children. Extensions to the formalism allow
the designer to efficiently and incrementally evaluate whether new tasks can be
admitted to the design without recomputing the full analysis[5]. One goal is to
see whether this approach can be generalized to other properties that do not
easily fit the compositional structure of hierarchical designs.

2

One particular syntactic analysis problem concerns synchronous execution
environments and system assembly. In dataflow models of computation we are
often concerned with so-called “algebraic” or delay-free processing loops in a
design model. Many synchronous formalisms require the absence of delay-free
loops in order to guarantee deadlock freedom [1] or timing determinism [10].
This condition can be encoded structurally into dataflow modeling languages –
for example Simulink [16] analyzes for algebraic loops and attempts to resolve
them analytically. In the Ptolemy dataflow design environment, such causality
loops complicate scheduling requiring fixed-point iteration to ensure convergence
of results[19]. In our work we only consider the structural problem of loop
detection in model-based distributed embedded system designs.

We propose a simple incremental cycle enumeration technique with the fol-
lowing characteristics:

• The algorithm uses Johnson’s simple cycle enumeration algorithm as its
core engine[7]. Johnson’s algorithm is known to be efficient [11]. We use
cycle enumeration rather than simple detection in order to provide useful
feedback to the designers.

• The algorithm exploits the component structure of hierarchical dataflow
models to allow the cycle enumeration to scale up to larger models. A
small amount of interface data is created and stored for each component
as the analysis processes the model hierarchy from the bottom up. The
interface data consists of a set of typed graph edges indicating whether
dataflow paths exist between each of the component’s input/output pairs.
Each component is evaluated for cycles using the interface data instead of
the detailed dataflow connections of its child components.

• The interface data facilitates incremental analysis, as it also contains a flag
to determine whether modifications have been made to the component.
We refer to the flag and the edges as an incremental interface for the
component. This is consistent with the use of the concept in other model
analysis domains, such as compositional scheduling analysis[5]. In order
for the incremental method to assist our development processes, the total
runtime for all partial assessments of the model should be no greater than
the analysis running on the full model. Because the amount of interface
data supporting the incremental analysis is small, the method should scale
to large designs without imposing onerous data storage requirements on
the model.

• The technique will not produce false positive cycle reports, though it
may compress multiple cycles into a single cycle through the interface
abstraction. Fortunately, full cycles can be recovered from the abstract
cycles through application of the enumeration algorithm on a much smaller
graph.

Zhou and Lee presented an algebraic formalism for detecting causality cy-
cles in dataflow graphs, identifying particular ports that participate in a cycle.

3

[20]. Our work traverses the entire model and extracts all elementary cycles,
reporting all ports and subsystems involved in the cycle. Our approach is also
inspired by work from Tripakis et al, which creates a richer incremental interface
for components to capture execution granularity as well as potential deadlock
information[18]. Their approach is lossless, in that it retains sufficient detail
to faithfully represent dataflow structure and execution granularity. It is much
more complex in both model space and computation than our approach. Our
formalism does not aim to pull semantic information forward into the interface
beyond connectivity. In that sense our approach is more general, as it could be
applied to multiple model analysis problems in the embedded systems design
domain.

The KPASSA model analysis tool described by Boucaron et al [3] per-
forms task graph scheduling analysis for latency-insensitive synchronous designs.
Their formal model leans heavily on loop structures, and as such one compo-
nent of their tool relies on an implementation of Johnson’s cycle enumeration
algorithm[2]. Their formal model is specific to a particular model of computa-
tion, and their application of cycle checking is only one small component of that
solution.

2 Background

2.1 ESMoL Component Model

As the ESMoL language structure is documented elsewhere[13], we only cover
details relevant to incremental cycle checking. ESMoL is a graphical model-
ing language which allows designers to use Simulink diagrams as synchronous
software function specifications (where the execution of each block is equivalent
to a single bounded-time blocking C language call). These specifications are
used to create blocks representing ESMoL component types. ESMoL compo-
nents have message structures as interfaces, and the type specification includes
a map between Simulink signal ports and the fields of the input and output mes-
sage structures. The messages represent C structures, and the map graphically
captures the marshaling of Simulink data to those structures.

