
Software development for a novel WSN platform

P. Völgyesi, J. Sallai, Á.
Lédeczi

Vanderbilt University
Nashville, TN, USA

akos.ledeczi@vanderbilt.edu

P. Dutta
University of Michigan
Ann Arbor, MI, USA

prabal.dutta@michigan.edu

M. Maróti
University of Szeged

Szeged, Hungary
mmaroti@math.u-

szeged.hu

ABSTRACT
This work-in-progress paper introduces a new hardware plat-
form for wireless sensor networks, summarizes the new chal-
lenges it creates for software development and describes a
toolchain being developed to meet those challenges. The
hardware platform is based on a low-power FPGA as op-
posed to a traditional microcontroller. The FPGA config-
uration includes a soft core microcontroller, but there are
plenty of resources left to implement a subset of the operat-
ing system, middleware and application components directly
on the FPGA. Instead of creating this partition early in
the design phase, we advocate a flexible hardware/software
boundary enabling ”late binding” of components to the soft
core or the hardware fabric. This increases the complexity of
the design space mandating sophisticated tool support. The
paper describes a toolchain that helps manage this com-
plexity. The two main tools are a domain-specific modeling
environment and a symbolic design-space exploration tool.

Categories and Subject Descriptors
C.2.4 [Computer-Communications Networks]: Distributed
Systems; D.2.2 [Software Engineering]: Design Tools and
Techniques

General Terms
Design, Algorithms, Experimentation

Keywords
Wireless Sensors, FPGA, Design Space Exploration

1. INTRODUCTION
The prevailing approach to short-range, low-power wire-

less communication hardware typically used in wireless sen-
sor networks (WSN) is to combine integrated radio transceivers
with general purpose microcontrollers. However, microcon-
trollers with their resource constraints significantly constrain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SESENA ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-969-5/10/05 ...$10.00.

performance. Experimenting with novel protocols or inno-
vative applications that require higher performance than mi-
crocontrollers offer, can be cumbersome and tedious because
it often requires developing custom hardware.

Software Defined Radios (SDR), with their high comput-
ing power and easy configurability, overcome these limita-
tions but they bring other problems. They typically require
wall power and a dedicated PC, and they are expensive and
physically bulky. As a result, SDRs are not suitable for
low-power, large scale, or mobile experimentation. The flex-
ibility and performance of SDRs come from their FPGA-
based architecture. While the active power draw of FPGAs
is reasonable, especially considering their performance, it is
hardware duty cycling that ultimately determines the life-
time of a WSN node. However, traditional FPGAs do not
allow efficient duty cycling due to their slow and power hun-
gry startup. In contrast, the recent appearance of Flash-
based FPGAs eliminates this limitation. These devices can
wake up in a microsecond with no significant in-rush current
spike, and they preserve their configuration and register val-
ues even in deep sleep. Therefore, they present a great op-
portunity to build a reconfigurable, low-power wireless node
that enables a new class of protocols and applications.

Such a platform could exhibit two orders of magnitude
higher performance than microcontroller-based nodes, de-
pending on the application, while drawing about the same
power. This performance improvement comes at a cost.
The new platform presents new challenges because joint
design of hardware configuration and soft-core hosted em-
bedded software is a significant departure from traditional
wireless protocol and application development. There is a
clear need for innovative design methodologies, since bound-
aries between application, services, operating system, and
hardware are blurred, therefore traditional system design
techniques are challenged in this domain. We argue that
it is the application that dictates whether a certain func-
tionality is implemented in software or hardware – whether
multiplexing computation over time or parallelizing it over
space is more appropriate. We present a toolchain that sup-
ports uniform handling of reusable hardware and software
components, and promotes late binding of components to a
particular realization. Since the flexible hardware-software
boundary generates an expanded application design space
with increased complexity, the key component is an inte-
grated design space exploration tool that aids in finding the
right combination of hardware or software implementation
of components that meets the application requirements.

2. HARDWARE PLATFORM
The novel hardware architecture is built around a low-

power Flash-based FPGA device (Actel IGLOO family), as
shown in Figure 1. The soft microprocessor core (ARM
Cortex-M1) – synthesized on the FPGA fabric – provides an
easy to use computational platform capable of running stan-
dard applications written in C. High level sequential logic
and other system integration tasks can be implemented just
like on any existing processor-based platforms. By using a
soft core – instead of a discrete microcontroller – we can
tailor the processor (speed, capabilities) to the application
and provide tighter integration with other IP cores.

