
A Survey on Web Application Security
Xiaowei Li and Yuan Xue

Department of Electrical Engineering and Computer Science
Vanderbilt University

xiaowei.li, yuan.xue@vanderbilt.edu

Abstract—Web applications are one of the most prevalent
platforms for information and services delivery over Internet
today. As they are increasingly used for critical services, web
applications become a popular and valuable target for security
attacks. Although a large body of techniques have been devel-
oped to fortify web applications and and mitigate the attacks
toward web applications, there is little effort devoted to drawing
connections among these techniques and building a big picture
of web application security research.

This paper surveys the area of web application security,
with the aim of systematizing the existing techniques into a
big picture that promotes future research. We first present
the unique aspects in the web application development which
bring inherent challenges for building secure web applications.
Then we identify three essential security properties that a web
application should preserve: input validity, state integrity and logic
correctness, and describe the corresponding vulnerabilities that
violate these properties along with the attack vectors that exploit
these vulnerabilities. We organize the existing research works
on securing web applications into three categories based on their
design philosophy: security by construction, security by verification
and security by protection. Finally, we summarize the lessons
learnt and discuss future research opportunities in this area.

I. INTRODUCTION

World Wide Web has evolved from a system that delivers
static pages to a platform that supports distributed applications,
known as web applications and become one of the most
prevalent technologies for information and service delivery
over Internet. The increasing popularity of web application
can be attributed to several factors, including remote accessi-
bility, cross-platform compatibility, fast development, etc. The
AJAX (Asynchronous JavaScript and XML) technology also
enhances the user experiences of web applications with better
interactiveness and responsiveness.

As web applications are increasingly used to deliver security
critical services, they become a valuable target for security at-
tacks. Many web applications interact with back-end database
systems, which may store sensitive information (e.g., financial,
health), the compromise of web applications would result in
breaching an enormous amount of information, leading to
severe economical losses, ethical and legal consequences. A
breach report from Verizon [1] shows that web applications
now reign supreme in both the number of breaches and the
amount of data compromised.

The Web platform is a complex ecosystem composed of
a large number of components and technologies, including
HTTP protocol, web server and server-side application de-
velopment technologies (e.g., CGI, PHP, ASP), web browser

and client-side technologies (e.g., JavaScript, Flash). Web
application built and hosted upon such a complex infrastruc-
ture faces inherent challenges posed by the features of those
components and technologies and the inconsistencies among
them. Current widely-used web application development and
testing frameworks, on the other hand, offer limited security
support. Thus secure web application development is an error-
prone process and requires substantial efforts, which could
be unrealistic under time-to-market pressure and for people
with insufficient security skills or awareness. As a result, a
high percentage of web applications deployed on the Internet
are exposed to security vulnerabilities. According to a report
by the Web Application Security Consortium, about 49% of
the web applications being reviewed contain vulnerabilities
of high risk level and more than 13% of the websites can be
compromised completely automatically [2]. A recent report [3]
reveals that over 80% of the websites on the Internet have had
at least one serious vulnerability.

Motivated by the urgent need for securing web applications,
a substantial amount of research efforts have been devoted
into this problem with a number of techniques developed
for hardening web applications and mitigating the attacks.
Many of these techniques make assumptions on the web
technologies used in the application development and only
address one particular type of security flaws; their prototypes
are often implemented and evaluated on limited platforms. A
practitioner may wonder whether these techniques are suitable
for their scenarios. And if they can not be directly applied,
whether these techniques can be extended and/or combined.
Thus, it is desirable and urgent to provide a systematic
framework for exploring the root causes of web application
vulnerabilities, uncovering the connection between the existing
techniques, and sketching a big picture of current research
frontier in this area. Such a framework would help both
new and experienced researcher to better understand web
application security challenges and assess existing defenses,
and inspire them with new ideas and trends.

In this paper, we survey the state of the art in web ap-
plication security, with the aim of systematizing the existing
techniques into a big picture that promotes future research.
Based on the conceptual security framework by Bau and
Mitchell [4], we organize our survey using three components
for assessing the security of a web application (or equipped
with a defense mechanism): system model, threat model
and security property. System model describes how a web
application works and its unique characteristics; threat model

describes the power and resources attackers possess; security
property defines the aspect of the web application behavior
intended by the developers. Given a threat model, if one web
application fails to preserve certain security property under
all scenarios, this application is insecure or vulnerable to
corresponding attacks.

This survey covers the techniques which consider the fol-
lowing threat model: 1) the web application itself is benign
(i.e., not hosted or owned for malicious purposes) and hosted
on a trusted and hardened infrastructure (i.e., the trust com-
puting base, including OS, web server, interpreter, etc.); 2) the
attacker is able to manipulate either the contents or the se-
quence of web requests sent to the web application, but cannot
directly compromise the infrastructure or the application code.
We note here that although browser security ([5], [6]) is also
an essential component in end-to-end web application security,
research works on this topic usually have a different threat
model, where web applications are considered as potentially
malicious. This survey does not include the research works on
browser security so that it can focus on the problem of building
secure web applications and protecting vulnerable ones. The
contributions of this paper are:

(1) We present three aspects in web application develop-
ment, which poses inherent challenges for building secure web
applications, and identify three levels of security properties
that a secure web application should hold: input validity, state
integrity and logic correctness. Failure of web applications
to fulfill the above security properties is the root cause
of corresponding vulnerabilities, which allow for successful
exploits.

(2) We classify existing research works into three categories:
security by construction, security by verification and security
by protection, based on their design principle (i.e., constructing
vulnerability-free web applications, identifying and fixing vul-
nerabilities, or protecting vulnerable web applications against
exploits at runtime, respectively) and how security properties
are assured at different phases in the life cycle of web
application. We are not trying to enumerate all the existing
works but have covered most of the represented works.

(3) We identify several open issues that are insufficiently
addressed in the existing literature. We also discuss future
research opportunities in the area of web application security
and the new challenges that are expected ahead.

We structure the rest of this paper as follows. We first
describe how a web application works and its unique character-
istics in Section II. Then, we illustrate three essential security
properties that a secure web application should hold, as well
as corresponding vulnerabilities and attack vectors in Section
III. In Section IV, we categorize and illustrate the state-of-the-
art of proposed techniques systematically. Then, in Section V,
we discuss future directions for web application security. We
conclude our survey paper in Section VI.

II. UNDERSTAND HOW A WEB APPLICATION WORKS

Web application is a distributed application that is executed
over the Web platform. It is an integral part of today’s

Web ecosystem that enables dynamic information and service
delivery. As shown in Fig. 1, a web application may consist
of code on both the server side and the client side. The server-
side code will generate dynamic HTML pages either through
execution (e.g., Java servlet, CGI) or interpretation (e.g., PHP,
JSP). During the execution of the server-side code, the web
application may interact with local file system or back-end
database for storing and retrieving data. The client-side code
(e.g., in JavaScript) are embedded in the HTML pages, which
is executed within the browser. It can communicate with the
server-side code (i.e., AJAX) and dynamically updates the
HTML pages. In what follows, we describe three unique as-
pects of the web application development, which differentiate
web applications from traditional applications.

Web server

Sta!c

HTML

page

Executable, eg.,

Java Servlet,

cgi.

Run!me/Interpreter, e.g., JVM, Zend

Dynamic HTML

page, eg. PHP, JSP.

Web Application

DatabaseWeb browser

JavaScript

, Flash,

etc.

Client Side Server Side

HTTP

Fig. 1. Overview of Web Application

A. Programming Language

Web application development relies on web programming
languages. These languages include scripting languages that
are designed specifically for web (e.g., PHP, JavaScript) and
extended traditional general-purpose programming languages
(e.g., JSP). A distinguishing feature of many web program-
ming languages is their type systems. For example, some
scripting languages (e.g., PHP) are dynamically typed, which
means that the type of a variable is determined at runtime,
instead of compile time. Some languages (e.g., JavaScript)
are weakly typed, which means that a statement or a function
can be performed on a variety of data types via implicit type
casting. Such type systems allow developers to blend several
types of constructs in one file for runtime interpretation. For in-
stance, a PHP file may contain both static HTML tags and PHP
functions and a web page may embed executable JavaScript
code. The representation of application data and code by an
unstructured sequence of bytes is a unique feature of web
application that helps enhance the development efficiency.

B. State Maintenance

HTTP protocol is stateless, where each web request is
independent of each other. However, to implement non-trivial
functionalities, “stateful” web applications need to be built
on top of this stateless infrastructure. Thus, the abstraction of
web session is adopted to help the web application to identify
and correlate a series of web requests from the same user
during a certain period of time. The state of a web session
records the conditions from the historical web requests that
will affect the future execution of the web application. The
session state can be maintained either at the client side (via
cookie, hidden form or URL rewriting) or at the server side.

In the latter case, a unique identifier (session ID) is defined to
index the explicit session variables stored at the server side and
issued to the client. For example, most of web programming
languages (e.g., PHP, JSP) offer developers a collection of
functions for managing the web session. For example, in PHP,
session start() can be called to initialize a web session and a
pre-defined global array $ SESSION is employed to contain
the session state. In either case, the client plays a vital role in
maintaining the states of a web application.