Once software component types and interfaces have been specified, ESMoL
designers instantiate those components into a distributed deployment model.
ESMoL allows the separate specification of the logical data flow, the mapping of
component instances to hardware, timing information for tasks executing those
components, and timing for messages sent over a time-triggered communication
bus. Code generated from the models conforms to an API for time-triggered ex-
ecution. A portable virtual machine implementation of the API allows execution
in simulation, hardware-in-the-loop, and fully deployed configurations[6].

ESMoL deliberately provides an unusual degree of freedom in creating soft-
ware component types. A designer can include Simulink references from any
part of an imported dataflow model, and instantiate them any number of times
within the type definitions. The partition of functions into ESMoL types allows

4

the designer to control the granularity of functions assigned to distributed tasks.
Tasks can distribute functions over a time-triggered network for performance, or
replicate similar functions for fault mitigation. This level of flexibility requires
automatic type-checking to ensure compatibility for chosen configurations. Be-
yond interface type-checking, structural well-formedness problems arise during
assembly such as zero-delay cycles. Model analysis must ensure well-formedness.

2.2 Cycle Enumeration

To implement cycle enumeration we use the algorithm Johnson proposed as
an extension of Tiernan’s algorithm [17] for enumerating elementary cycles in a
directed graph[7]. Both approaches rely on depth-first search with backtracking,
but Johnson’s method marks vertices on elementary paths already considered
to eliminate fruitless searching, unmarking them only when a cycle is found.
Johnson’s algorithm is polynomial (O((n+ e)c), where n, e, and c are the sizes
of the vertex, edge, and cycle set, respectively), and is still considered the best
available general cycle enumeration method[11]. We created an implementation
of Johnson’s algorithm in C++ using the Boost Graph library [15].

2.3 Hierarchical Graphs

For formally describing our incremental approach we use the algebra of hierar-
chical graphs introduced by Bruni et al[4]. We repeat here their first definition:
a design is a term of sort D generated by

D ::= Lx̄[G] (1)

G ::= 0 | x | l < x̄ >| G ‖ G | (νx̄)G | D < x̄ >

Here term G represents a hierarchical directed graph, D is an edge-encapsulated
hierarchical graph, x is a vertex, x̄ is a list of vertices in G (for which bx̄c is
the corresponding set), l ∈ E (edge labels of G, where edges can have n-ary
connectivity), Lx̄ ∈ D (D are the design labels of G and x̄ are interface vertices
in L), G ‖ G is parallel graph composition which merges vertices with common
names, (νx̄)G restricts the interface of graph G to exclude vertices in bx̄c, and
the notation D < x̄ > maps the vertices from the interface of D to the vertices
listed in x̄ (renaming vertices internal to the design for the external interface).
Finally JGK indicates the graph corresponding to the term G.

Intuitively, Equation 1 is a grammar defining a simple textual notation for
describing typed hierarchical graphs. Within the formalism we can compare
equivalence between algebraic descriptions of two hierarchical graphs using re-
duction rules and a normal form (as in Bruni[4]), though equivalence is beyond
the scope of this publication. The algebraic properties are for future use. The
other main attraction of this particular formalism is that the notation allows
the definition of interface symbols which correspond easily to port objects in
a dataflow language, and the hiding of those interfaces as we specialize types.

5

The notation is a compact shorthand for much larger diagrams or mathematical
descriptions. The design sorts D correspond to composite types in our dataflow
language (which may have children), and the edge-encapsulation means that
graph edges are not visible outside the component that contains them. The
specification for a composite element is Lx̄[G], which means that an element of
the sort D has type L with interface vertices in the list x̄ and a corresponding
internal graph G defining the details of the component. The internal graph
may also include subcomponents. Gluing of subgraphs (contained by the design
sorts D) only occurs at common vertices. When a composite element from D
of a particular type is used as a child element to form a larger (parent) graph,
vertices from the child are possibly renamed in the parent, hence the notation
D < x̄ >. In a parallel composition, vertices with the same name x are glued
together.

