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1 Introduction

Heterogeneous sensor networks (HSNs) are gaining popularity in diverse fields,
such as military surveillance, equipment monitoring, and target tracking [41]. They
are natural steps in the evolution of wireless sensor networks (WSNs) driven by
several factors. Increasingly, WSNs will need to support multiple, although not nec-
essarily concurrent, applications. Different applications may require different re-
sources. Some applications can make use of nodes with different capabilities. As
the technology matures, new types of nodes will become available and existing de-
ployments will be refreshed. Diverse nodes will need to coexist and support old and
new applications.

Furthermore, as WSNs are deployed for applications that observe more complex
phenomena, multiple sensing modalities become necessary. Different sensors usu-
ally have different resource requirements in terms of processing power, memory
capacity, or communication bandwidth. Instead of using a network of homogeneous
devices supporting resource intensive sensors, an HSN can have different nodes for
different sensing tasks [22, 34, 10]. For example, at one end of the spectrum low
data-rate sensors measuring slowly changing physical parameters such as tempera-
ture, humidity or light, require minimal resources; while on the other end even low
resolution video sensors require orders of magnitude more resources.
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Tracking is one such application that can benefit from multiple sensing modali-
ties [9]. If the moving target emits sound signal then both audio and video sensors
can be utilized. These modalities can complement each other in the presence of high
background noise that impairs the audio, or in the presence of visual clutter that
handicap the video. Additionally, tracking based on the fusion of audio-video data
can improve the performance of audio-only or video-only approaches. Audio-video
tracking can also provide cues for the other modality for actuation. For example, vi-
sual steering information from a video sensor may be used to steer the audio sensor
(microphone array) toward a moving target. Similarly, information from the audio
sensors can be used to steer a pan-tilt-zoom camera toward a speaker. Although,
audio-visual tracking has been applied to smart videoconferencing applications [42],
it does not use a wide-area distributed platform .

The main challenges in target tracking is to find tracks from noisy observation.
This requires solutions to both data association and state estimation problems. Our
system employs a Markov Chain Monte Carlo Data Association (MCMCDA) al-
gorithm for tracking. The MCMCDA algorithm is a data-oriented, combinatorial
optimization approach to the data association problem that avoids the enumeration
of tracks. The MCMCDA algorithm enables us to track an unknown number of tar-
gets in noisy urban environment

In this chapter, we describe our ongoing research in multimodal target tracking
in urban environments utilizing an HSN of mote class devices equipped with mi-
crophone arrays as audio sensors and embedded PCs equipped with web cameras as
video sensors. The targets to be tracked are moving vehicles emitting engine noise.
Our system has many components including audio processing, video processing,
WSN middleware services, multimodal sensor fusion, and target tracking based on
sequential Bayesian estimation and MCMCDA. While none of these is necessarily
novel, their composition and implementation on an actual HSN requires addressing
a number of significant challenges.

Specifically, we have implemented audio beamforming on audio sensors utiliz-
ing an FPGA-based sensor board and evaluated its performance as well its energy
consumption. While we are using a standard motion detection algorithm on video
sensors, we have implemented post-processing filters that represent the video data in
a similar format as the audio data, which enables seamless audio-video data fusion.
Furthermore, we have extended time synchronization techniques for HSNs consist-
ing of mote and PC networks. Finally, the main challenge we address is system
integration including making the system work on an actual platform in a realistic
deployment. The paper provides results gathered in an uncontrolled urban environ-
ment and presents a thorough evaluation including a comparison of different fusion
and tracking approaches.

The rest of the paper is organized as follows. Section 2 presents related work. In
Section 3, we describe the overall system architecture. It is followed by the descrip-
tion of the audio processing in Section 4 and then the video processing in Section
5. In Section 6, we present our time synchronization approach for HSNs. Multi-
modal target tracking is described in Section 7. Section 8 presents the experimental
deployment and its evaluation. Finally, we conclude in Section 9.
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2 Challenges and Related Work

In this section, we present the challenges for multimodal sensor fusion and tracking.
We also present various existing approach for sensor fusion and tracking. In mul-
timodal multisensor fusion, the data may be fused at a variety of levels including
the raw data level, where the raw signals are fused, a feature-level, where repre-
sentative characteristics of the data are extracted and fused, and a decision-level
fusion wherein target estimates from each sensor are fused [17]. At successive lev-
els more information may be lost, but in collaborative applications, such as WSN
applications, the communication requirement of transmitting large amounts of data
is reduced.

Another significant challenge is sensor conflict, when different sensors report
conflicting data. When sensor conflict is very high, fusion algorithms produce false
or meaningless results [18]. Reasons for sensor conflict may be sensor locality, dif-
ferent sensor modalities, or sensor faults. If a sensor node is far from a target of in-
terest then the data from that sensor will not be useful, and will have higher variance.
Different sensor modalities observe different physical phenomena. For example, au-
dio and video sensors observe sound sources and moving objects, respectively. If a
sound source is stationary or a moving target is silent, the two modalities might pro-
duce conflicting data. Also, different modalities are affected by different types of
background noise. Finally, poor calibration and sudden change in local conditions
can also cause conflicting sensor data.

Another classical problem in multitarget tracking is to find a track of each target
from the noisy data. If the association of sequence of data-points with each target is
known, multitarget tracking reduces to a set of state estimation problems. The data
association problem is to find which data-points are generated by which targets, or
in other words, associate each data-point with either a target or noise.

Rest of the section presents existing work in acoustic localization, video tracking,
time synchronization and multimodal fusion.

Acoustic Localization

An overview of the theoretical aspects of Time Difference of Arrival (TDOA) based
acoustic source localization and beamforming is presented in [7]. Beamforming
methods have successfully been applied to detect single or even multiple sources in
noisy and reverberant environments. A maximum likelihood (ML) method for sin-
gle target and an approximate maximum likelihood (AML) method for direction of
arrival (DOA) based localization in reverberant environments are proposed in [7, 4].
In [1], an empirical study of collaborative acoustic source localization based on an
implementation of the AML algorithm is shown. An alternative technique called
accumulated correlation combines the speed of time-delay estimation with the ac-
curacy of beamforming [5]. Time of Arrival (TOA) and TDOA based methods are
proposed for collaborative source localization for wireless sensor network applica-
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tions [24]. A particle filtering based approach for acoustic source localization and
tracking using beamforming is described in [39].