The real strength and novelty of the platform, however,
lies in the remaining part of the FPGA fabric. This is
where key elements of the physical and media access layers
of the radio communication can be implemented as IP cores.
Also, it can be populated by the usual peripheral modules
(UARTs, timers, I2C, A/D drivers, GPIO) based on the
demands of the application. Finally, high performance sig-
nal processing – or other computationally intensive tasks –
can be accelerated by providing them as IP cores. At the
machine level, the soft processor communicates with other
peripherals and custom cores via a well-defined register in-
terface. Higher level software interfaces and thin proxies can
be used to hide the differences between a software-based im-
plementation and its hardware-based alternative.

Flash FPGA

Battery

Sensor I/F

RF Frontend I/F

Clock
Reference

AD
C DA

C

ADC
JTAG chain

In
te

rb
oa

rd
 I/

F Interboard I/F

Unregulated
Power

VCC1,2,3

Wakeup
Controller

Power Mgmt
DC/DC reg, Current Monitors, Switches

VCC4

VCC5
Power
Control

Di
git

al
I/O

Digital I/O Digital I/O

Clock In Clock Out

Di
git

al
I/O

Figure 1: Novel hardware architecture for wireless
sensor nodes.

Efficient power management is the cornerstone of this low-
power platform. The fine-grained control over the different
power supply networks provides a straightforward way to
save power while the FPGA is turned on and the clock net-
works are active. However, truly power aware WSN appli-
cations need to duty cycle the central processing unit also.
Unlike traditional FPGAs, Flash technology enables very
low standby currents and rapid wake-up.

3. SOFTWARE DEVELOPMENT
While we have seen tremendous progress in architectures

and programming models for low-power wireless networks in
the past decade, application development targeting soft-core
enabled FPGAs still poses significant challenges. Expertise
in both hardware description languages and embedded soft-
ware tools is required. Furthermore, awareness of low-level

details must be coupled with a high-level view of the system.
Of particular importance is the partitioning of functionality
between hardware and software, and the interfaces between
the two domains. Migrating functionality from software to
hardware, and vice versa, is cumbersome today and often
lacks efficient tool support and limited reuse of software or
hardware descriptions result in frequent reimplementation
of the same functionality.

The requirements for joint development methodologies for
reconfigurable, low-power hardware and soft-core hosted em-
bedded software are significantly different from those for
low-power wireless applications. Boundaries between appli-
cation, services, operating system, and hardware are blurred,
therefore traditional system design techniques do not work
in this domain. There is a clear need for a joint hardware-
software design methodology that allows for application-
specific optimizations, supports cross-layer protocols, en-
ables propagating low-level concerns to high-level design,
and promotes reuse. Lessons learned in hardware-software
codesign [4] unanimously support this claim.

The development methodology presented here promotes
late binding of components, aiming to avoid ‘dead ends”
in the development process resulting from committing to a
poor hardware-software decomposition too early in the de-
sign cycle when the true bottlenecks and tradeoffs are still
unknown. A central idea of our approach is the flexible
hardware/software boundary. The key enabling technology
here is design space exploration: given a set of alternative
implementations (components, services, modules, IP cores)
that meet the same functional requirements, the toolchain
finds the combination of components that fulfill the applica-
tion requirements. Design space exploration relies on com-
ponent property annotations such as gate count, memory
usage, power draw, sampling rate, latency, jitter, etc.

The unified hardware-software architecture relies on con-
cepts such as rich interfaces, compositionality, and uniform
treatment of hardware and software components. The ar-
chitecture utilizes the following concepts:

Unified hardware-software components. Applica-
tion, middleware and operating system functionality are im-
plemented in components. The architecture treats software
and hardware components uniformly, therefore software and
hardware implementations are interchangeable as long as
they use and/or provide the same interfaces. Components
are composable, meaning that a set of components can be
grouped into a composite component. A composition may
include wirings between the child components’ interfaces or
from an interface used/provided by the composition to an
interface used/provided by a child. This heterogeneous hi-
erarchy is the key enabler of the flexible hardware-software
boundary.

Rich interfaces. Components interact via messaging
through interfaces. In software, these messages are function
calls, while in hardware, they manifest themselves as signals;
both of which are treated uniformly in interface definitions.
An interface is a collection of named and strongly typed
inputs and outputs that are related to the same service. In-
terfaces are bi-directional: a component that provides an
interface must be prepared to handle all of inputs defined in
the interface, and may produce outputs that, in turn, must
be handled by any components using the interface. Interface
definitions are annotated by contract specifications: invari-
ants, pre- and postconditions on the parameters, as well as

the dynamic contracts that provide constraints on the order-
ing of messages passing across the interface (e.g. init must
precede send, send not allowed after stop, etc.)

Transcendent types. Type definitions must be portable
across the hardware-software boundary. Therefore, it is im-
perative that the architecture provide a unified type system.
The type system includes boolean, integer, floating point
and composite types (structures, unions, arrays) which have
well defined bindings in both the software and in the hard-
ware description languages.