Note that the term design in the formalism is synonymous with the concept
of a component in a modeling hierarchy, with a type and a set of interface
vertices. Unfortunately in the realm of graph theory the term component has a
different meaning. The term-algebraic graph formalism also includes a definition
of well-typedness, where types defined on the vertex set are only connected
if their types are compatible. Finally the authors define well-formedness for
hierarchical graphs which includes well-typedness as a condition. We do not
define the entire formalism here, only enough to understand the essence of the
connections between the terms and the graphs that they represent.

3 Incremental Cycle Analysis

Our intention is to support a design and analysis work flow that includes incre-
mental analysis steps. For example, a designer may analyze part of the design
before integrating it into a larger part of the system. In our work flow, we en-
vision storing the results of that first analysis along with some interface data to
reduce the cost of the second analysis. The same should hold true for the system
design. We should be able to analyze the system design efficiently, calculating
incremental analysis interfaces. When the system models are revised, whether
by adding, removing, or modifying components we can isolate the effects of the
change on the cost of the analysis. Cycle analysis is a useful example, but our
aim is to tackle this problem more generally.

Formal Model

Let G be a well-formed hierarchical graph (as in Bruni [4]). To get more com-
fortable with the notation, first note that graph G itself (without hierarchical
structure) can be given as:

G = (‖ x) ‖ (‖(u,v)∈E l < u, v >) (2)

which is the parallel composition of the graphs induced by individual edges
of G, merged at their common vertices.

6

Let C(G) be the set of elementary cycles in G, and let P (G, u, v) be the
subgraph of G containing all of the paths from vertex u to vertex v.

Consider a design of type W . Let W p
x̄ [G] represent a parent design object

in a graph hierarchy with interface vertices x̄, and let W ci
x̄i

[G] be the children of
W p (JW ciK ⊂ JW pK). Then neglecting vertex hiding and renaming to simplify
the illustration, we have the following:

W p
x̄ [G] = W p

x̄ [(‖h xh) ‖ (‖(j,k) l < j, k >) ‖ (‖i W ci
x̄i

[G])] (3)

Eq. 3 describes the design W p in terms of its design children W ci , internal
vertices xh, and edges l < j, k >. Fig. 1 gives a simple example of a hierarchical
graph with one child component and one cycle including vertices and edges
within the child component.

Figure 1: Generic hierarchical graph model

We introduce a new label lc into the sort for edges (E), which is used to
connect vertices at the boundaries of a design, abstracting the interface connec-
tivity of the design. Introduce a new mapping A : D → D′ from the designs of
G to designs in a new graph G′. G′ is identical to G, but adds the new edge
label. This is the interface that we will use for incremental cycle analysis.

A(W ci
x̄i

[G]) =W ci
x̄i

[(‖h xh) ‖ (‖(j,k)∈bx̄ic∧P (G,j,k)6=∅ lc < j, k >) (4)

‖ (‖(j,k) l < j, k >) ‖ (‖m W cm
x̄m

[G])])]

In this abstraction function the child designs are replaced by a much simpler
connectivity graph. We introduce two functions to support the algorithm:

R(A(W ci
x̄ [G])) = W ci

x̄i
[(‖x∈x̄i x) ‖ (‖(j,k)∈lc lc < j, k >)] (5)

S(W p
x̄ [G]) = W p

x̄ [(‖h xh) ‖ (‖(j,k)∈bx̄c l < j, k >) ‖ (‖i R(A(W ci
x̄i

[G])))] (6)

7

R(·) and S(·) map designs in G to an abstracted design which only has
connectivity edges for each child design. In other words, when analyzing a
component of G we use the incremental interface data for each child component
rather than its full details. This is a useful abstraction for cycle detection:
we can exploit the graph hierarchy to enumerate simple cycles more efficiently.
Figure 2 gives an example of the transformation defined by A(·), R(·), and
S(·). The child graph is replaced by its abstracted correspondent, which only
preserves connectivity between interface vertices.