Video Tracking

A simple approach to motion detection from video data is via frame differencing,
which requires a robust background model. There exist a number of challenges for
the estimation of robust background models [38], including gradual and sudden illu-
mination changes, vacillating backgrounds, shadows, visual clutter, occlusion, etc.
In practice, most of the simple motion detection algorithms have poor performance
when faced with these challenges. Many adaptive background-modeling methods
have been proposed to deal with these challenges. The work in [13] models each
pixel in a camera frame by an adaptive parametric mixture model of three Gaus-
sian distributions. A Kalman filter to track the changes in background illumination
for every pixel is used in [21]. An adaptive nonparametric Gaussian mixture model
to address background modeling challenges is done in [36]. A kernel estimator for
each pixel is proposed in [11] with kernel exemplars from a moving window. Other
techniques using high-level processing to assist the background modeling have been
proposed; for instance, the Wallflower tracker [38] which circumvents some of these
problems using high-level processing rather than tackling the inadequacies of the
background model. The algorithm in [19] proposes an adaptive background model-
ing method based on the framework in [36]. The main differences lie in the update
equations, initialization method and the introduction of a shadow detection algo-
rithm.

Time Synchronization

Time synchronization in sensor networks has been studied extensively in the lit-
erature and several protocols have been proposed. Reference Broadcast Synchro-
nization (RBS) [12] is a protocol for synchronizing a set of receivers to the arrival
of a reference beacon. The Timing-sync Protocol for Sensor Networks (TPSN) [?]
is a sender-receiver protocol that uses the round-trip latency of a message to esti-
mate the time a message takes along the communication pathway from sender to
receiver. This time is then added to the sender timestamp and transmitted to the re-
ceiver to determine the clock offset between the two nodes. Elapsed Time on Arrival
(ETA) [23] provides a set of application programming interfaces for an abstract time
synchronization service. RITS [35] is an extension of ETA over multiple hops. It in-
corporates a set of routing services to efficiently pass sensor data to a network sink
node for data fusion. In [15], mote-PC synchronization was achieved by connect-
ing the GPIO ports of a mote and IPAQ PDA using the mote-NIC model. Although
using this technique can achieve microsecond-accurate synchronization, it was im-
plemented as a hardware modification rather than in software.
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Multimodal Tracking

A thorough introduction to multisensor data fusion, with focus on data fusion appli-
cations, process models, and architectures is provided in [17]. The paper surveys a
number of related techniques, and reviews standardized terminology, mathematical
techniques, and design principles for multisensor data fusion systems. A modular
tracking architecture that combines several simple tracking algorithms is presented
in [31]. Several simple and rapid algorithms run on different CPUs, and the track-
ing results from different modules are integrated using a Kalman filter. In [37], two
different fusion architectures based on decentralized recursive (extended) Kalman
filters are described for fusing outputs from independent audio and video trackers.

Multimodal sensor fusion and tracking have been applied to smart videoconfer-
encing and indoor tracking applications [44, 42, 3, 6]. In [44], data is obtained using
multiple cameras and microphone arrays. The video data consist of pairs of image
coordinates of features on each tracked object, and the audio data consist of TDOA
for each microphone pair in the array. A particle filter is implemented for track-
ing. In [3], a graphical model based approach is taken using audiovisual data. The
graphical model is designed for single target tracking using a single camera and a
microphone pair. The audio data consist of the signals received at the microphones,
and the video data consist of monochromatic video frames. Generative models are
described for the audio-video data that explain the data in terms of the target state.
An expectation-maximization (EM) algorithm is described for parameter learning
and tracking, which also enables automatic calibration by learning the audio-video
calibration parameters during each EM step. In [6], a probabilistic framework is de-
scribed for multitarget tracking using audio and video data. The video data consist
of plan-view images of the foreground. Plan-view images are projections of the im-
ages captured from different points-of-view to a 2D plane, usually the ground plane
where the targets are moving [8]. Acoustic beamforms for a fixed length signal are
taken as the audio data. A particle filter is implemented for tracking.

3 Architecture

Figure 1 shows the system architecture. The audio sensors, consisting of MICAz
motes with acoustic sensor boards equipped with a microphone array, form an IEEE
802.15.4 network. This network does not need to be connected; it can consist of
multiple connected components as long as each of these component have a dedicated
mote-PC gateway. The video sensors are based on Logitech QuickCam Pro 4000
cameras attached to OpenBrick-E Linux embedded PCs. These video sensors, along
with the mote-PC gateways, the sensor fusion node and the reference broadcaster
for time synchronization (see Section 6) are all PCs forming a peer-to-peer 802.11b
wireless network. Figure 2 shows the conceptual layout of the sensor network.

The audio sensors perform beamforming, and transmit the audio detections to the
corresponding mote-PC gateway utilizing a multi-hop message routing service [2].
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Fig. 1 Architecture for the multimodal target tracking system. Here, τ denotes measurement times-
tamps, λ denotes sensor measurements (also called detection functions that are described in later
sections), and t denotes time. The blocks shown inside the sensor fusion node are circular buffers
that store timestamped measurements.
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Fig. 2 Conceptual layout of sensor network for multimodal target tracking. Circles represent the
audio sensors, camera silhouettes represent the video sensors and rectangles represent PCs.

The routing service also performs time translation of the detection timestamps. The
video sensors run a motion detection algorithm and compute timestamped video de-
tection functions. Both audio and video detections are routed to the central sensor
fusion node. Time translation is also carried out in the 802.11b network utilizing an
RBS-based time synchronization service. This approach ensures that sensor data ar-
rives at the sensor fusion node with timestamps in a common timescale. On the sen-
sor fusion node, the sensor measurements are stored in appropriate sensor buffers,
one for each sensor. A sensor fusion scheduler triggers periodically and generates
a fusion timestamp. The trigger is used to retrieve the sensor measurements from
the sensor buffers with timestamps closest to the generated fusion timestamp. The
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retrieved sensor measurements are then used for multimodal fusion and target track-
ing. In this study, we developed and compared target tracking algorithms based on
both Sequential Bayesian Estimation (SBE) and MCMCDA. Note that the triggering
mechanism of the scheduler decouples the target tracking rate from the audio and
video sensing rates, which allows us to control the rate of the tracking application
independently of the sensing rate.