C. Logic Implementation

The business logic defines the functionality of a web
application, which is specific to each application. Such a
functionality is manifested as an intended application control
flow and is usually integrated with the navigation links of a
web application. For example, authentication and authorization
are a common part of the control flow in many web applica-
tions, through which an web application restricts its sensitive
information and privileged operations from unauthorized users.
As another example, e-commerce websites usually manage the
sequence of operations that the customers need perform during
shopping and checkout.

A web application is usually implemented as a number
of independent modules, each of which can be directly ac-
cessed in any order by a user. This unique feature of web
applications significantly complicates the enforcement of the
application’s control flow across different modules. This task
needs to be performed through a tight collaboration of two
approaches. The first approach, which is practiced by most
web applications, is interface hiding, where only accessible
resources and actions of the web application are presented as
web links and exposed to users. The second approach requires
explicit checks of the application state, which is maintained by
session variables (or persistent objects in the database), before
sensitive information and operations can be accessed.

III. UNDERSTAND WEB APPLICATION SECURITY
PROPERTIES, VULNERABILITIES AND ATTACK VECTORS

A secure web application has to satisfy desired security
properties under the given threat model. In the area of web
application security, the following threat model is usually con-
sidered: 1) the web application itself is benign (i.e., not hosted
or owned for malicious purposes) and hosted on a trusted
and hardened infrastructure (i.e., the trust computing base,
including OS, web server, interpreter, etc.); 2) the attacker
is able to manipulate either the contents or the sequence
of web requests sent to the web application, but cannot
directly compromise the infrastructure or the application code.
The vulnerabilities within web application implementations
may violate the intended security properties and allow for
corresponding successful exploits.

In particular, a secure web application should preserve the
following stack of security properties, as shown in Fig. 2. Input
validity means the user input should be validated before it can
be utilized by the web application; state integrity means the
application state should be kept untampered; logic correctness

means the application logic should be executed correctly as
intended by the developers. The above three security properties
are related in a way that failure in preserving a security
property at the lower level will affect the assurance of the
security property at a higher level. For instance, if the web
application fails to hold the input validity property, a cross-
site scripting attack can be launched by the attacker to steal
the victim’s session cookie. Then, the attacker can hijack and
tamper the victim’s web session, resulting in the violation of
state integrity property. In the following sections, we describe
the three security properties and show how the unique features
of web application development complicate the security design
for web applications.

Logic Correctness

State Integrity

Input Validity

Security Property

Logic Implementa!on

State Maintenance

Programming Language

Development Feature A!ack

State viola!on(logic) a"ack

XSS, SQL injec!on, etc.

CSRF, session fixa!on, etc.

Fig. 2. Web Application Security Properties

A. Input Validity

Given the threat model, user input data cannot be trusted.
However, for the untrusted user data to be used in the
application (e.g., composing web response or SQL queries),
they have to be first validated. Thus, we refer to this security
property as input validity property:

All the user input should be validated correctly to ensure it
is utilized by the web application in the intended way.

The user input validation is often performed via sanitization
routines, which transform untrusted user input into trusted data
by filtering suspicious characters or constructs within user
input. While simple in principle, it is non-trivial to achieve
the completeness and correctness of user input sanitization,
especially when the web application is programmed using
scripting languages. First, since user input data is propagated
throughout the application, it has to be tracked all the way
to identify all the sanitization points. However, the dynamic
features of scripting languages have to be handled appropri-
ately to ensure the correct tracking of user input data. Second,
correct sanitization has to take into account the context, which
specifies how the user input is utilized by the application
and interpreted later either by the web browser or the SQL
interpreter. Thus different contexts require distinct sanitization
functions. However, the weak typing feature of programming
languages makes context-sensitive sanitization challenging and
error-prone.

In current web development practices, sanitization routines
are usually placed by developers manually in an ad-hoc
way, which can be either incomplete or erroneous, and thus
introduce vulnerabilities into the web application. Missing
sanitization allows malicious user input to flow into trusted

web contents without validation; faulty sanitization allows
malicious user input to bypass the validation procedure. A
web application with the above vulnerabilities fails to achieve
the input validity property, thus is vulnerable to a class
of attacks, which are referred to as script injections, data-
flow attacks or input validation attacks. This type of attacks
embed malicious contents within web requests, which are
utilized by the web application and executed later. Examples
of input validation attacks include cross-site scripting (XSS),
SQL injection, directory traversal, filename inclusion, response
splitting, etc. They are distinguished by the locations where
malicious contents get executed. In the following, we illustrate
the most two popular input validation attacks.

1) SQL Injection: A SQL injection attack is successfully
launched when malicious contents within user input flow into
SQL queries without correct validation. The database trusts
the web application and executes all the queries issued by the
application. Using this attack, the attacker is able to embed
SQL keywords or operators within user input to manipulate
the SQL query structure and result in unintended execution.
Consequences of SQL injections include authentication by-
pass, information disclosure and even the destruction of the
entire database. Interested reader can refer to [7] for more
details about SQL injection.

2) Cross-Site Scripting: A cross-site scripting (XSS) attack
is successfully launched when malicious contents within user
input flow into web responses without correct validation. The
web browser interprets all the web responses returned by the
trusted web application (according to the same-origin policy).
Using this attack, the attacker is able to inject malicious
scripts into web responses, which get executed within the
victim’s web browser. The most common consequence of XSS
is the disclosure of sensitive information, e.g., session cookie
theft. XSS usually serves as the first step that enables further
sophisticated attacks (e.g., the notorious MySpace Samy worm
[8]). There are several variants of XSS, according to how the
malicious scripts are injected, including stored/persistent XSS
(malicious scripts are injected into persistent storage), reflected
XSS, DOM-based XSS, content-sniffing XSS [9], etc.

B. State Integrity

State maintenance is the basis for building stateful web ap-
plications, which requires a secure web application to preserve
the integrity of application states. However, The involvement of
an untrusted party (client) in the application state maintenance
makes the assurance of state integrity a challenging issue for
web applications.

A number of attack vectors target the vulnerabilities within
session management and state maintenance mechanisms of
web applications, including cookie poisoning (tampering the
cookie information), session fixation (when the session iden-
tifier is predictable), session hijacking (when the session
identifier is stolen), etc. Cross-site request forgery (i.e., session
riding) is a popular attack that falls in this category. In this
attack, the attacker tricks the victim into sending crafted web
requests with the victim’s valid session identifier, however, on

the attacker’s behalf. This could result in the victim’s session
being tampered, sensitive information disclosed (e.g., [10]),
financial losses (e.g., an attacker may forge a web request that
instructs a vulnerable banking website to transfer the victim’s
money to his account), etc.

To preserve state integrity, a number of effective techniques
have been proposed [11]. Client-side state information can
be protected by integrity verification through MAC (Message
Authentication Code). Session identifiers need to be generated
with high randomness (to defend against session fixation)
and transmitted over secure SSL protocol (against session
hijacking). To mitigate CSRF attacks, web requests can be
validated by checking headers (Referrer header, or Origin
header [12]) or associated unique secret tokens (e.g., NoForge
[13], RequestRodeo [14], BEAP [15]). Since the methods of
preserving state integrity are relatively mature, thus falling
beyond the scope of this survey.

C. Logic Correctness

Ensuring logic correctness is key to the functioning of web
applications. Since the application logic is specific to each
web application, it is impossible to cover all the aspects by
one description. Instead, a general description that covers most
common application functionalities is given as follows, which
we refer to as logic correctness property:

Users can only access authorized information and oper-
ations and are enforced to follow the intended workflow
provided by the web application.

To implement and enforce application logic correctly can
be challenging due to its state maintenance mechanism and
“decentralized” structure of web applications. First, interface
hiding technique, which follows the principle of “security
by obscurity”, is obviously deficient in nature, which allows
the attacker to uncover hidden links and directly access
unauthorized information or operations or violate the intended
workflow. Second, explicit checking of the application state
is performed by developers manually and in an ad-hoc way.
Thus, it is very likely that certain state checks are missing on
unexpected control flow paths, due to those many entry points
of the web application. Moreover, writing correct state checks
can be error-prone, since not only static security policies but
also dynamic state information should be considered. Both
missing and faulty state checks introduce logic vulnerabilities
into web applications.

A web application with logic flaws is vulnerable to a class
of attacks, which are usually referred to as logic attacks or
state violation attacks. Since the application logic is specific
to each web application, logic attacks are also idiosyncratic to
their specific targets. Several attack vectors that fall (or partly)
within this category include authentication bypass, parameter
tampering, forceful browsing, etc. There are also application-
specific logic attack vectors. For example, a vulnerable e-
commerce website may allow a same coupon to be applied
multiple times, which can be exploited by the attacker to
reduce his payment amount.

IV. CATEGORIZE EXISTING COUNTERMEASURES

A large number of countermeasures have been developed
to secure web applications and defend against the attacks
towards web applications. These methods address one or more
security properties and instantiate them into concrete security
specifications/policies (either explicitly or implicitly) that are
to be enforced at different phases in the lifecycle of web
applications. We organize existing countermeasures along two
dimensions. The first dimension is the security property that
these techniques address. The second dimension is their design
principle, which we outline as the following three classes:

(1) Security by construction: this class of techniques aim
to construct secure web applications, ensuring that no potential
vulnerabilities exist within the applications. Thus, the desired
security property is preserved and all corresponding exploits
would fail. They usually design new web programming lan-
guages or frameworks that are built with security mechanisms,
which automatically enforce the desired security properties.
These techniques solve security problems from the root and
thus are most robust. However, they are most suitable for new
web application development. Rewriting the huge number of
legacy applications can be unrealistic.