Figure 2: Abstract hierarchical graph model

Algorithm Description

Assume we have a function FINDALLCYCLES : G → 2G which enumerates all
elementary cycles in a graph G, returning sets of subgraphs. Then Algorithm 1
adapts the general algorithm FINDALLCYCLES to the hierarchical graph structure
described above. We assume that G has a unique root design, and that we
have a function modified : D → boolean which indicates whether a particular
hierarchical component has been modified since the last run. New components
in the model are considered modified by default.

8

Algorithm 1 Hierarchical cycle detection

1: cycles← []
2: ifaces← {}
3: function findhcycles(JW p

x̄ [G]K)
4: for all W ci

x̄i
[G] ∈W p

x̄ [G] do
5: FINDHCYCLES(JW ci

x̄i
[G]K)

6: end for
7: modified(W p

x̄ [G])← (modified(W p
x̄ [G]) ∨ (∨cimodified(W ci

x̄i
[G]))

8: if modified(W p
x̄ [G]) then

9: T ← JS(W p
x̄ [G]K)

10: cycles← [cycles; FINDALLCYCLES(T)]
11: ifaces[p]← A(T)
12: end if
13: end function
14: FINDHCYCLES(G)

• (Lines 1-2) We initialize a list to contain the resulting cycles, and an
associative list to contain the interface data.

• (Lines 3-6) The algorithm performs a depth-first search on the hierarchical
graph, recursively visiting all of the child components (W ci

x̄i
[G]) for the

current (parent) component (W p
x̄ [G]) which is currently under evaluation.

• (Line 7) The modification status is propagated up the hierarchy as the
algorithm progresses. Each component which has a modified child will
also be marked as modified.

• (Lines 8-12) If the current component has been modified, we use the previ-
ously computed incremental connectivity interface for each subcomponent
to check for cycles in the parent component – the connectivity graph inter-
face is substituted for each subcomponent. The cycles are accumulated as
the algorithm ascends to the top of the model, and a connectivity interface
is created for the current component as well.

The runtime for the extended algorithm should be slightly worse than John-
son’s algorithm in the worst case, as it must also compute the interface graphs.
In the average case the cycle checking proceeds on graphs much smaller than
the global graph, offsetting the cost of finding paths in each subgraph. Further,
if the incremental interface edges are stored in the model following the analysis,
then scalability is enhanced when incrementally adding functions to a design.
Cycle analysis is then restricted to the size of the new components together with
the stored interfaces.

4 ESMoL Language Mapping

Now to map ESMoL logical architecture models onto this cycle-checking formal
model we use the following rules:

9

Subsys ::= LSubsys
ī,ō

JDataflowK

Dataflow ::= 0 | x | lD < x̄ > | Subsys < x̄, x̄ >

| Dataflow ‖ Dataflow | (νx̄) Dataflow

MsgType ::= Mē,eext (7)

SysTypeDef ::= Subsys < ī, ō > | lS < x, x >

| SysTypeDef ‖ SysTypeDef |MsgType < x̄, y >

SysType ::= LSys
ȳi,ȳo

J(νx̄)(νē) SysTypeDefK
LogicalModel ::= SysType < ī, ō > | lL < o, i >

| LogicalModel ‖ LogicalModel

Briefly (from the bottom rule to the top), logical models consist of compo-
nent blocks (SysType) whose interface ports connected by edges. Component
blocks are specified by Simulink dataflow blocks (Dataflow) whose interface
ports are connected either to other Simulink dataflow blocks or to fields in mes-
sage instances. Each message instance (MsgType) inside a system component
type block also has an interface vertex (y) which faces outward, and all other
vertices are hidden within the component (νx̄)(νȳ)SysTypeDef . At the logical
architecture model level, data is exchanged via messages which aggregate the
individual dataflow connections within the components. Dataflow blocks are
built up from connections between functional vertices and between the inter-
faces on composite subsystem blocks (Subsys). These each correspond to sorts
in the ESMoL term algebra.

Let i, o, and e be vertex sorts corresponding to input ports, output ports,
and message elements respectively. Let s, c, f , and d be edge sorts (of lD, above)
representing signal edges, connectivity edges (as described above to support the
incremental interface), f for Simulink primitive function blocks, and d for delay
blocks. The f function edge sorts are n-ary, so each function block can have an
arbitrary but finite number of input and output connections. For lS define the
sorts (given with their interfaces) lb,b < o, i >, lm,b < e, i >, and lb,m < o, e >.
These represent the three different connection types in a SysType specification,
for connecting between ports of Simulink blocks (from outputs to inputs) (lb,b),
from message elements to Simulink input ports (lm,b), and from Simulink output
ports to message elements (lb,m).