Adapters. Hardware and software components are linked
together using adapters. Adapters are reusable, bidirec-
tional hardware-software bridges that translate between func-
tion calls and hardware signals. Adapters are the key ele-
ments of hardware-software interaction, and provide a clean
way to hide the complexities of the hardware-software bound-
ary.

Creating a toolchain that supports an unified hardware-
software development process is challenging. Synthesis tools
are supplied by the FPGA vendor and provide support for
the hardware description language to FPGA path, and there
exist C compilers for most soft MCU cores. Also, there
is a broad spectrum of operating systems and program-
ming frameworks (TinyOS [6], Contiki [5], MANTIS OS [2],
etc.) targeting low-end microcontrollers that can be eas-
ily adapted to run on soft processor cores. In our current
work, we decided to utilize TinyOS for multiple reasons. It
is probably the most widely used operating system in the
WSN domain. It has an elegant components-based archi-
tecture. And finally, we have several years of experience
working with it.

Traditionally, hardware-software partitioning decisions, and
the corresponding interfaces, are determined early in the de-
sign process, so these tools are used independently and side-
by-side. Our architecture, however, dictates a significant
departure from this design process, that allows for defer-
ring architectural decisions to late in the design. We believe
that a novel, high-level tool seamlessly integrating existing
tools that allows for uniform handling of software and hard-
ware components is required to meet the requirements of
the proposed architecture. In our architecture, this role is
played by the Generic Modeling Environment (GME) [7],
a configurable modeling, model analysis and system gen-
eration tool suite. GME and the set of related tools im-
plement Model Integrated Computing (MIC). MIC is predi-
cated on the notion that many times different engineering an
scientific domains require their own domain-specific system
representation. Hence, MIC supports the rapid generation
of domain-specific modeling languages and their supporting
tool infrastructure utilizing formal metamodels.

We created the metamodels defining the modeling lan-
guage and configured GME to support modeling WSN ap-
plication on the new hardware platform. Component speci-
fications (interfaces, composition, and interceptors) are cap-
tured in the high-level primarily visual modeling language.
Their actual implementations of the (non-composite) com-
ponents are programmed by the user. To allow for flexibility
at the hardware-software boundary, certain components will
have both hardware (HDL) and software (C) implementa-
tions. Resource requirements and performance attributes of
the different component implementations (e.g. gate count,
memory usage, power draw, sampling rate, latency, jitter)
are also captured in the models.

The models are utilized by symbolic design space explo-
ration tool based on DESERT [9], that aids the programmer
in choosing from alternative hardware and software imple-
mentations of particular components. Clearly, the introduc-
tion of alternatives into the design space causes a combina-
torial explosion in the number of possible designs, making
system optimization a challenging task. DESERT tackles
this problem by transforming the resource requirements and
performance attributes of components as well as application
requirements and hardware resource limits into constraints.
DESERT then carries out symbolic constraint satisfaction to
prune the design space based on user specified constraints
on the overall system properties. As a result, the user is
offered a set of concrete designs, with components bound to
particular realizations, that meet the given constraints.

3.1 GRATIS++: An MIC Approach
A TinyOS application is a hierarchical component assem-

bly where component configurations, i.e. wiring specifica-
tions, interface declarations and module implementations
are specified in numerous text files. Graphical representa-
tion of the same information increases the readability and
understandability of the application architecture and helps
in avoiding configuration errors, such as the omission of the
wiring specification of one or more interfaces of a compo-
nent.

Our previous work, the Graphical Development Environ-
ment for TinyOS (GRATIS) [11] is a typical application
of Model Integrated Computing (MIC) in general, and the
Generic Modeling Environment (GME), in particular [7].
GME is a metaprogrammable toolkit for creating domain-
specific modeling environments. GME metamodels specify
the modeling language of the application domain. They are
used to automatically configure GME for the domain, that
is, to create a modeling environment that has native support
of the target modeling language.

GME models take the form of graphical, multi-aspect, at-
tributed entity-relationship diagrams. Their syntax is de-
fined by the metamodels specified in a UML class diagram-
based notation. The static semantics of a model are specified
by OCL constraints that are also part of the metamodels.
They are enforced by a built-in constraint manager during
model building time. The dynamic semantics are applied by
the model translators, i.e. by the process of translating the
models to source code, configuration files, database schema
or any other artifact the given application domain calls for.

This approach fits component-based software development
very nicely. The interface of the individual components can
be modeled along with a link to their implementation. The
model editor can enforce the composition rules to make sure
that only valid component assemblies are allowed. More
sophisticated analysis can be performed by interfacing to
outside tools. Finally, model translators can generate the
glue code that ties the final system together. For this work,
we are enhancing Gratis by 1) adding hardware components
that are to be mapped directly to FPGA, 2) adding the
ability to specify alternative implementations for the same
functional component and 3) interfacing it with DESERT,
our design space exploration tool. We call the enhanced tool
GRATIS++.