(2) Security by verification: this class of techniques aim
to verify if the desired security properties hold for a web
application and identify potential vulnerabilities within the
application. This procedure is also referred to as vulnerability
analysis. Efforts have to be then spent to harden the vulnerable
web application by fixing the vulnerabilities and retrofitting
the application either manually or automatically. Techniques
within this class can be applied to both new and legacy web
applications.

Existing program analysis and testing techniques are usually
adopted by the works from this class. They have to be
overcome a number of technical difficulties in order to achieve
the completeness and correctness of vulnerability analysis.
In particular, program analysis involves static analysis (i.e.,
code auditing/review performed on the source code without
execution) and dynamic analysis (i.e., observing runtime be-
havior through execution). Static analysis tends to be complete
at identifying all potential vulnerabilities, however, with the
price of introducing false alerts. On the other hand, dynamic
analysis guarantees the correctness of identified vulnerabilities
within explored space, but cannot assure the completeness.
Program testing focuses on generating concrete attack vectors
that expose expected vulnerabilities within the web applica-
tion. Similar to dynamic analysis, it also faces the inherent
challenge of addressing completeness.

(3) Security by protection: this class of techniques aim
to protect a potentially vulnerable web application against
exploits by building a runtime environment that supports its
secure execution. They usually either 1) place safeguards (i.e.,
proxy) that separate the web application from other compo-
nents in the Web ecosystem, or 2) instrument the infrastructure
components (i.e., language runtime, web browser, etc.) to
monitor its runtime behavior and identify/quarantine potential

exploits. These techniques can be independent of programming
languages or platforms, thus scale well. However, runtime
performance overhead is inevitably introduced.

Compared to a previous survey [16], which only focuses on
vulnerability analysis, this survey is more comprehensive and
covers the complete lifecyle of a web application, from devel-
opment, auditing/testing to deployment. For each individual
technique, we identify its unique strengthes and limitations,
compared with other techniques. We also discuss open issues
that remain insufficiently addressed. Fig. 3 shows a summary
of existing techniques we have covered.

A. Input Validity

We first recall the input validity property:
All the user input should be validated correctly to ensure it

is utilized by the web application in the intended way.
The root cause for input validation vulnerabilities is that

untrusted user input data flows into trusted web contents
without sufficient and correct validation, which is an instance
of insecure information flow. Thus, the information flow
security model can be naturally applied into addressing the
input validity property, which we refer to as information flow
(taint propagation) specification. This specification is modeled
as follows in web applications. First, user input data is marked
as tainted at entry points (i.e., sources) of the web application.
Then, the tainted data flows in the application through certain
statements/functions (i.e., propagators, such as assignment).
Before the tainted data can reach security-sensitive operation
points (i.e, sinks), where it is utilized by the application (e.g.,
for composing SQL queries or web responses), it has to be
validated and becomes untainted. If the above specification
is not enforced, the web application has input validation
vulnerability.

To enforce the information flow specification, three tasks
have to be performed: (1) user input identification, which
requires all the untrusted user data to be reliably identi-
fied and separated from the trusted web contents; (2) user
input tracking, which requires the user data to be reliably
recognized throughout its flow within the application at a
certain granularity; (3) user input handling, which requires
the user data to be correctly handled, and thus utilized
by the application in a secure way. In practice, user input
identification and tracking can be achieved through strong
typing, variable/byte tainting and tracking, etc. There are two
general approaches for handling untrusted user input. One is
to transform it into trusted data by sanitization routines (i.e.,
sanitizers), which are usually regarded as a black-box; the
other is to quarantine it based on certain predefined security
policies, so that potentially malicious user input cannot be
executed and the structure integrity of web contents (e.g.,
web pages or SQL queries) is preserved. Although the latter
approach requires certain manual intervention for specifying
security policy, it circumvents reasoning about the correctness
of sanitization routine, which can be challenging due to its
context-sensitiveness.

Property/Technique Input Validity Property Logic Correctness Property

Security by

Construction

 [17],[19],[20],[24],[81] [17],[81],[83],[84], [85]

Security by

Verification

Program

analysis

static:[25],[26],[27],[28],

[29],[30],[31],[32],[33]

dynamic: [34],[35]

hybrid: [36],[37]

Static

analysis

[87],[88],[89],[90]

Program

testing

[38],[39],[40],[41],[42],[43] Dynamic

analysis

[91],[92],[93]

Security by

Protection

Taint-based

protection

[44],[45],[47],[48],[49],[58],

[60],[59],[61]
 [94],[95],[96],[97],[98],[99]

Taint-free

protection

[62],[63],[64],[67],[68],

[69],[71],[72],[75]

Fig. 3. Summary of existing techniques

1) Security by construction: Chong et al. [17] develop a
web application framework SIF (Servlet Information Flow),
based on a security-typed language Jif [18], which extends
Java with information flow control and access control. SIF
is able to label user input, track the information flow and
enforce the annotated security policies at both compile time
and runtime. In addition, their parallel work Swift [19] is a
unifying framework to enforce end-to-end information flow
policies for distributed web applications. Jif source code can
be automatically and securely partitioned into server-side and
client-side code. SIF and Swift can be used for building secure
web applications free of input validation vulnerabilities, as
long as the security policies associated with the information
flow of untrusted user data are specified correctly. We note
that they can also be used to enforce other security policies
that are relevant with application logic (e.g., authorization),
which we will explain later.

Robertson et al. [20] propose a strong typing development
framework to build robust web applications against XSS and
SQL injection. This framework leverages Haskell, a strong typ-
ing language, to remedy the weak typing feature of scripting
languages. Untrusted user data is reliably distinguished from
trusted static web contents via static types and passed through
type-specific sanitization routines. Identifying all different user
input types and performing correct and accurate sanitization
for each type still involve non-trivial manual efforts.

There are also other security mechanisms and defensive
programming practices that are proposed to assist developers
in building web applications free of input validation vul-
nerabilities. For example, Prepared Statement [21] (or SQL
DOM [22]) are recommended for defending against SQL
injections, where the structure of SQL query is explicitly
specified by developers and enforced. HTML template systems
(e.g., Google CTemplate) force developers to separate user
data from HTML structure explicitly, so that auto-sanitization
functions are performed before user data can be embedded
in web responses. This feature addresses the completeness
of user input sanitization, as long as the developers identify
and mark all of them. However, the correctness of auto-
sanitization routines is overlooked for a long time. A recent
study [23] shows that there still exists a large gap between
the correctness requirements and the actual capability of

sanitization routines provided by template systems and web
development frameworks. A very recent work by Samuel et al.
[24] builds a reliable context-sensitive auto-sanitization engine
into web template systems based on type qualifiers to address
this problem.

2) Security by verification: There are broadly two ap-
proaches employed by the works in this class: program
analysis and program testing. Program analysis techniques
aim to identify insecure information flow within the web
application. To do so, the set of sources, propagators, sinks
and sanitizers have to be first manually specified by the
developers, which obviously has great impacts on the analysis
precision. In contrast, program testing aims to construct input
validation attack vectors to expose vulnerabilities within web
applications. Both benign and malformed user input into web
applications and their responses are examined to see if there
exists structural differences. There are two key challenges for
employing testing techniques: (1) it is difficult to generate
test cases to completely explore the paths through which user
input can reach sinks; (2) it is difficult to generate specially
crafted user input to expose subtle vulnerabilities within web
applications, such as insufficient sanitization.

Program analysis. This class of techniques include static,
dynamic and hybrid analysis.

Static analysis includes several techniques, such as dataflow
analysis, pointer analysis, string analysis, etc. Static analysis
can conservatively identify all possible insecure information
flows, but is limited by its capability of modeling dynamic
features of scripting languages, such as code inclusion, object-
oriented code. Complex alias analysis has to be employed,
which makes static taint analysis inherently inaccurate, leading
to a number of false positives.

Huang et al. [25] propose a tool WebSSARI that applies
static analysis into identifying vulnerabilities within web ap-
plications. The tool employs flow-sensitive, intra-procedural
analysis based on a lattice model. They extend the PHP
language with two type-states, namely tainted and untainted,
and track each variable’s type-state. In addition, runtime saniti-
zation functions are inserted where the tainted data reaches the
sinks to automatically harden the vulnerable web application.
However, a number of language features are not supported,
such as recursive functions, array elements, etc.

Xie and Aiken [26] perform a bottom-up analysis of basic
blocks, procedures and the whole program to find SQL injec-
tion vulnerabilities. Their technique is able to automatically
derive the set of variables that have to be sanitized before
function invocation using symbolic execution. However, their
static analysis is also limited to a certain set of language
features.

Pixy [27], [28] is an open source tool that performs inter-
procedural flow-sensitive data flow analysis on PHP web
applications. Pixy first constructs a parse tree for PHP codes,
which is represented as a control-flow graph for each function.
Then, it performs precise alias and literal analysis on the
intermediate nodes. Pixy is the first to apply alias analysis
over scripting languages, which greatly improves the analysis
precision.

Wassermann et al. [29], [30] propose string-taint analysis,
which enhances Minamide’s string analysis [31] with taint
support. Their technique labels and tracks untrusted substrings
from user input and ensures no untrusted scripts can be
included in SQL queries and generated HTML pages. Their
technique not only addresses the missing sanitization but also
the weak sanitization performed over user input.