Finally we give an encoding of terms representing ESMoL models into the
more general hierarchical graph algebra:

10

x = x

LSubsys
ī,ō

JDataflowK < x̄, x̄ > = Lx̄JGK < x̄ >

Mē,eext
JK < x̄, y > = Lx̄JGK < x̄ >

LSys
ī,ō

J(νx̄)(νē)SysTypeDefK = LȳJGK < x̄ > (8)

lD < x̄ > = l < x̄ >

l∗ < x, x > = l < x̄ >

(νx̄)Dataflow = (νx̄)G

The encoding assigns the various layers of hierarchy from the ESMoL com-
ponent type system to hierarchical designs in the graph. Edges from all layers
map to (possibly generalized) edges in the new graph, and ports map to vertices.

The final piece is the application to finding delay-free loops. For a given
ESMoL model, simply remove all delay edges (sort elements d). Then invoke the
algorithm. For the results, if a cycle is found in a component we can construct
a more detailed cycle model by substituting paths from the connectivity edge
sort with their more detailed equivalents in the descendants of the component
(recursively descending downwards until we run out of cycle elements). Call
this subgraph the expanded cycle. Repeating the cycle enumeration algorithm
on these structures should yield the full set of elementary cycles, and still retain
considerable efficiency as we are only analyzing cycles with possible subcycles,
which can be a relatively small slice of the design graph.

5 Evaluation

5.1 Fixed-Wing Aircraft Example

Our case study covers cycle analysis of the control design for a fixed-wing air-
craft. The Simulink model (Fig. 3) shows the four controller blocks and the
sensor data handler. The particulars of the control architecture are not impor-
tant for this example, but Kottenstette covers them in detail[8]. The controller
has five software functions which are specified as Simulink model blocks, and a
dynamics component (the Cessna plant block). The MDL2MGA model im-
porter creates a structural replica of the Simulink model in the ESMoL modeling
language. We use subsystems from the replica to specify the function of syn-
chronous software components. Fig. 4 illustrates one possible configuration of
the fixed wing controller components. In this particular configuration (Fig. 4)
the entire dataflow is included in one type definition, which means that the en-
tire system will execute together as a single synchronous function with all blocks
firing at the same rate. This particular configuration is useful for illustration,
but is not the most practical implementation choice.

11

Figure 3: Simulink Fixed Wing Controller Model

5.2 Incremental Analysis Results

Table 1 contains data from the analysis of the fixed wing model. The first pass
was performed incrementally, with each subcomponent of the top level model
analyzed first. Then the top level is analyzed using the stored path edges in the
lower models. The table reports two run times for the analysis of each compo-
nent – the first is the processing time required to find the abstract cycles only,
and the second is the full analysis which finds the expanded cycle for each ab-
stract cycle (enumerating possibly multiple cycles per abstract cycle). The table
also displays the number of hierarchical components visited and the number of
individual model elements visited, together with the number of abstract cycles
found and the total number of cycles. The table row labeled top level (incre-
mental) contains the results for the analysis of the top level of the model once
the individual path interfaces had been created for each of its subcomponents.
The second pass (labeled top level (full)) analyzed the entire fixed wing model
at once, reporting the same quantities. Our assessment of the scalability of the
approach is inconclusive for three reasons – 1) the model size is moderate, so
overhead is likely large enough to be a significant factor in all of the run times, 2)
we would need a comparison with time taken to process a fully flattened model,
including the flattening traversals, and 3) we need to find larger models for our
test set. The analyzer found 18 abstract cycles and 54 detailed cycles at the top
level for both passes. The velocity controller component also contained a single
abstract cycle (consisting of two detailed cycles). Note that we analyzed for all
cycles rather than only delay-free cycles to assess scalability. Total runtime was
roughly equivalent between the full and incremental methods for this particular
model. The results so far are promising but inconclusive as far as improved
performance.