4 Audio Beamforming

Beamforming is a signal processing algorithm for DOA estimation of a signal
source. In a typical beamforming array, each of the spatially separated microphones
receive a time-delayed source signal. The amount of time delay at each microphone
in the array depends on the microphone arrangement and the location of the source.
A typical delay-and-sum single source beamformer discretizes the sensing region
into directions, or beams, and computes a beam energy for each of them. The beam
energies are collectively called the beamform. The beam with maximum energy in-
dicates the direction of the acoustic source.

Beamforming Algorithm

The data-flow diagram of our beamformer is shown in Fig. 3. The amplified micro-
phone signal is sampled at a high frequency (100 KHz) to provide high resolution
for the time delay, which is required for the closely placed microphones. The raw
signals are filtered to remove unwanted noise components. The signal is then fed to
a tapped delay line (TDL), which has M different outputs to provide the required
delays for each of the M beams. The delays are set by taking into consideration the
exact relative positions of the microphones so that the resulting beams are steered
to the beam angles, θi = i 360

M degrees, for i = 0,1, ...M−1. The signal is downsam-

Fig. 3 Data-flow diagram of the real-time beamforming sensor.
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pled and the M beams are formed by adding the four delayed signals together. Data
blocks are formed from the data streams (with a typical block length of 5-20ms) and
an FFT is computed for each block. The block power values, µ(θi), are smoothed
by exponential averaging into the beam energy, λ (θi)

λ
t(θi) = αλ

t−1(θi)+(1−α)µ(θi) (1)

where α is an averaging factor.

Audio Hardware

In our application, the audio sensor is a MICAz mote with an onboard Xilinx
XC3S1000 FPGA chip that is used to implement the beamformer [40]. The onboard
Flash (4MB) and PSRAM (8MB) modules allow storing raw samples of several
acoustic events. The board supports four independent analog channels, featuring an
electret microphone each, sampled at up to 1 MS/s (million samples per second). A
small beamforming array of four microphones arranged in a 10cm×6cm rectangle
is placed on the sensor node, as shown in Fig. 4(a). Since the distances between
the microphones are small compared to the possible distances of sources, the sen-
sors perform far-field beamforming. The sources are assumed to be on the same
two-dimensional plane as the microphone array, thus it is sufficient to perform pla-
nar beamforming by dissecting the angular space into M equal angles, providing a
resolution of 360/M degrees. In the experiments, the sensor boards are configured
to perform simple delay-and-sum-type beamforming in real time with M = 36, and
an angular resolution of 10 degrees. Finer resolution increases the communication
requirements.

Sensor Node

10 cm

6 cm

Fig. 4 (a) Sensor Node Showing the Microphones, (b) Beamform of acoustic source at a distance
of 50 feet and an angle of 120 degrees.
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Evaluation

We test the beamformer node outdoors using recorded speech as the acoustic source.
Measurements are taken by placing the source at distances of 3, 5, 10, 25, 50, 75,
100, and 150 feet from the sensor, and at an angle from -180◦ to +180◦ in 5◦ incre-
ments. Figure 4(b) shows the beamforming result for a single audio sensor when the
source was at a distance of 50 feet. Mean DOA measurement error for 1800 human
speech experiments is shown in Figure 5. The smallest error was recorded when the
source was at a distance of 25 feet from the sensor. The error increases as the source
moves closer to the sensor. This is because the beamforming algorithm assumes a
planar wavefront, which holds for far-field sources but breaks down when the source
is close to the sensor. However, as the distance between the source and sensor grows,
error begins accumulating again as the signal-to-noise ratio decreases.
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Fig. 5 Human speech DOA error for distances of 3, 5, 10, 25, 50, 75 feet between acoustic source
and beamformer node.

Messages containing the audio detection functions require 83 bytes, and include
node ID, sequence number, timestamps, and 72 bytes for 36 beam energies. These
data are transmitted through the network in a single message. The default TinyOS
message size of 36 bytes was changed to 96 bytes to accommodate the entire audio
message. The current implementation uses less than half of the total resources (logic
cells, RAM blocks) of the selected mid-range FPGA device. The application runs at
20 MHz, which is relatively slow in this domain—the inherent parallel processing
topology allows this slow speed. Nonetheless, the FPGA approach has a significant
impact on the power budget, the sensor draws 130mA current (at 3.3 V) which is
nearly a magnitude higher then typical wireless sensor node power currents. Flash-
based FPGAs and smart duty cycling techniques are promising new directions in
our research project for reducing the power requirements.
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5 Video Tracking

Video tracking systems seek to automatically detect moving targets and track their
movement in a complex environment. Due to the inherent richness of the visual
medium, video based tracking typically requires a pre-processing step that focuses
attention of the system on regions of interest in order to reduce the complexity of
data processing. This step is similar to the visual attention mechanism in human ob-
servers. Since the region of interest is primarily characterized by regions containing
moving targets (in the context of target tracking), robust motion detection is the first
step in video tracking. A simple approach to motion detection from video data is
via frame differencing. It compares each incoming frame with a background model
and classifies the pixels of significant variation into the foreground. The foreground
pixels are then processed for identification and tracking. The success of frame differ-
encing depends on the robust extraction and maintenance of the background model.
Performance of such techniques tends to degrade when there is significant camera
motion, or when the scene has significant amount of change.

Algorithm

The dataflow in Figure 6 shows the motion detection algorithm and its components
used in our tracking application. The first component is background-foreground seg-

Bt

Gaussian bg/fg
segmentation

Median Filter
Detection 
Function

It Ft
Post-

processing 
Filters

Dt

Fig. 6 Data-flow diagram of real-time motion detection algorithm

mentation of the currently captured frame (It ) from the camera. We use the algorithm
described in [19]. This algorithm uses an adaptive background mixture model for
real-time background and foreground estimation. The mixture method models each
background pixel as a mixture of K Gaussian distributions. The algorithm provides
multiple tunable parameters for desired performance. In order to reduce speckle
noise and smooth the estimated foreground (Ft ), the foreground is passed through a
median filter. In our experiments, we use a median filter of size 3×3.