Instead of analyzing PHP web applications, Livshits and
Lam [32] apply precise context-sensitive (but flow-insensitive)
points-to analysis into analyzing bytecode of Java web appli-
cations based on binary decision diagrams. In particular, they
use a high-level language Program Query Language (PQL)
for specifying the information flow policy and automate the
information flow analysis, distinct from traditional techniques
based on type declaration or program assertions.

Similarly, Rubyx [33] requires developers to specify security
polices as constraints using the notions of principal, secrecy
and trust level and verify those policies for Ruby-on-Rails web
applications based on symbolic execution. It is able to identify
a number of vulnerabilities, including XSS, CSRF, insufficient
access control, as well as application-specific flaws. The com-
pleteness of Rubyx is the same as bounded model checking.

Dynamic analysis tracks the information flow of user input
during runtime execution by instrumentation. Compared to
static analysis, dynamic analysis doesn’t require complex code
analysis, thus improving the analysis precision. On the other
hand, the deep instrumentation may negatively affect the
application’s performance and stability. Also, the completeness
cannot be guaranteed.

Taint mode, which supports dynamic taint tracking, is first
introduced into Perl, whose interpreter is extended to ensure
that no external data can be used by critical functions. Nguyen-
Tuong et al. [34] modify PHP interpreter to precisely taint
user data at the granularity of characters and tracks tainted
user data at runtime. However, the sanitization of user data
requires retrofitting the application source code to explicitly
call a newly-defined function, which can be error-prone and
affect the analysis precision. Haldar et al. [35] instrument
Java system class bytecode to extend Java with taint tracking
support.

Hybrid analysis combines strengths of both static and

dynamic analysis to further improve the analysis precision.
Balzarotti et al. [36] argue that faulty sanitization can introduce
numerous subtle flaws into the web application, which cannot
be identified by the above techniques. They present Saner,
which employs hybrid analysis to validate the correctness
of both built-in and custom sanitization routines. Saner first
applies conservative static string analysis to model how user
input is sanitized, then feeds a large set of malicious inputs into
suspicious sanitization routines to identify weak or incorrect
sanitization.

Based on [32], Monica et al. [37] present a holistic tech-
nique, that combines static analysis, model checking, dynamic
checking and runtime detection. In particular, they employ
model checking to improve the accuracy of static analysis.
Model checking can systematically explores the space of a
finite-state system and verifies the correctness of the system
with respect to a given property or specification. Model
checking is also able to automatically generate concrete attack
vectors and exploit paths and produce no false positives.

Program testing. A number of black-box testing tools,
also referred to web application scanners, generate input
vectors from a library of known attack patterns, including both
open-source (e.g., Spike, Burp) and commercial (e.g., IBM
AppScan) products. From the research community, WAVES
[38] first applies penetration testing into identifying injection
vulnerabilities within web applications and leverages machine
learning to guide its test case generation. Secubat [39] is
another black-box scanner targeting at SQL injection and XSS
attacks. McAllister et al. [40] focus on utilizing recorded
user sessions for more comprehensive exploration. Black-box
testing techniques are essential when the application code
is not available, which is a common scenario. They are
increasingly deployed as remote web services.

Traditional fuzzing method feeds random inputs into web
applications. To improve testing effectiveness, random fuzzing
can be enhanced with program analysis techniques. On one
hand, fuzzing can generate concrete attack vectors that confirm
the presence of vulnerability, thus reducing false alerts. On the
other hand, program analysis can guide test case generation
for achieving better efficiency and coverage.

Martin et al. [41] apply model checking for systematically
generating attacks vectors. Similar to [32], the target vulner-
ability is specified as PQL queries and instrumented into the
application. They leverage Java PathFinder to systematically
explore the application via concrete execution. In particular, to
address the state explosion problem, the inherent challenge of
model checking, they apply static analysis to prune infeasible
paths and generate more promising input vectors.

ARDILLA [42] first generates sample inputs, then symbol-
ically tracks tainted inputs through the execution and mutates
the inputs, whose parameters flow into sensitive sinks. In par-
ticular, it is capable of tracking tainted data through database
accesses, which enable it to precisely identify second-order
XSS vulnerabilities.

FLAX [43] is a taint-enhanced black-box fuzzing technique
that aims to discover CSV (client-side input validation) vul-

nerabilities within JavaScript code. Dynamic taint analysis
extracts knowledge of the sinks, which is used to significantly
prune the mutation space and direct more effective sink-aware
fuzzing.

3) Security by protection: There are two approaches em-
ployed by the works in this class. One approach is to follow
information flow specification, in which untrusted user inputs
are identified and tracked, so that the trustworthiness of web
contents can be evaluated. We refer to this approach as taint-
based protection. In this approach, the corrupted web content
(e.g., SQL queries) can be directly dropped. Alternatively,
suspicious user input can be sanitized, filtered or quarantined,
without dropping the entire web content (e.g., web responses).
Instead of tracking user input, another approach aims to
directly detect input validation attacks before it even reaches
the web application or after it triggers a vulnerability in
the application (i.e., the structure of web contents has been
tampered), which we refer to as taint-free protection.

Taint-based protection. To defend against XSS attacks,
ScriptGuard [44] addresses subtle sanitization errors (i.e.,
context-mismatched sanitization and inconsistent multiple san-
itization) in large-scale and complex web applications. Script-
Guard instruments the web application with an inferred
browser model (i.e., the context) when HTML is output and
employs positive tainting to conservatively identify saniti-
zation errors. At runtime, ScriptGuard leverages a training
phase to learn correct sanitizers for different program paths
and achieves auto-repairing of sanitization without incurring
significant performance overhead.

However, pure server-side protections are susceptible to
the browser inconsistencies and cannot effectively handle
client-side XSS attacks (e.g., DOM-based XSS), which are
launched during web pages dynamically get updated within
the browser. Thus, several techniques require the client-server
collaboration, in which the web application conveys certain
security policies to be enforced at the browser side.

BEEP [45] embeds a whitelist of known-good scripts into
each web page and enforces the policy by filtering suspicious
scripts at the instrumented web browser. The whitelist works
like tainting the trusted scripts so that untrusted ones can be
identified. BEEP also protects the whitelist from being tam-
pered using script key [46]. Although BEEP works efficiently,
the whitelist is static and may not accurately differentiate
injected scripts from trusted ones.

Matthew et al. [47] propose Noncespace, which annotates
the elements and attributes within HTML document into
different trust classes using randomized XML namespaces
through a modified web template engine. Different trust classes
are associated with distinct permissions, specified in a policy
file. They set up a proxy to verify the HTML document
with the policy file before forwarding it to the web browser.
Injected documents will be identified and dropped. Although
Noncespace encodes the structure of web documents at a
much finer-granularity than BEEP [45], it still cannot detect
sophisticated attacks, which are dynamically launched within
the web browser due to the static policy.

Yacin et al. [48] propose to enforce the document structure
integrity (DSI) of web pages via parser-level isolation (PLI).
At the server side, web pages are instrumented (the authors
refer to as serialization), where all sections that contain user
input data are surrounded with randomized delimiters, before
they are sent to the clients. Then, at the client side, the static
document structure can be robustly interpreted by the modified
web browser, while the suspicious user contents are tracked
and monitored during dynamic evaluation and code execution.
This technique is robust to a large categories of XSS attacks,
including DOM-based XSS, etc. However, it relies on the
instrumentation of web browsers.

Louw et al. [49] argue that the trust on the web browser
for parsing web pages should be minimized, since the incon-
sistencies between web browser implementations may allow
for server-side defenses to be circumvented by the attackers.
Thus, their proposed system Blueprint embeds context repre-
sentations (i.e., models) of user input into the original web
pages and parses the web pages by linking a reliable script
library. Their method moves the functions of browser parsers
to the server side to ensure that no malicious contents can
be executed. However, context-dependent embedding faces the
same challenge as context-sensitive sanitization.

There are also a number of pure client-side defenses against
XSS attacks, including IE8 XSS filter [50], Firefox NoScript
plugin [51], XSSDS [52], Noxes [53], BrowserShield [54],
CoreScript [55], NoMoXSS [56], etc. However, as described in
the introduction section, this line of works assume a different
threat model, thus beyond the scope of this survey paper.

To defend against SQL injections, dynamically generated
SQL queries are evaluated to see if user input data has changed
the query structure. Following the idea of instruction-set ran-
domization [57], Boyd et al. [58] propose SQLrand to preserve
the intended structure of SQL queries and defend against SQL
injections. SQLrand separates untrusted user input from SQL
structures by randomizing SQL keywords with secret keys,
so that the attackers cannot inject SQL keywords to tamper
the structure. It uses a SQL proxy to dynamically translate
“encrypted” SQL queries and drop injected ones. However,
managing randomization keys requires additional efforts.

Su et. al give a formalization of SQL injection and pro-
pose SQLCheck [59], which taints untrusted user input with
surrounding special brackets and propagates bracketed user
input throughout the application. A SQL injection attack is
detected if any bracketed data spans a SQL keyword. However,
this technique may break some internal functions (e.g., loop,
conditional statement, etc.) when the bracketed user input
traverses the web application.

Similar to dynamic analysis techniques, Tadeusz et al. [60]
propose CSSE to detect injection attacks by tracking user
input through meta-data assignment and metadata preserving
operations. CSSE performs context-aware string evaluation
to ensure no tainted user data can be used as literals, SQL
keywords or operators.