Figs. 5 and 6 display a subset of the velocity controller component which

12

Figure 4: Synchronous data flow for Fixed Wing Controller

contains a cycle, along with the expanded cycle for the component, in or-
der to illustrate the cycle refinement in greater detail. The abstract cycle
search discovered the presence of a cycle within the component, but part of
the cycle lies within a subcomponent (anti windup control). The cycle de-
tection for anti windup control created a single path edge in the interface be-
tween the In1 port and the Out2 port, which corresponds to two paths within
anti windup control. The full cycle as shown (Fig. 6) is constructed in the an-
alyzer, and then one more pass of Johnson’s algorithm resolves the two cycles
within the full cycle graph as reported in Tab. 1. The extracted cycle graph
is much smaller (13 elements) than the corresponding fully flattened velocity
controller model, which would contain 60 elements.

6 Conclusion

The current implementation is integrated into the ESMoL tool suite for the
Generic Modeling Environment[9], but thorough scalability testing requires larger
models.

One interesting observation is the generality of the approach. Algorithm 1
very nearly captures a generic procedure for bottom-up incremental syntactic
analysis of hierarchical graphical models. Algorithm 2 proposes such a generic
template. A complete study of such generic incremental structural analysis tech-
niques should include consideration of the effects of the component processing
order on the accuracy of the result. Note that two small contributions may
emerge from this observation 1) we have a structure to which we can adapt

13

Abstract Full Abstract Total
Component Run Run Hier. Total Cycles Cycles

Time (s) Time (s) Comps. Elts. Found Found

alpha beta mu controller 0.9 0.9 9 80 0 0
gamma chi controller 1.6 1.6 7 134 0 0
gamma chi mu sensor 1.3 1.3 8 100 0 0
omega controller 0.9 0.9 9 80 0 0
velocity controller 0.6 0.8 6 60 1 2
Top level (incremental) 2.3 55.1 1 21 18 54
Totals 7.6 60.6 19 56

Top level (full) 7.9 60.5 42 554 19 56

Table 1: Cycle analysis comparisons for the fixed wing model.

some other model analysis techniques for incremental operation, if an appropri-
ate component interface can be found for the particular analysis in question,
and 2) this approach could lead to a tool for efficiently specifying such analyses,
from which we could generate software code to implement the analysis.

Algorithm 2 Hierarchical cycle detection

1: results← []
2: ifaces← {}
3: function analyze(JW p

x̄ [G]K)
4: for all W ci

x̄i
[G] ∈W p

x̄ [G] do
5: ANALYZE(JW ci

x̄i
[G]K)

6: end for
7: modified(W p

x̄ [G])← (modified(W p
x̄ [G]) ∨ (∨cimodified(W ci

x̄i
[G]))

8: if modified(W p
x̄ [G]) then

9: T ← ANALYZESTRUCTURE(W p
x̄ [G])

10: results← [results; COLLECTRESULTS(T)]
11: ifaces[p]← CREATEINTERFACE(T)
12: end if
13: end function
14: ANALYZE(G)

Two immediate applications of this generic incremental method in ESMoL
embedded control system designs are 1) automated sector analysis for passivity
and/or stability [12] and 2) quantization interval analysis for data precision and
overflow. Both represent a static analysis of possible system behaviors that can
be encoded syntactically and have a natural component interface that can be
easily defined. In both cases component interface data requirements are small,
and computation is fairly efficient.

14

Figure 5: Detail of the components involved in the cycle found in the velocity
controller.

7 Acknowledgements

This work is sponsored in part by the National Science Foundation (grant
NSF-CCF-0820088) and by the Air Force Office of Scientific Research, USAF
(grant/contract number FA9550-06-0312). The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or implied, of
the Air Force Office of Scientific Research or the U.S. Government.