Since our sensor fusion algorithm (Section 7) utilizes only the angle of moving
targets, it is desirable and sufficient to represent the foreground in a simpler detec-
tion function. Similar to the beam angle concept in audio beamforming (Section 4),
the field-of-view of the camera is divided into M equally-spaced angles

θi = θmin +(i−1)
θmax−θmin

M
: i = 1,2, ...,M (2)
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where θmin and θmax are the minimum and maximum field-of-view angles for the
camera. The detection function value for each angle is simply the number of fore-
ground pixels in that direction. Formally, the detection function for the video sensors
can be defined as

λ (θi) =
W

∑
j∈θi

H

∑
k=1

F( j,k) : i = 1,2, ...,M (3)

where F is the binary foreground image, H and W are the vertical and horizontal
resolutions in pixels, respectively and j ∈ θi indicates columns in the frame that fall
within angle θi. Figure 7 shows a snapshot of motion detection.

H

W

Fig. 7 Video detection. The frame on the left shows the input image, the frame in the middle shows
the foreground and the frame on the right shows the video detection function.

Video Post-processing

In our experiments, we gathered video data of vehicles from multiple sensors from
an urban street setting. The data contained a number of real-life artifacts such as
vacillating backgrounds, shadows, sunlight reflections and glint. The algorithm de-
scribed above is not able to filter out such artifacts from the detections. We im-
plemented two post-processing filters to improve the detection performance. The
first filter removes any undesirable persistent background. For this purpose we keep
a background of moving averages which was removed from each detection. The
background update and filter equations are

bt(θ) = αbt−1(θ)+(1−α)λ t(θ) (4)
λ

t(θ) = λ
t(θ)−bt−1(θ) (5)

where bt(θ) is the moving average background, and λ t(θ) is the detection function
at time t. The second filter removes any sharp spikes (typically caused by sunlight
reflections and glint). For this we convolved the detection function with a small
linear kernel to add a blurring effect. This essentially reduces the effect of any sharp
spikes in detection function due to glints. The equation for this filter is

λ
t(θ) = λ

t(θ)∗ k (6)
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where k is a 7×1 vector of equal weights, and ∗ denotes convolution.
We implemented the motion detection algorithm using OpenCV (open source

computer vision) library. We use Linux PCs equipped with the QuickCam Pro 4000
as video sensors. The OpenBrick-E has 533 MHz CPU, 128 MB RAM, and a
802.11b wireless adapter. The QuickCam Pro supports up to 640× 480 pixel res-
olution and up to 30 frames-per-second frame rate. Our motion detection algorithm
implementation runs at 4 frames-per-second and 320× 240 pixel resolution. The
number of angles in Equation (2) is M = 160.

6 Time Synchronization

In order to seamlessly fuse time-dependent audio and video sensor data for tracking
moving objects, participating nodes must have a common notion of time. Although
several microsecond-accurate synchronization protocols have emerged for wireless
sensor networks (e.g. [12, 14, 27, 35]), achieving accurate synchronization in a het-
erogeneous sensor network is not a trivial task.

6.1 Synchronization Methodology

Attempting to synchronize the entire network using a single protocol will intro-
duce a large amount of error. For example, TPSN [14], FTSP [27], and RITS [35]
were all designed to run on the Berkeley Motes, and assume the operating sys-
tem is tightly integrated with the radio stack. Attempting to use such protocols on
an 802.11 PC network will result in poor synchronization accuracy because the
necessary low-level hardware control is difficult to achieve. Reference Broadcast
Synchronization (RBS) [12], although flexible when it comes to operating system
and computing platform, is accurate only when all nodes have access to a common
network medium. A combined network of motes and PCs will be difficult to syn-
chronize using RBS because each platform uses different communication protocols
and wireless frequencies. Instead, we adopted a hybrid approach [2], which pairs a
specific network with the synchronization protocol that provides the most accuracy
with the least amount of overhead. To synchronize the entire network, it is neces-
sary for gateway nodes (i.e., nodes connecting multiple networks,) to handle several
synchronization mechanisms.

Mote Network

We used Elapsed Time on Arrival (ETA) [23] to synchronize the mote network.
ETA timestamps synchronization messages at transmit and receive time, thus re-
moving the largest amount of nondeterministic message delay from the communi-
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cation pathway. On the sender side, a timestamp is taken upon transmission of a
designated synchronization byte, and placed at the end of the outgoing message. On
the receiver side, a timestamp is taken upon arrival of the synchronization byte. The
difference between these two timestamps is generally deterministic, and is based
primarily on the bitrate of the transceivers and the size of the message. We selected
ETA for the mote network due to its accuracy and low message overhead.

PC Network

We used RBS to synchronize the PC network. RBS synchronizes a set of nodes to
the arrival of a reference beacon. Participating nodes timestamp the arrival of a mes-
sage broadcast over the network, and by exchanging these timestamps, neighboring
nodes are able to maintain reference tables for timescale transformation. RBS min-
imizes synchronization error by taking advantage of the broadcast channel of wire-
less networks.

Mote-PC Network

To synchronize a mote with a PC in software, we adopted the underlying method-
ology of ETA and applied it to serial communication. On the mote, a timestamp is
taken upon transfer of a synchronization byte and inserted into the outgoing mes-
sage. On the PC, a timestamp is taken immediately after the UART issues the in-
terrupt, and the PC regards the difference between these two timestamps as the PC-
mote offset. Serial communication bit rate between the mote and PC is 57600 baud,
which approximately amounts to a transfer time of 139 microseconds per byte. How-
ever, the UART will not issue an interrupt to the CPU until its 16-byte buffer nears
capacity or a timeout occurs. Because the synchronization message is six bytes, re-
ception time in this case will consist of the transfer time of the entire message in
addition to the timeout time and the time it takes to transfer the date from the UART
buffer into main memory by the CPU. This time is compensated for by the receiver,
and the clock offset between the two devices is determined as the difference between
the PC receive time and the mote transmit time.

6.2 Evaluation of HSN Time Synchronization

Our HSN contains three communication pathways: mote-mote, mote-PC, and PC-
PC. We first examine the synchronization accuracy of each of these paths, then
present the synchronization results for the entire network.
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Mote Network

We evaluated synchronization accuracy in the mote network with the pairwise dif-
ference method. Two nodes simultaneously timestamp the arrival of an event bea-
con, then forward the timestamps to a sink node two hops away. At each hop, the
timestamps are converted to the local timescale. The synchronization error is the
difference between the timestamps at the sink node. For 100 synchronizations, the
average error is 5.04µs, with a maximum of 9µs.