Instead of tracking untrusted user input, Halfond et al. [61]
propose a novel technique “positive tainting”, which taints

and tracks trusted strings generated by the web application
and performs syntax-aware string evaluation to detect SQL
injections. The advantage of positive tainting is that it is
conservative, since the set of trusted data easily converges to
be complete, thus tends to be more accurate.

Taint-free protection. This class of techniques usually
require an additional phase to establish detection models. To
do so, one way is to directly encode the malicious user input
patterns (i.e., attack signature), which is referred to as misuse
detection. Another way is to characterize the benign user input
pattern or the structure of web documents and SQL queries
intended by the web application and identify the deviation
from established models as potential attacks, which is referred
to as anomaly detection.

Misuse detection employs a set of pre-defined attack signa-
tures to identify known attacks toward web applications. Usu-
ally a proxy, also referred to as web application firewall, is set
up for monitoring the HTTP interactions between the clients
and the application and stopping the attacks from reaching
the application. A number of application firewalls, both open
source (e.g., ModSecurity) and commercial (e.g., Imperva,
Barracuda), are on the market. From the academia, David et
al. [62] first propose a security proxy, which examines HTTP
requests in terms of parameter lengths, special characters, etc.
Signature-based detection is accurate and efficient within its
capability range. However, it cannot detect zero-day attacks
and requires expertise to develop and update attack signatures.

Anomaly detection assumes that the attacks would cause
the web application behavior to deviate sufficiently from that
under attack-free circumstances. The key is to establish a
model that characterizes the application’s normal behavior.
Such behavior model needs to be accurate and sensitive.
Otherwise, it suffers from false positives and false negatives,
respectively. Depending on the target attack, different features
of the web application behavior can be examined, such as
web request, response, SQL query, etc. and different modeling
techniques can be applied.

Kruegel et al. [63], [64] are among the first that apply
anomaly detection into detecting web-based attacks. They
derive multiple statistical models for normal web requests,
in terms of attribute length, character distribution, attribute
order, etc. In the detection phase, a web request is blocked if
any anomaly score given by those models exceeds the trained
threshold. They further reduce false positives by grouping
anomalies into specific attack categories based on heuristic
[65] and addressing concept drift phenomenon in web appli-
cations [66]. Valeur et al. [67] also extract a similar set of
features from normal SQL queries, especially for detecting
SQL injections.

Instead of examining web requests at the character level,
several other works characterize normal web requests by first
transforming web requests into a set of tokens. For example,
while Ingham et al. [68] employ deterministic finite automata,
Song et al. [69] use a mixture of Markov chains based on n-
gram transitions. A comparative study [70] shows that token-
based algorithms tend to be more accurate, since they are

able to capture higher-level structure of web requests than
individual characters.

To detect SQL injections, AMNESIA [71] models the
structure of legitimate SQL queries. In particular, it builds non-
deterministic finite automata (NDFA) models for SQL queries
by analyzing the application source code. SQL injections can
be detected if the runtime generated query violates its intended
structure. However, the model accuracy is bounded by their
flow-insensitive static analysis. It may miss certain attacks if
the resulting SQL query matches to a legitimate one on a
different path.

CANDID [72] uses dynamic techniques to extract more
accurate structure of SQL queries by feeding benign can-
didate inputs into the application. Then, the application is
instrumented at each query generation point with a shadow
query, which captures its legitimate structure and is compared
with runtime generated queries. It also monitors the executed
control path during dynamic execution, thus is more complete
in modeling SQL queries than learning based technique [67].
The same technique is used for a different application, which
automatically retrofits vulnerable SQL query generation into
prepared statements [73]. Their technique is also extended
to model web responses and detect XSS attacks. XSS-Guard
[74] generates a shadow page to capture the web application’s
intent for each web response, which contains only the autho-
rized and expected scripts. Any differences between the real
constructed page and the shadow page indicate potential script
injections.

A black-box taint-inference technique is proposed by Sekar
[75] for detecting a range of injection attacks, which doesn’t
require source code and avoids the negative effects intro-
duced by deep instrumentation (e.g., taint tracking). First,
the events that traverse across different components/libraries
are intercepted, from which data flows are identified through
approximate string matching. Then, data flows that contain
untrusted user data are evaluated over a set of language-
neutral syntax- and taint-aware uniform policies. Policy-based
evaluation makes this technique much more accurate than
anomaly detection techniques. However, it faces challenges
when complex operations are performed over user input, in
which case such data flow may not be identifiable.

4) Open Issues: Though a substantial amount of efforts that
have been devoted to input validation, several open issues
are still not or insufficiently addressed for securing web
applications from its related attacks. First although taint-based
techniques (i.e., program analysis, taint-based protection) have
been demonstrated to be very effective, tracking user input
by program annotations still faces technical challenges. For
static analysis, it is inherently difficult to handle dynamic and
complex features of scripting languages (e.g., object-oriented
code). Inaccurate approximation of the application behavior
leads to a large number of false positives. Moreover, taint
tracking is mostly limited to the application itself. Inability
of tracking user input across multiple applications, external
libraries, databases [76], etc, will miss certain subtle vulnera-
bilities and result in stored or second-order attacks.

In terms of handling user input, sanitization, as the most
common approach, surprisingly fails to achieve its desired
functionality in many web development frameworks [23].
Thus, reasoning the correctness of sanitization routines still
requires substantial work ([36], [77], [44], [24]). Policy-based
techniques, as another way of handling user input, become
promising, since the abstraction of security policies from ap-
plications enables security mechanisms to be easily deployed
for a number of applications and facilitates security review
and verification [78]. However the development of the policy
needs non-trivial human involvement.

Black-box application testing is independent of the appli-
cation source code and platforms and provides a promising
scalable method for web application security. However, recent
comparative studies [79] [80] show that most of current black-
box scanners can only offer security assurance at a certain
level and has limited capabilities in several aspects, such as
detecting “stored” vulnerabilities (e.g., stored XSS), handling
active contents (e.g., flash, Java Applet), deep crawling of the
application state and identifying application-specific flaws.

To address the above open issues, only relying on one single
technique tends to be insufficient. We have seen an increasing
number of works that combine two or several techniques and
achieve better performances, such as hybrid taint analysis [36],
string-taint analysis [29], [30], taint-enhanced fuzzing [42],
etc. Another alternative is to apply one technique in a novel
way, such as positive tainting [61], black-box inference [75],
etc. How to combine existing techniques in a creative way
to address the limits of single techniques is an interesting
research direction.

B. Logic Correctness

We first recall the logic correctness property:
Users can only access authorized information and oper-

ations and are enforced to follow the intended workflow
provided by the web application.

Different from input validation vulnerabilities that originate
from insecure information flow, logic vulnerabilities are multi-
faceted and specific to web applications. Due to the fact
that logic is application specific, there are two scenarios for
addressing this property: 1) security policies to be enforced are
explicitly specified by developers; 2) security policies are not
specified, in which case the specification has to be inferred
from the application implementation. In the latter case, the
specification inference is the key challenge, especially due to
the heterogeneity of logic implementation.

1) Security by construction: Both information flow and
access control models can be applied to construct secure web
applications that enforce authorization policies. Different from
the information flow specification applied for input validation,
which prevents untrusted user data from flowing into trusted
web contents, the application of information flow model into
authorization prohibits sensitive information from flowing to
unauthorized principals.

Security typed language, which usually implements a
lattice-based type system, annotates data flows with specific

labels and enforces security policies associated with differ-
ent flows at both compile time (i.e., static checking) and
runtime (i.e., dynamic checking). For example, SIF [17] can
also be used to enforce authorization policies, in addition to
addressing input validity property. Similarly, SELinks [81] is
a cross-tier programming framework for building secure and
efficient multi-tier web applications, where security policies
(e.g., access control, data provenance, information flow, etc.)
are specified as customizable labels and a type system Fable
[82] is employed to ensure that labeled data/function can only
be accessed after checking policies. In particular, SELinks
compiler translates customized access control checks into
executable SQL queries by the database engine, which greatly
improves the efficiency of cross-tier policy enforcement.

Security typed language provides strong security assurance,
since it guards both explicit and implicit flow channels.
However, it requires a lot of annotations, instrumentation,
and even restructuring the application to handle complex and
dynamic security policies. Resin [83] is a much lighter-weight
approach to ensuring application-specific data-flow security
policies at runtime for mitigating both script injections and
missing access control checks. Based on a modified language
runtime, it attaches policy objects to variables, tracks the
policy objects flowing through the web application, including
persistent storage, and enforces policies through filter objects,
which guards the boundary between the web application
and the external environment. In particular, Resin reuses the
original programming language and structure, which greatly
facilitates the adoption of Resin for developers. As expected,
Resin cannot track implicit flow, such as program control flow,
data structure layout, etc., which may miss subtle bugs within
applications.

Static checking adds no runtime overhead, while dynamic
checking is able to handle complex and dynamic security
policies. UrFlow [84] is designed to combine their strengths.
In particular, since security policies usually co-locate with
application data in the database, e.g., access control matrix, it
requires developers to specify security policies in the form of
SQL queries. UrFlow is able to perform sound static checking
of logic correctness of the application and verify dynamic
policies via a known predicate. However, it only supports a
limited range of authorization policies.