References

[1] Benveniste, A., Caspi, P., di Natale, M., Pinello, C., Sangiovanni-
Vincentelli, A., Tripakis, S.: Loosely time-triggered architectures based
on communication-by-sampling. In: EMSOFT ’07: Proc. of the 7th ACM
& IEEE Intl. Conf. on Embedded Software. pp. 231–239. ACM, New York,
NY, USA (2007)

[2] Boucaron, J., Coadou, A., De Simone, R.: Throughput and FIFO
Sizing: an Application to Latency-Insensitive Design. Research Report

15

RR-6919, INRIA (2009), http://hal.inria.fr/inria-00381644/PDF/

RR-6919.pdf, RR-6919

[3] Boucaron, J., de Simone, R., Millo, J.V.: Formal methods for schedul-
ing of latency-insensitive designs. EURASIP J. Embedded Syst. 2007, 8–8
(January 2007), http://dx.doi.org/10.1155/2007/39161

[4] Bruni, R., Gadducci, F., Lafuente, A.L.: An Algebra of Hierarchical Graphs
and Its Application to Structural Encoding. Scientific Annals of Computer
Science 20, 53–96 (2010)

[5] Easwaran, A.: Advances in hierarchical real-time systems: Incrementality,
optimality, and multiprocessor clustering. Ph.D. thesis, Univ. of Pennsyl-
vania (2008)

[6] Hemingway, G., Porter, J., Kottenstette, N., Nine, H., vanBuskirk, C.,
Karsai, G., Sztipanovits, J.: Automated Synthesis of Time-Triggered
Architecture-based TrueTime Models for Platform Effects Simulation and
Analysis. In: RSP ’10: 21st IEEE Intl. Symp. on Rapid Systems Prototyp-
ing (Jun 2010)

[7] Johnson, D.B.: Finding all the elementary circuits of a directed graph.
SIAM J. Comput. 4(1), 77–84 (1975)

[8] Kottenstette, N.: Constructive non-linear control design with applications
to quad-rotor and fixed-wing aircraft. Tech. Rep. ISIS-10-101, Institute
for Software Integrated Systems, Vanderbilt University, Nashville, TN (11
2010)

[9] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., IV, C.T., Nord-
strom, G., Sprinkle, J., Volgyesi, P.: The generic modeling environment.
Workshop on Intelligent Signal Processing (May 2001)

[10] Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. of the IEEE
75(9), 1235–1245 (1987)

[11] Mateti, P., Deo, N.: On algorithms for enumerating all circuits of a graph.
SIAM J. Comput. 5(1), 90–99 (Mar 1976)

[12] Porter, J., Hemingway, G., Kottenstette, N., Karsai, G., Sztipanovits, J.:
Online stability validation using sector analysis. In: EMSOFT ’10: Proc.
of ACM Intl. Conf. on Embedded Software. Scottsdale, AZ (Oct 2010)

[13] Porter, J., Hemingway, G., Nine, H., vanBuskirk, C., Kottenstette, N.,
Karsai, G., Sztipanovits, J.: The ESMoL Language and Tools for High-
Confidence Distributed Control Systems Design. Part 1: Language, Frame-
work, and Analysis (Sep 2010)

[14] Shin, I.: Compositional Framework for Real-Time Embedded Systems.
Ph.D. thesis, Univ. of Pennsylvania, Philadelphia (2006)

16

[15] Siek, J.G., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: User
Guide and Reference Manual. Addison-Wesley Professional (Dec 2001)

[16] The MathWorks, Inc.: Simulink/Stateflow Tools.
http://www.mathworks.com

[17] Tiernan, J.C.: An efficient search algorithm to find the elementary circuits
of a graph. Commun. ACM 13, 722–726 (December 1970), http://doi.
acm.org/10.1145/362814.362819

[18] Tripakis, S., Bui, D., Geilen, M., Rodiers, B., Lee, E.A.: Compositionality
in Synchronous Data Flow: Modular Code Generation from Hierarchical
SDF Graphs. Tech. Rep. UCB/EECS-2010-52, Univ. of California, Berkeley
(2010)

[19] UCB: Ptolemy II. http://ptolemy.berkeley.edu/ptolemyII

[20] Zhou, Y., Lee, E.: Causality interfaces for actor networks. ACM Trans. on
Emb. Computing Systems 7(3) (Apr 2008)

17

Figure 6: Full cycle for the velocity controller.

18