PC Network

We used a separate RBS transmitter to broadcast a reference beacon every ten sec-
onds over 100 iterations. Synchronization error, determined using the pairwise dif-
ference method, was as low as 17.51µs on average, and 2050.16µs maximum. The
worst-case error is significantly higher than reported in [12] because the OpenBrick-
E wireless network interface controllers in our experimental setup are connected via
USB, which has a default polling frequency of 1 kHz. For our tracking application,
this is acceptable because we use a sampling rate of 4 Hz. Note that the reason for
selecting such a low sampling rate is due to bandwidth constraints and interference
and not because of synchronization error.

Mote-PC Connection

GPIO pins on the mote and PC were connected to an oscilloscope, and set high
upon timestamping. The resulting output signals were captured and measured. The
test was performed over 100 synchronizations, and the resulting error was 7.32µs
on average, and did not exceed 10µs. The majority of the error is due to jitter, both
in the UART and the CPU. A technique to compensate for such jitter on the motes
is presented in [27], however, we did not attempt it on the PCs.

HSN

We evaluated synchronization accuracy across the entire network using the pair-
wise difference method. Two motes timestamped the arrival of an event beacon,
and forwarded the timestamp to the network sink, via one mote and two PCs. RBS
beacons were broadcast at four-second intervals, and therefore clock skew compen-
sation was unnecessary, because synchronization error due to clock skew would be
insignificant compared with offset error. The average error over the 3-hop network
was 101.52µs, with a maximum of 1709µs. The majority of this error is due to the
polling delay from the USB wireless network controller. However, synchronization
accuracy is still sufficient for audio and video sensor fusion at 4Hz.
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6.3 Synchronization Service

The implementation used in these experiments was bundled into a time synchro-
nization and routing service for sensor fusion applications. Figure 8 illustrates the
interaction of each component within the service. The service interacts with sensing
applications that run on the local PC, as well as other service instances running on
remote PCs. The service accepts timestamped event messages on a specific port,
converts the embedded timestamp to the local timescale, and forwards the message
toward the sensor-fusion node. The service uses reference broadcasts to maintain
synchronization with the rest of the PC network. In addition, the service accepts
mote-based event messages, and converts the embedded timestamps using the ETA-
based serial timestamp synchronization method outlined above. Kernel modifica-
tions in the serial and wireless drivers were required in order to take accurate times-
tamps. Upon receipt of a designated synchronization byte, the time is recorded and
passed up to the synchronization service in the user space. The modifications are
unobtrusive to other applications using the drivers, and the modules are easy to load
into the kernel. The mote implementation uses the TimeStamping interface, pro-
vided with the TinyOS distribution [25]. A modification was made to the UART
interface to insert a transmission timestamp into the event message as it is being
transmitted between the mote and PC. The timestamp is taken immediately before
a synchronization byte is transmitted, then inserted at the end of the message.

Fig. 8 PC-based time synchronization service.
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7 Multimodal Target Tracking

This section describes the tracking algorithm and the approach for fusing the audio
and video data based on sequential Bayesian estimation. We use following notation:
Superscript t denotes discrete time (t ∈ Z+), subscript k ∈ {1, ...,K} denotes the
sensor index, where K is the total number of sensors in the network, the target state
at time t is denoted as x(t), and the sensor data at time t is denoted as z(t).

7.1 Sequential Bayesian Estimation

We use sequential Bayesian estimation to estimate the target state x(t) at time t,
similar to the approach presented in [26]. In sequential Bayesian estimation, the tar-
get state is estimated by computing the posterior probability density p(x(t+1)|z(t+1))
using a Bayesian filter described by

p(x(t+1)|z(t+1)) ∝ p(z(t+1)|x(t+1))
∫

p(x(t+1)|x(t))p(x(t)|z(t))dx(t) (7)

where p(x(t)|z(t)) is the prior density from the previous step, p(z(t+1)|x(t+1)) is the
likelihood given the target state, and p(x(t+1)|x(t)) is the prediction for the target
state x(t+1) given the current state x(t) according to a target motion model. Since
we are tracking moving vehicles it is reasonable to use a directional motion model
based on the target velocity. The directional motion model is described by

x(t+1) = x(t) + v+U [−δ ,+δ ] (8)

where x(t) is the target state time t, x(t+1) is the predicted state, v is the target velocity,
and U [−δ ,+δ ] is a uniform random variable.

Because the sensor models (described later in Subsection 7.2) are nonlinear, the
probability densities cannot be represented in a closed form. It is, therefore, reason-
able to use a nonparametric representation for the probability densities. The non-
parametric densities are represented as discrete grids in 2D space, similar to [26].
For nonparametric representation, the integration term in Equation (7) becomes a
convolution operation between the motion kernel and the prior distribution. The
resolution of the grid representation is a trade-off between tracking resolution and
computational capacity.

Centralized Bayesian Estimation

Since we use resource constrained mote class sensors, centralized Bayesian esti-
mation is a reasonable approach because of its modest computational requirements.
The likelihood function in Equation (7) can be calculated either as a product or
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weighted summation of the individual likelihood functions. We describe the two
methods next.

Product of Likelihood functions

Let pk(z(t)|x(t)) denote the likelihood function from sensor k. If the sensor observa-
tions are mutually independent conditioned on the target state, the likelihood func-
tions from multiple sensors are combined as

p(z(t)|x(t)) = ∏
k=1,...,K

pk(z(t)|x(t)) (9)

Weighted-Sum of Likelihood functions

An alternative approach to combine the likelihood functions is to compute their
weighted-sum. This approach allows us to give different weights to different sen-
sor data. These weights can be used to incorporate sensor reliability and quality of
sensor data. We define a quality index q(t)

k for each sensor k as

q(t)
k = rk max

θ

(λ (t)
k (θ))

where rk is a measure of sensor reliability and λ
(t)
k (θ) is the sensor detection func-

tion. The combined likelihood function is given by

p(z(t)|x(t)) =
∑k=1,...,K q(t)

k pk(z(t)|x(t))

∑k=1,...,K q(t)
k

(10)

We experimented with both methods in our evaluation. The product method pro-
duces more accurate results with low uncertainty in target state. The weighted-sum
method performs better in cases with high sensor conflict, though it suffers from
high uncertainty. The results are presented in Section 8.