Access control model can be implemented through
capability-based system to enforce authorization policies. Cap-
sules [85] is a web development framework based on an
object-capability language Joe-E [86] for enforcing privilege
separation. The web application is automatically partitioned
into isolated components, each of which only exposes lim-
ited and explicitly-specified privileges to others. Privilege
separation can contain the damages caused by vulnerable
components, especially third-party code, and facilitate security
reviews and verifications. However, it cannot guarantee each
application component free of vulnerabilities.

2) Security by verification: To verify if a web application
follows a logic specification, such specification has to be first
inferred from its implementation. Static analysis extracts the

specification by analyzing source code, while dynamic analysis
observes the application behavior under normal execution.
Then, the discrepancies between the inferred specification and
the actual implementation are identified as logic vulnerabili-
ties. Obviously, the quality of the inferred specification greatly
affects the correctness and accuracy of logic verification.

Static analysis. MiMoSA [87] aims to identify vulnerabili-
ties that are introduced by unintended navigation paths among
multiple modules. First, each module (a PHP file in their case)
is analyzed to extract the “state view”, which represent the
influences on state variables by this module. Then, separate
state views are concatenated to derive the intended workflow
graph. They apply model checking on the workflow graph to
identify possible violations of graph traversal, which indicate
workflow violation vulnerabilities. However, MiMoSA cannot
discover missing or faulty checks within each module.

Similar in purpose as MiMoSA, Sun et al. [88] perform
role-specific analysis on PHP web application for identifying
access control vulnerabilities. They first specify a set of roles
and infer the implicit access control policies by collecting the
set of allowed pages for each role, which are exposed through
explicit links. Then, they try to directly access other unpriv-
ileged pages for each role to identify missing or incorrect
access checks.

RoleCast [89] aims to identify missing access control checks
at a finer granularity. It first automatically infers the set of
user roles for the application by partitioning program files
based on a statistical measure. Then, it extracts the set of
critical variables that need to be checked for each role. The
inconsistencies of checking critical variables at different con-
texts are reported as vulnerabilities. However, it only models
queries that affect the database state (i.e., INSERT, DELETE,
UPDATE) as security-sensitive operations and cannot identify
faulty checks.

Doupe et al. [90] address a particular type of vulnerability
called Execution After Redirect (EAR), where the application
continues execution after developer-intended redirection, thus
resulting in violation of intended control flow and unautho-
rized execution. They extract the control flow graph from
application source code and identify control paths that lead
to privileged code after calling redirection routines.

Dynamic analysis. Waler [91] aims to automatically dis-
cover application-specific logic flaws. First, they infer the ap-
plication specification by deriving value-based likely invariants
for session variables and function parameters at each program
function via dynamic execution. Then, they perform model
checking combined with symbolic execution over the applica-
tion source code to identify violations of inferred invariants.
In particular, they only make use of “reliable” invariants,
which are supported by explicit checks along the control path
within the code and captures the relationship between session
variables and database objects.

Bisht et al. propose a black-box fuzzing approach NoTamper
[92] to detect a particular logic vulnerability within form pro-
cessing functionalities of web applications, which is caused by
inconsistent validation of form parameters between the client-

side and server-side code. They extract the constraints over
form parameters from client-side JavaScript code to generate
benign inputs. They also construct malicious inputs by solving
negated constraints and feed both into the web application. If
their web responses are the same, one vulnerability is found.
Their follow-up work WAPTEC [93] enhances the analysis
precision by employing white-box analysis and automatically
constructs concrete exploits.

3) Security by protection: Nemesis [94] implements dy-
namic information flow tracking through modifying language
runtime to enforce the authentication mechanism and autho-
rization policies in legacy web applications. In particular,
it provides reliable evidences for successful authentication
when user input meets “known” credentials via a shadow au-
thentication system, thus bypassing the potentially vulnerable
authentication mechanisms in the application. It also keeps
track of users’ credentials to enforce predefined access control
policies over resources, including files, database objects, etc.

To provide robust user data segregation, CLAMP [95]
employs virtualization technology to isolate the application
components running on behalf of different users. CLAMP
assigns a virtual web server instance to each user’s web session
and ensures that the current user can only access his/her own
data. Session-level separation provides a certain level of access
control assurance. However, it cannot stop the attacks within
a single web session, especially in a shared-resource scenario.

Swaddler [96] applies anomaly detection into detection
of state violation attacks. It establishes statistical models of
session variables for each program block through runtime ex-
ecution, which indicate the application state when the block is
executed. At runtime, the set of models, i.e., the specification,
are evaluated to determine if the execution of current program
block is an instance of state violation attack.

Arjun et al. [97] extract a control-flow graph from client-
side JavaScript code as the specification for well-behaved
clients and then set up a proxy for monitoring client behavior
and detecting malicious activities against server-side web
applications. Ripley [98] is another technique for detecting
malicious user behaviors within distributed Ajax web appli-
cations by leveraging replicated execution. The client-side
computation is exactly emulated on the trusted server side and
the discrepancies between computation results are flagged as
exploits.

BLOCK [99] is a black-box approach for inferring the
application specification and detecting state violation attacks.
It observes the interactions between the clients and the ap-
plication and extracts a set of invariants, which characterize
the relationship between web requests, responses and session
variables. Then, web requests and responses are evaluated at
runtime with the inferred invariants. Compared to Swaddler,
BLOCK is independent of the application source code.

4) Open Issues: Securing web applications from logic flaws
and attacks still remain an under-explored area. Only a limited
number of techniques are proposed. Most of them only address
one specific part of application logic flaws [90], [88], [92]. The
fundamental difficulty for ensuring application logic correct-

ness property is the absence of application logic specification.
As logic is application specific, there is no general model of
application logic that is applicable for all applications. The
absence of a general and automatic mechanism for character-
izing the application logic may be the inherent reason of the
inability of application scanners and firewalls at handling logic
flaws and attacks [79], [80].

Several recent works try to develop a general and systematic
method for automatically inferring the specifications for web
applications, which in turn facilitates automatic and sound
verification of application logic. One class of methods leverage
the program source code [96], [91]. As a result, the inferred
specification is highly dependent on how the application is
structured and implemented (e.g., the definition of a program
function or block). Implementation flaws may result in an
inaccurate specification. Other method infers the application
specification by observing and characterizing the application’s
external behavior. The noisy information observed from ex-
ternal behaviors may lead to inaccurate specification in this
method. Moreover, web application maintains both a large
number of persistent states in the database. Correctly iden-
tifying these states to accurately characterize the application
logic is extremely hard.

V. CONCLUSION AND FUTURE DIRECTIONS

This paper provided a comprehensive survey of recent
research results in the area of web application security. We
described unique characteristics of web application develop-
ment, identified important security properties that secure web
applications should preserve and categorized existing works
into three major classes. We also pointed out several open
issues that still need to be addressed.

Web applications have been evolving extraordinarily fast
with new programming models and technologies emerging,
resulting in an ever-changing landscape for web application
security with new challenges, which requires substantial and
sustained efforts from security researchers. We outline several
evolving trends and point out several pioneering works as
follows. First, an increasing amount of application code and
logic is moving to the client side, which brings new security
challenges. Since the client-side code is exposed, the attacker
is able to gain more knowledge about the application, thus
more likely to compromise the server-side application state.
Several works have been trying to address this problem [19],
[43], [97], [98], [92], [93]. Second, the business logic of
web applications is becoming more and more complex, which
further exacerbates the absence of formal verification and
robust protection mechanisms for application logic. For ex-
ample, when multiple web applications are integrated through
APIs, their interactions may expose logic vulnerabilities [100].
Third, an increasing number of web applications are embed-
ding third-party programs or extensions, e.g., iGoogle gadgets,
Facebook games etc. To automatically verify the security of
third-party applications and securely integrate them is non-
trivial [85]. Last but not least, new types of attacks are always
emerging, e.g., HTTP parameter pollution attack [101], which

requires security professionals to quickly react without putting
a huge number of web applications at risk.

REFERENCES

[1] Verizon 2010 Data Breach Investigations Report,
“http://www.verizonbusiness.com/resources/reports/rp 2010-data-
breach-report en xg.pdf.”

[2] Web Application Security Statistics,
“http://projects.webappsec.org/w/page/13246989/WebApplication
SecurityStatistics.”

[3] WhiteHat Security, “WhiteHat website security statistic report 2010.”
[4] J. Bau and J. C. Mitchell, “Security modeling and analysis,” IEEE

Security & Privacy, vol. 9, no. 3, pp. 18–25, 2011.
[5] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury,

and H. Venter, “The multi-principal os construction of the gazelle
web browser,” in USENIX’09: Proceedings of the 18th conference on
USENIX security symposium, 2009, pp. 417–432.

[6] S. Tang, H. Mai, and S. T. King, “Trust and protection in the
illinois browser operating system,” in OSDI’10: Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
2010, pp. 1–8.

[7] W. G. Halfond, J. Viegas, and A. Orso, “A Classification of SQL-
Injection Attacks and Countermeasures,” in Proc. of the International
Symposium on Secure Software Engineering, March 2006.

[8] MySpace Samy Worm, “http://namb.la/popular/tech.html,” 2005.
[9] A. Barth, J. Caballero, and D. Song, “Secure content sniffing for

web browsers, or how to stop papers from reviewing themselves,” in
Oakland’09: Proceedings of the 30th IEEE Symposium on Security and
Privacy, 2009, pp. 360–371.

[10] Gmail CSRF Security Flaw, “http://ajaxian.com/archives/gmail-csrf-
security-flaw,” 2007.