Hybrid Bayesian Estimation

In sensor fusion a big challenge is to account for conflicting sensor data. When
sensor conflict is very high, sensor fusion algorithms produce false or meaningless
fusion results [18]. Reasons for sensor conflict are sensor locality, different sensor
modalities, and sensor faults. Selecting and clustering the sensors in different groups
based on locality or modality can mitigate poor performance due to sensor conflict.
For example, clustering the sensors close to the target and fusing the data from only
the sensors in the cluster would remove the conflict caused by distant sensors.
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The sensor network deployment in this paper is small and the sensing region
is comparable to the sensing ranges of the audio and video sensors. For this rea-
son, we do not use locality based clustering. However, we have multimodal sensors
that can report conflicting data. Hence, we developed a hybrid Bayesian estimation
framework [17] by clustering sensors based on modalities, and compare it with the
centralized approach. Figure 9 illustrates the framework. The likelihood function

Sensor 1

Sensor 2

Sensor 3

Sensor N

Detection & Likelihood
function

Fusion (SBE)

Fusion (SBE)

Posterior 
Fusion

Detection & Likelihood
Function`

Detection & Likelihood
function

Detection & Likelihood
Function` Sensor likelihood 

functions

Posterior 
distributions

Target 
state 

Fig. 9 Hybrid Bayesian estimation framework.

from each sensor in a cluster is fused together using Equation (9) or (10). The com-
bined likelihood is then used in Equation (7) to calculate the posterior density for
that cluster. The posterior densities from all the clusters are then combined together
to estimate the target state.

For hybrid Bayesian estimation with audio-video clustering, we compute the
likelihood functions using Equation (9) or (10). The audio posterior density is cal-
culated using

paudio(x(t+1)|z(t+1)) ∝ paudio(z(t+1)|x(t+1))
∫

p(x(t+1)|x(t))p(x(t)|z(t))dx(t)

while the video posterior density is calculated as

pvideo(x(t+1)|z(t+1)) ∝ pvideo(z(t+1)|x(t+1))
∫

p(x(t+1)|x(t))p(x(t)|z(t))dx(t)

The two posterior densities are combined either as (product fusion)

p(x(t+1)|z(t+1)) ∝ paudio(z(t+1)|x(t+1))pvideo(z(t+1)|x(t+1))

or (weighted-sum fusion)

p(x(t+1)|z(t+1)) ∝ α paudio(z(t+1)|x(t+1))+(1−α)pvideo(z(t+1)|x(t+1))

where α is a weighing factor.
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7.2 Sensor Models

We use a nonparametric model for the audio sensors, while a parametric mixture-of-
Gaussian model for the video sensors is used to mitigate the effect of sensor conflict
in object detection.

Audio Sensor Model

The nonparametric DOA sensor model for a single audio sensor is the piecewise
linear interpolation of the audio detection function

λ (θ) = wλ (θi−1)+(1−w)λ (θi), if θ ∈ [θi−1,θi]

where w = (θi−θ)/(θi−θi−1).

Video Sensor Model

The video detection algorithm captures the angle of one or more moving objects.
The detection function from Equation (3) can be parametrized as a mixture-of-
Gaussian

λ (θ) =
n

∑
i=1

ai fi(θ)

where n is the number of components, fi(θ) is the probability density, and ai is the
mixing proportion for component i. Each component is a Gaussian density given by
fi(θ) = N (θ |µi,σ

2
i ), where the component parameters µi, σ2

i and ai are calculated
from the detection function.

Likelihood Function

The 2D search space is divided into N rectangular cells with center points at (xi,yi),
for i = 1,2, ...,N as illustrated in Figure 10. The likelihood function value for kth

sensor at ith cell is the average value of the detection function in that cell, given by

pk(z|x) = pk(xi,yi) =
1

(ϕ(k,i)
B −ϕ

(k,i)
A )

∑
ϕ

(k,i)
A ≤θ≤ϕ

(k,i)
B

λk(θ)
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Fig. 10 Computation of the likelihood value for kth sensor at ith cell, (xi,yi). The cell is centered
at P0 with vertices at P1, P2, P3, and P4. The angular interval subtended at the sensor due to the ith

cell is θ ∈ [ϕ(k,i)
A ,ϕ

(k,i)
B ], or θ ∈ [0,2π] if the sensor is inside the cell.

7.3 Multiple-Target Tracking

The essence of the multi-target tracking problem is to find a track of each object
from noisy measurements. If the sequence of measurements associated with each
object is known, multi-target tracking reduces to a set of state estimation problems
for which many efficient algorithms are available. Unfortunately, the association
between measurements and objects is unknown. The data association problem is to
work out which measurements were generated by which objects; more precisely, we
require a partition of measurements such that each element of a partition is a collec-
tion of measurements generated by a single object or noise. Due to this data asso-
ciation problem, the complexity of the posterior distribution of the states of objects
grows exponentially as time progresses. It is well-known that the data association
problem is NP-hard [32], so we do not expect to find efficient, exact algorithms for
solving this problem.

In order to handle highly nonlinear and non-Gaussian dynamics and observa-
tions, a number of methods based on particle filters has recently been developed to
track multiple objects in video [30, 20]. Although particle filters are highly effec-
tive in single-target tracking, it is reported that they provide poor performance in
multi-target tracking [20]. This is because a fixed number of particles is insufficient
to represent the posterior distribution with the exponentially increasing complexity
(due to the data association problem). As shown in [20, 43], an efficient alternative is
to use Markov chain Monte Carlo (MCMC) to handle the data association problem
in multi-target tracking.

For our problem, there is an additional complexity. We do not assume the num-
ber of objects is known. A single-scan approach, which updates the posterior based
only on the current scan of measurements, can be used to track an unknown number
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of targets with the help of trans-dimensional MCMC [43, 20] or a detection algo-
rithm [30]. But a single-scan approach cannot maintain tracks over long periods
because it cannot revisit previous, possibly incorrect, association decisions in the
light of new evidence. This issue can be addressed by using a multi-scan approach,
which updates the posterior based on both current and past scans of measurements.
The well-known multiple hypothesis tracking (MHT) [33] is a multi-scan tracker,
however, it is not widely used due to its high computational complexity.