[11] M. Johns, “Sessionsafe: Implementing xss immune session handling,”
in ESORICS’06: Proceedings of the 11th European Symposium On
Research In Computer Security, 2006.

[12] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-site
request forgery,” in CCS’08: Proceedings of the 15th ACM conference
on Computer and communications security, 2008, pp. 75–88.

[13] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross site request
forgery attacks,” in SecureComm’06: 2nd International Conference on
Security and Privacy in Communication Networks, 2006, pp. 1 –10.

[14] M. Johons and J. Winter, “Requestrodeo: Client-side protection against
session riding,” in OWASP AppSec Europe, 2006.

[15] Z. Mao, N. Li, and I. Molloy, “Defeating cross-site request forgery
attacks with browser-enforced authenticity protection,” in FC’09: 13
th International Conference on Financial Cryptography and Data
Security, 2009, pp. 238–255.

[16] M. Cova, V. Felmetsger, and G. Vigna, “Vulnerability Analysis of Web
Applications,” in Testing and Analysis of Web Services, L. Baresi and
E. Dinitto, Eds. Springer, 2007.

[17] S. Chong, K. Vikram, and A. C. Myers, “Sif: Enforcing confidentiality
and integrity in web applications,” in USENIX’07: Proceedings of the
16th conference on USENIX security symposium, 2007.

[18] L. Z. Andrew C. Myers, “Jif: Java information flow.” [Online].
Available: http://www.cs.cornell.edu/jif

[19] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and
X. Zheng, “Secure web applications via automatic partitioning,” in
SOSP ’07: Proceedings of the 21st ACM SIGOPS symposium on
Operating systems principles, 2007, pp. 31–44.

[20] W. Robertson and G. Vigna, “Static enforcement of web application
integrity through strong typing,” in USENIX’09: Proceedings of the
18th conference on USENIX security symposium, 2009, pp. 283–298.

[21] H. Fisk., “Prepared Statements,” 2004. [Online].
Available: http://dev.mysql.com/tech-resources/articles/4.1/prepared-
statements.html

[22] R. A. McClure and I. H. Krüger, “Sql dom: compile time checking
of dynamic sql statements,” in ICSE’05: Proceedings of the 27th
international conference on Software engineering, 2005, pp. 88–96.

[23] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song,
“A Systematic Analysis of XSS Sanitization in Web Application
Frameworks,” in ESORICS’11: Proc. of 16th European Symposium on
Research in Computer Security, 2011.

[24] M. Samuel, P. Saxena, and D. Song, “Context-sensitive auto-
sanitization in web templating languages using type qualifiers,” in
CCS’11: Proceedings of the 18th ACM conference on Computer and
communications security, 2011, pp. 587–600.

[25] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo,
“Securing web application code by static analysis and runtime protec-
tion,” in WWW’04: Proceedings of the 13th international conference
on World Wide Web, 2004, pp. 40–52.

[26] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in
scripting languages,” in USENIX’06: Proceedings of the 15th confer-
ence on USENIX Security Symposium, 2006.

[27] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for
detecting web application vulnerabilities (short paper),” in Oakland’06:
Proceedings of the 27th IEEE Symposium on Security and Privacy,
2006, pp. 258–263.

[28] ——, “Precise alias analysis for syntactic detection of web application
vulnerabilities,” in ACM SIGPLAN Workshop on Programming Lan-
guages and Analysis for Security, 2006.

[29] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in PLDI’07: Proceedings of
the 2007 ACM SIGPLAN conference on Programming language design
and implementation, 2007, pp. 32–41.

[30] ——, “Static detection of cross-site scripting vulnerabilities,” in
ICSE’08: ACM/IEEE 30th International Conference on Software En-
gineering, 2008.

[31] Y. Minamide, “Static approximation of dynamically generated web
pages,” in WWW’05: Proceedings of the 14th international conference
on World Wide Web, 2005, pp. 432–441.

[32] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis,” in USENIX’05: Proceedings of the
14th conference on USENIX Security Symposium, 2005, p. 18.

[33] A. Chaudhuri and J. S. Foster, “Symbolic security analysis of ruby-
on-rails web applications,” in CCS ’10: Proceedings of the 17th ACM
conference on Computer and communications security, 2010.

[34] A. Nguyen-tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans,
“Automatically hardening web applications using precise tainting,” in
Proc. of the 20th IFIP International Information Security Conference,
2005, pp. 372–382.

[35] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation
for java,” in ACSAC ’05: Proceedings of the 21st Annual Computer
Security Applications Conference, 2005, pp. 303–311.

[36] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and dynamic
analysis to validate sanitization in web applications,” in Oakland’08:
Proceedings of the 29th IEEE Symposium on Security and Privacy,
2008, pp. 387–401.

[37] M. S. Lam, M. Martin, B. Livshits, and J. Whaley, “Securing web
applications with static and dynamic information flow tracking,” in
PEPM ’08: Proceedings of the 2008 ACM SIGPLAN symposium on
Partial evaluation and semantics-based program manipulation, 2008,
pp. 3–12.

[38] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai, “Web application
security assessment by fault injection and behavior monitoring,” in
WWW’03: Proceedings of the 12th international conference on World
Wide Web, 2003, pp. 148–159.

[39] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “Secubat: a web vul-
nerability scanner,” in WWW’06: Proceedings of the 15th international
conference on World Wide Web, 2006, pp. 247–256.

[40] S. Mcallister, E. Kirda, and C. Kruegel, “Leveraging user interactions
for in-depth testing of web applications,” in RAID ’08: Proceedings
of the 11th international symposium on Recent Advances in Intrusion
Detection, 2008, pp. 191–210.

[41] M. Martin and M. S. Lam, “Automatic generation of xss and sql
injection attacks with goal-directed model checking,” in USENIX’08:
Proceedings of the 17th conference on USENIX Security symposium,
2008, pp. 31–43.

[42] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic
creation of sql injection and cross-site scripting attacks,” in ICSE
’09: Proceedings of the 31st International Conference on Software
Engineering, 2009, pp. 199–209.

[43] P. P. Prateek Saxena, Steve Hanna and D. Song, “Flax: Systematic dis-
covery of client-side validation vulnerabilities in rich web applications.”
in NDSS’10: Proceedings of the 17th Annual Network and Distributed
System Security Symposium, 2010.

[44] P. Saxena, D. Molnar, and B. Livshits, “Scriptguard: automatic context-
sensitive sanitization for large-scale legacy web applications,” in
CCS’11: Proceedings of the 18th ACM conference on Computer and
communications security, 2011, pp. 601–614.

[45] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection attacks
with browser-enforced embedded policies,” in WWW ’07: Proceedings
of the 16th international conference on World Wide Web, 2007, pp.
601–610.

[46] G. Markham, “Content restrictions.” 2006. [Online]. Available:
http://www.gerv.net/security/content-restrictions/

[47] M. V. Gundy and H. Chen, “Noncespaces: Using randomization to
enforce information flow tracking and thwart xss attacks,” in NDSS’09:
Proceedings of the 16th Annual Network and Distributed System
Security Symposium, 2009.

[48] Y. Nadji, P. Saxena, and D. Song, “Document structure integrity: A ro-
bust basis for cross-site scripting defense,” in NDSS’09: Proceedings of
the 16th Annual Network and Distributed System Security Symposium,
2009.

[49] M. Ter Louw and V. Venkatakrishnan, “Blueprint: Precise browser-
neutral prevention of cross-site scripting attacks,” in Oakland’09:
Proceedings of the 30th IEEE Symposium on Security and Privacy,
2009.

[50] D. Ross, “IE 8 XSS filter architecture.” [Online]. Avail-
able: http://blogs.technet.com/swi/archive/2008/08/19/ie-8-xss-filter-
architecture-implementation.aspx

[51] G. Maone, “NoScript features: Anti-XSS protection.” [Online].
Available: http://noscript.net/feature-xss

[52] M. Johns, B. Engelmann, and J. Posegga, “Xssds: Server-side detection
of cross-site scripting attacks,” 2008, pp. 335–344.

[53] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: a client-
side solution for mitigating cross-site scripting attacks,” in SAC ’06:
Proceedings of the 2006 ACM symposium on Applied computing, 2006,
pp. 330–337.

[54] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir,
“Browsershield: vulnerability-driven filtering of dynamic html,” in
OSDI ’06: Proceedings of the 7th symposium on Operating systems
design and implementation, 2006, pp. 61–74.

[55] D. Yu, A. Chander, N. Islam, and I. Serikov, “Javascript instrumentation
for browser security,” in POPL ’07: Proceedings of the 34th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, 2007, pp. 237–249.

[56] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna, “Cross-
site scripting prevention with dynamic data tainting and static analysis,”
in NDSS’07: Proceeding of the 14th Network and Distributed System
Security Symposium, 2007.

[57] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-
injection attacks with instruction-set randomization,” in CCS ’03:
Proceedings of the 10th ACM conference on Computer and communi-
cations security, 2003, pp. 272–280.

[58] S. W. Boyd and A. D. Keromytis, “Sqlrand: Preventing sql injection
attacks,” in ACNS’04: Proceedings of the 2nd Applied Cryptography
and Network Security Conference, 2004, pp. 292–302.

[59] Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” in POPL’06: Conference record of the 33rd
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, 2006, pp. 372–382.