A newly developed algorithm, called Markov chain Monte Carlo data associa-
tion (MCMCDA), provides a computationally desirable alternative to MHT [29].
The simulation study in [29] showed that MCMCDA was computationally efficient
compared to MHT with heuristics (i.e., pruning, gating, clustering, N-scan-back
logic and k-best hypotheses). In this chapter, we use the online version of MCM-
CDA to track multiple objects in a 2-D plane. Due to the page limitation, we omit
the description of the algorithm in this paper and refer interested readers to [29].

8 Evaluation

In this section, we evaluate target tracking algorithms based on the sequential
Bayesian estimation and MCMCDA.

8.1 Sequential Bayesian Estimation

Video node 3

Video node 1

Video node 2

1 2 3

4 5 6

Audio SensorsVideo Sensors

Sensor Fusion Center

36.5 ft

15 ft

92 ft

76 ft

Fig. 11 Experimental setup

The deployment of our multimodal target tracking system is shown in Figure
11. We employ 6 audio sensors and 3 video sensors deployed on either side of a
road. The complex urban street environment presents many challenges including
gradual change of illumination, sunlight reflections from windows, glints due to
cars, high visual clutter due to swaying trees, high background acoustic noise due
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to construction and acoustic multipath effects due to tall buildings. The objective of
the system is to detect and track vehicles using both audio and video under these
conditions.

Sensor localization and calibration for both audio and video sensors are required.
In our experimental setup, the sensor nodes are manually placed at marked locations
and orientations. The audio sensors are placed on 1 meter high tripods to minimize
audio clutter near the ground. An accurate self-calibration technique, e.g. [16, 28], is
desirable for a target tracking system. Our experimental setup consists of two wire-
less networks as described in Section 3. The mote network is operating on channel
26 (2.480 GHz) while the 802.11b network is operating on channel 6 (2.437 GHz).
Both the channels are non-overlapping and different from the infrastructure wire-
less network, which operates on channel 11 (2.462 GHz). We choose these non-
overlapping channels to minimize interference and are able to achieve less than 2%
packet loss.

We gather audio and video detection data for a total duration of 43 minutes. Ta-
ble 1 presents the parameter values that we use in our tracking system. We run our

Number of beams in audio beamforming, Maudio 36
Number of angles in video detection Mvideo 160
Sensing region (meters) 35×20
Cell size (meters) 0.5×0.5

Table 1 Parameters used in experimental setup

sensor fusion and tracking system online using centralized sequential Bayesian es-
timation based on the product of likelihood functions. We also collect all the audio
and video detection data for offline evaluation. This way we are able to experiment
with different fusion approaches on the same data set. For offline evaluations, we
shortlist 10 vehicle tracks where there is only a single target in the sensing region.
The average duration of tracks is 4.25 sec with 3.0 sec minimum and 5.5 sec maxi-
mum. The tracked vehicles are part of an uncontrolled experiment. The vehicles are
traveling on road at a speed of 20-30 mph speed.

Sequential Bayesian estimation requires a prior density of the target state. We
initialize the prior density using a simple detection algorithm based on audio data.
If the maximum of the audio detection functions exceeds a threshold, we initialize
the prior density based on the audio detection.

In our simulations, we experiment with eight different approaches. We use audio-
only, video-only and audio-video sensor data for sensor fusion. For each of these
data sets, the likelihood is computed either as the weighted-sum or product of the
likelihood function for the individual sensors. For the audio-video data, we use
centralized and hybrid fusion. Following is the list of different target tracking ap-
proaches.

1. audio-only, weighted-sum (AS)
2. video-only, weighted-sum (VS)
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3. audio-video, centralized, weighted-sum (AVCS)
4. audio-video, hybrid, weighted-sum (AVHS)
5. audio-only, likelihood product (AP)
6. video-only, likelihood product (VP)
7. audio-video, centralized, likelihood product (AVCP)
8. audio-video, hybrid, likelihood product (AVHP)

The ground truth is estimated post-facto based on the video recording by a sep-
arate camera. The standalone ground truth camera is not part of any network, and
have the sole responsibility of recording ground truth video. For evaluation of track-
ing accuracy, the center of mass of the vehicle is considered to be the true location.

Figure 12 shows the tracking error for a representative vehicle track. The tracking

Fig. 12 Tracking error (a) weighted sum, (b) product

error when audio data is used is consistently lower than the case when the video data
is used. When we use both audio and video data, the tracking error is lower than
either of those considered alone. Figure 13 shows the determinant of the covariance
of the target state for the same vehicle track. The covariance, which is an indicator of

Fig. 13 Tracking variance (a) weighted sum, (b) product

uncertainty in the target state is significantly lower for product fusion than weighted-
sum fusion. In general, covariance for audio-only tracking is higher than video-only
tracking, while using both modalities lowers the uncertainty.

Figure 14(a) shows the tracking error in the case of fusion based on weighted-
sum. The tracking error when using only video data shows a large value at time
t = 1067 second. In this case, the video data has false peaks not corresponding to
the target. The audio fusion works fine for this track. As expected, when we use both
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Fig. 14 Tracking error (a) poor video tracking, (b) poor audio tracking

audio and video data together, the tracking error is decreased. Further, Figure 14(a)
shows the tracking error when using 6, 3 and 2 audio sensors for the centralized
audio-video fusion. Using as few as two audio sensors can assist video tracking to
disambiguate and remove false peaks. Similarly, when there is an ambiguity in the
audio data, the video sensors can assist and improve tracking performance. Figure
14(b) shows the tracking error for a track where audio data is poor due to multiple
sound sources. When fused with video data the tracking performance is improved.
The figure shows tracking performance when using two and three video sensors for
the centralized and hybrid fusion.
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Fig. 15 Tracking errors (a) weighted sum, (b) product

Figure 15 shows average tracking errors for all ten vehicle tracks for all target
tracking approaches mentioned above. Figure 16(a) averages tracking errors for all
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Fig. 16 (a) Average tracking errors and (b) average of determinant of covariance for all tracks

the tracks to compare different tracking approaches. Audio and video modalities
are able to track vehicles successfully, though they suffer from poor performance
in the presence of high background noise and clutter. In general, audio sensors are
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able to track vehicles with good accuracy, but they suffer from high uncertainty and
poor sensing range. Video tracking is not very robust in the presence of multiple
targets and noise. As expected, fusing the two modalities consistently gives better
performance. There are some cases where audio tracking performance is better than
fusion. This is due to poor performance of video tracking.