[60] T. Pietraszek, C. V. Berghe, C. V, and E. Berghe, “Defending against in-
jection attacks through context-sensitive string evaluation,” in RAID’05:
Proceedings of the 8th International Symposium on Recent Advances
in Intrusion Detection, 2005.

[61] W. G. J. Halfond, A. Orso, and P. Manolios, “Using positive taint-
ing and syntax-aware evaluation to counter sql injection attacks,”
in SIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering, 2006,
pp. 175–185.

[62] D. Scott and R. Sharp, “Abstracting application-level web security,” in
WWW ’02: Proceedings of the 11th international conference on World
Wide Web, 2002, pp. 396–407.

[63] C. Kruegel and G. Vigna, “Anomaly Detection of Web-based Attacks,”
in CCS’03: Proceedings of the 10th ACM Conference on Computer and
Communication Security, 2003, pp. 251–261.

[64] C. Kruegel, G. Vigna, and W. Robertson, “A Multi-model Approach
to the Detection of Web-based Attacks,” Computer Networks, vol. 48,
no. 5, pp. 717–738, August 2005.

[65] W. Robertson, G. Vigna, C. Kruegel, and R. Kemmerer, “Using
Generalization and Characterization Techniques in the Anomaly-based
Detection of Web Attacks,” in NDSS’06: Proceeding of the 13th
Network and Distributed System Security Symposium, 2006.

[66] F. Maggi, W. Robertson, C. Kruegel, and G. Vigna, “Protecting a
moving target: Addressing web application concept drift,” in RAID’09:
Proceedings of the 12th International Symposium on Recent Advances
in Intrusion Detection, 2009, pp. 21–40.

[67] F. Valeur, D. Mutz, and G. Vigna, “A Learning-Based Approach to
the Detection of SQL Attacks,” in DIMVA’05: Proceedings of the
Conference on Detection of Intrusions and Malware and Vulnerability
Assessment, 2005, pp. 123–140.

[68] K. L. Ingham, A. Somayaji, J. Burge, and S. F. A. C, “Learning
dfa representations of http for protecting web applications,” Computer
Networks, vol. 51, pp. 1239–1255, 2007.

[69] A. D. K. Yingbo Song and S. J. Stolfo, “Spectrogram: A Mixture-
of-Markov-Chains Model for Anomaly Detection in Web Traffic,” in
NDSS’09: Proceedings of the 16th Annual Network and Distributed
System Security Symposium, 2009.

[70] K. L. Ingham and H. Inoue, “Comparing anomaly detection techniques
for http,” in RAID’07: Proceedings of the 10th international conference
on Recent advances in intrusion detection, 2007, pp. 42–62.

[71] W. G. Halfond and A. Orso, “Amnesia: Analysis and monitoring
for neutralizing sql-injection attacks,” in ASE’05: Proceedings of the
20th IEEE and ACM International Conference on Automated Software
Engineering, 2005.

[72] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan,
“Candid: preventing sql injection attacks using dynamic candidate
evaluations,” in CCS ’07: Proceedings of the 14th ACM conference
on Computer and communications security, 2007, pp. 12–24.

[73] P. Bisht, A. P. Sistla, and V. Venkatakrishnan, “Automatically preparing
safe sql queries,” in FC’10: Proceedings of the 14th International
Conference on Financial Cryptography and Data Security, 2010.

[74] P. Bisht and V. Venkatakrishnan, “XSS-GUARD: Precise Dynamic
Prevention of Cross-Site Scripting Attacks,” in DIMVA’08: Proceedings
of the 5th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assesment, 2008.

[75] R. Sekar, “An efficient black-box technique for defeating web appli-
cation attacks,” in NDSS’09: Proceedings of the 16th Annual Network
and Distributed System Security Symposium, 2009.

[76] B. Davis and H. Chen, “Dbtaint: cross-application information flow
tracking via databases,” in WebApps’10: Proceedings of the 2010
USENIX conference on Web application development, 2010.

[77] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes, “Fast
and precise sanitizer analysis with bek,” in USENIX’11: Proceedings
of the 20th USENIX Security symposium, 2011.

[78] J. Weinberger, A. Barth, and D. Song, “Towards client-side html
security policies,” in HotSec’11: Proc. of 6th USENIX Workshop on
Hot Topics in Security, 2011.

[79] A. Doupe, M. Cova, and G. Vigna, “Why Johnny Cant Pentest: An
Analysis of Black-box Web Vulnerability Scanners,” in DIMVA’10:
Proceedings of the Conference on Detection of Intrusions and Malware
and Vulnerability Assessment, 2010.

[80] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art: Au-
tomated black-box web application vulnerability testing,” Oakland’10:
Proceedings of the 31st IEEE Symposium on Security and Privacy, pp.
332–345, 2010.

[81] B. J. Corcoran, N. Swamy, and M. Hicks, “Cross-tier, label-based secu-
rity enforcement for web applications,” in SIGMOD ’09: Proceedings
of the 35th SIGMOD international conference on Management of data,
2009, pp. 269–282.

[82] N. Swamy, B. J. Corcoran, and M. Hicks, “Fable: A language for
enforcing user-defined security policies,” in Oakland ’08: Proceedings
of the 29th IEEE Symposium on Security and Privacy.

[83] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Improving ap-
plication security with data flow assertions,” in SOSP’09: Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles,
2009, pp. 291–304.

[84] A. Chlipala, “Static checking of dynamically-varying security policies
in database-backed applications,” in OSDI’10: Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
2010.

[85] A. Krishnamurthy, A. Mettler, and D. Wagner, “Fine-grained privilege

separation for web applications,” in WWW’10: Proceedings of the 19th
international conference on World Wide Web, 2010, pp. 551–560.

[86] D. W. A. Mettler and T. Close, “Joe-e: A security-oriented subset
of java,” in NDSS’10: Proceedings of the 17th Annual Network and
Distributed System Security Symposium, 2010, pp. 357–374.

[87] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna, “Multi-
module vulnerability analysis of web-based applications,” in CCS
’07: Proceedings of the 14th ACM conference on Computer and
communications security, 2007, pp. 25–35.

[88] F. Sun, L. Xu, and Z. Su, “Static detection of access control vulnera-
bilities in web applications,” in USENIX’11: Proceedings of the 20th
USENIX Security Symposium, 2011.

[89] S. Son, K. S. McKinley, and V. Shmatikov, “Rolecast: finding missing
security checks when you do not know what checks are,” in OOPSLA
’11: Proceedings of the 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
2011, pp. 1069–1084.

[90] C. K. Adam Doupé, Bryce Boe and G. Vigna, “Fear the EAR:
Discovering and Mitigating Execution After Redirect Vulnerabilities,”
in CCS’11: Proceeding of the 18th ACM Conference on Computer and
Communications Security, 2011.

[91] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, “Toward
Automated Detection of Logic Vulnerabilities in Web Applications,”
in USENIX’10: Proceedings of the 19th USENIX Security Symposium,
2010.

[92] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. N. Venkatakr-
ishnan, “Notamper: automatic blackbox detection of parameter tam-
pering opportunities in web applications,” in CCS ’10: Proceedings of
the 17th ACM conference on Computer and communications security,
2010.

[93] P. Bisht, T. Hinrichs, N. Skrupsky, and V. N. Venkatakrishnan, “Waptec:
whitebox analysis of web applications for parameter tampering exploit
construction,” in CCS’11: Proceedings of the 18th ACM conference on
Computer and communications security, 2011, pp. 575–586.

[94] M. Dalton, C. Kozyrakis, and N. Zeldovich, “Nemesis: preventing au-
thentication & access control vulnerabilities in web applications,”
in USENIX’09: Proceedings of the 18th conference on USENIX security
symposium, 2009, pp. 267–282.

[95] B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and A. Perrig,
“CLAMP: Practical prevention of large-scale data leaks,” in Oak-
land’09: Proceedings of the 30th IEEE Symposium on Security and
Privacy, 2009.

[96] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, “Swaddler: An
Approach for the Anomaly-based Detection of State Violations in
Web Applications,” in RAID’07: Proceedings of the 10th International
Symposium on Recent Advances in Intrusion Detection, 2007, pp. 63–
86.

[97] A. Guha, S. Krishnamurthi, and T. Jim, “Using static analysis for ajax
intrusion detection,” in WWW’09: Proceedings of the 18th international
conference on World Wide Web, 2009, pp. 561–570.

[98] K. Vikram, A. Prateek, and B. Livshits, “Ripley: automatically se-
curing web 2.0 applications through replicated execution,” in CCS
’09: Proceedings of the 16th ACM conference on Computer and
communications security, 2009, pp. 173–186.

[99] X. Li and Y. Xue, “BLOCK: A Black-box Approach for Detection
of State Violation Attacks Towards Web Applications,” in ACSAC’11:
Proceedings of 27th Annual Computer Security Applications Confer-
ence, 2011.

[100] R. Wang, S. Chen, X. Wang, and S. Qadeer, “How to shop for free
online - security analysis of cashier-as-a-service based web stores,” in
Oakland’11: Proceedings of the 32nd IEEE Symposium on Security
and Privacy, 2011.

[101] M. Balduzzi, C. T. Gimenez, D. Balzarotti, and E. Kirda, “Automated
discovery of parameter pollution vulnerabilities in web applications.”
in NDSS’11: Proceedings of the 8th Annual Network and Distributed
System Security Symposium, 2011.