Fusion based on the product of likelihood functions gives better performance
but it is more vulnerable to sensor conflict and errors in sensor calibration. The
weighted-sum approach is more robust to conflicts and sensor errors, but it suffers
from high uncertainty. The centralized estimation framework consistently performs
better than the hybrid framework.

Figure 17 shows the determinant of the covariance for all tracks and all ap-
proaches. Figure 16(b) presents averages of covariance measure for all tracks to
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Fig. 17 Determinant of covariance (a) weighted sum, (b) product

compare the performance of tracking approaches. Among modalities, video sensors
have lower uncertainty than audio sensors. Among the fusion techniques, product
fusion produces lower uncertainty, as expected. There was no definite comparison
between the centralized and hybrid approach, though the latter seems to produce
lower uncertainty in the case of weighted-sum fusion.

The average tracking error of 2 meters is reasonable considering the fact that a
vehicle is not a point source, and the cell size used in fusion is 0.5 meters.

8.2 MCMCDA

The audio and video data gathered for target tracking based on sequential Bayesian
estimation is reused to evaluate target tracking based on MCMCDA. For MCMCDA
evaluation, we experiment with six different approaches. We use audio-only (A),
video-only (V) and audio-video (AV) sensor data for sensor fusion. For each of
these data sets, the likelihood is computed either as the weighted-sum or product of
the likelihood functions for individual sensors.
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8.2.1 Single Target

We shortlist 9 vehicle tracks with a single target in the sensing region. The average
duration of tracks is 3.75 sec with 2.75 sec minimum and 4.5 sec maximum. Figure
18 shows the target tracking result for two different representative vehicle tracks.
The figure also shows the raw observations obtained from the multimodal sensor
fusion and peak detection algorithms. Figure 19 shows average tracking errors for

Fig. 18 Target Tracking (a) no missed detection (b) with missed detections
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Fig. 19 Tracking errors (a) weighted sum fusion, and (b) product fusion

all vehicle tracks for the weighted-sum fusion and product fusion approaches. The
missing bars indicate that the data association algorithm is not able to successfully
estimate a track for the target. Figure 20 averages tracking errors for all the tracks
to compare different tracking approaches. The figure also shows the comparison of
the performance of tracking based on sequential Bayesian estimation to MCMCDA
based tracking. The performance of MCMCDA is consistently better than sequential
Bayesian estimation. Table 2 compares average tracking errors and tracking success
across likelihood fusion and sensor modality. Tracking success is defined as the
percentage of correct tracks that the algorithm is successfully able to estimate. Ta-
ble 3 shows the reduction in tracking error for audio-video fusion over audio-only
and video-only approaches. For summation fusion, the audio-video fusion is able to
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Fig. 20 Average tracking errors for all estimated tracks. A comparison with sequential Bayesian
estimation based tracking is also shown.

Average error (m) Tracking success

Fusion Summ 1.93 74%
Prod 1.58 59%

Modality
Audio 1.49 89%
Video 2.44 50%
AV 1.34 61%

Table 2 Average tracking error and tracking success

reduce tracking error by an average of 0.26 m and 1.04 m for audio and video ap-
proaches, respectively. The audio-video fusion improves accuracy for 57% and 75%
of the tracks for audio and video approaches, respectively. For the rest of the tracks,
the tracking error either increased or remained same. Similar results are presented
for product fusion in Table 3. In general, audio-video fusion improves over either
audio or video or both approaches. Video cameras were placed at an angle along the

Summ Prod
Average
error re-
duction
(m)

Tracks
im-
proved

Average
error re-
duction
(m)

Tracks
im-
proved

Audio 0.26 57% 0.14 100%
Video 1.04 75% 0.90 67%

Table 3 Average reduction in tracking error for AV over audio and video-only for all estimated
tracks
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road to maximize coverage of the road. This makes video tracking very sensitive to
camera calibration errors and camera placement. Also, an occasional obstruction in
front of a camera confused the tracking algorithm which took a while to recover. An
accurate self-calibration technique, e.g. [16, 28], is desirable for better performance
of a target tracking system.

8.2.2 Multiple Targets

Many tracks with multiple moving vehicles in the sensing region were recorded
during the experiment. Most of them have vehicles moving in the same direction.
Only a few tracks include multiple vehicles crossing each other. Figure 21 shows

Fig. 21 Multiple Target Tracking (a) XY plot (b) X-Coordinate with time

the multiple target tracking result for three vehicles where two of them are crossing
each other. Figure 21(a) shows the three tracks with the ground truth, while Figure
21(b) shows the x-coordinate of the tracks with time. The average tracking errors
for the three tracks are 1.29m, 1.60m and 2.20m. Fig. 21 shows the result when only
video data from the three video sensors is used. Multiple target tracking with audio
data could not distinguish between targets when they cross each other. This is due
to the fact that beamforming is done assuming acoustic signals are generated from
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a single source. Acoustic beamforming methods exist for detecting and estimating
multiple targets [7].

9 Conclusions

We have developed a multimodal tracking system for an HSN consisting of audio
and video sensors. We presented various approaches for multimodal sensor fusion
and two approaches for target tracking, which are based on sequential Bayesian esti-
mation and MCMCDA algorithm. We have evaluated the performance of the track-
ing system using an HSN of six mote-based audio sensors and three PC webcamera-
based video sensors. We evaluated and compared the performance for both the
tracking approaches. Time synchronization across the HSN allows the fusion of the
sensor data. We have deployed the HSN and evaluated the performance by track-
ing moving vehicles in an uncontrolled urban environment. We have shown that,
in general, fusion of audio and video data can improve the tracking performance.
Currently, our system is not robust to multiple acoustic sources or multiple moving
targets. An accurate self-calibration technique and robust audio and video sensing
algorithms for multiple targets are required for better performance. A related chal-
lenge is sensor conflict that can degrade the performance of any fusion method and
needs to be carefully considered. As in all sensor network applications, scalability
is an important aspect that has to be considered as well.
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