Metamodels. The metamodel of GRATIS++, shown in
Figure 2, defines the mapping of TinyOS concepts to GME
concepts. The three basic building blocks of Gratis mod-

els are interfaces, modules and configurations. Modules and
configurations can have variants captured as moduleAlterna-
tive and configurationAlternative, respectively. An interface
consists of a set of events and commands. Both events and
commands are functions. The return type is captured by
a textual attribute, while the arguments are modeled with
contained objects each having its own type declaration. A
module contains a set of interface references (interface ref).
A reference is a graphical object that points to another ob-
ject contained elsewhere in the model hierarchy. This is cap-
tured in the metamodel by a directed connection pointing
from the interface to the interface ref metamodel in Figure 2.
Interfaces are declared at the global level and modules do
not contain them directly; they just refer to their declaration
through the use of references. This allows multiple modules
using and/or implementing the same interface declarations.

Figure 2: Partial and simplified metamodel for cap-
turing the design space of mixed hardware and soft-
ware components.

Similarly, configurations contain references to interfaces,
modules and other configurations (not shown in Figure 2
for clarity). Interface references contained in modules and
configurations appear as ports in higher level configurations.
Component wiring specifications are expressed in Gratis++
as connections between interfaces and/or interface ports in
configurations. In fact, two different kinds of connections are
used in configurations. A LINK specifies that a component
uses an interface that another provides. An EQUATE con-
nection specifies that the interface the given configuration
uses/provides is delegated down to a contained component
that either implements it or delegates it further down the
component hierarchy.

Data Type Modeling. Data types in Gratis++ are
modeled similarly to the MILAN system [8]. It allows the
specification of both simple and composite types. Simple
types, such as floats and integers, specify their representa-
tion size, i.e. the number of bits used. Composite types
can contain simple types and other composite types. At-

tributes of the fields specify extra information such as array
size or signed/unsigned type. All data types supported by
nesC programming language can be modeled in Gratis++.
Preexisting data types, specified in a library for example,
can also be modeled. To describe the entire type system of
a given application, all the necessary data types and their
relations need to be modeled. If a given simple type can
be converted to another without loss of precision (or with a
loss of precision that is acceptable for the given application),
they need to be connected with a directed connection. If a
given simple or composite type can be converted to another
with a conversion function, then they need to be connected
together through a converter model that specifies the con-
version function in the target programming languages. This
way, the data type models form a directed, possibly discon-
nected, graph. A directed path from a node to another one
means that there is a valid conversion from the source data
type to the destination one. The model interpreters insert
the necessary conversion functions automatically. Further-
more, correct typing is enforced during model building time.
This is accomplished by a set of constraints that only allow
connecting components whose types are compatible.

Interface Modeling. Traditional programming languages
and interface description methods—such as CORBA IDL—
capture only the type aspects of software components. The
access points of a given component are enumerated along
with their accepted and returned parameter types in terms
of values and domains. nesC is no exception to this: compo-
nent interfaces are defined by a set of function declarations.
Compatibility checking provided by compilers guarantees
that the user of a function provides the required parame-
ters and handles the returned value in a type-safe manner.
Even in trivial applications, the access points of a software
component are not isolated, dependencies and complex rela-
tionships might impose additional constraints on the use of
their services. Typical patterns—such as initialization before
use —can be found in almost every component. A compo-
nent providing communication services may have more re-
strictions that are inherent in the communication protocol.
Even if the legal order and dependencies of the function calls
are described in the documentation of the component as in-
formal rules, automatic tools and formal methods cannot be
developed to verify these constraints.

We have developed a modeling language based on Inter-
face Automata [1] that captures the dynamic aspects of com-
ponent interfaces and enables us to describe more complex
behavior [11]. Gratis++ also includes a translator that tar-
gets a model checking tool called SPIN [3] that verifies in-
terface compatibility across the entire design.

System Generation. The only information captured
textually in Gratis++ is the code of module implementa-
tions, either in C or VHDL. Because we capture the design
space of the application through the use of alternatives, a
selection needs to be made which alternative implementa-
tion is to be utilized in a given design instance. This can be
done manually in the modeling environment or with the help
of DESERT. Once a particular design point is picked, the
translator generates all the nesC files containing interface,
module and configuration specifications automatically. It
also inserts the necessary adapters at the hardware/software
boundary and assembles the final VHDL files.

Keeping the graphical models and the corresponding nesC
files in synch is a challenge, especially because a large code

base of TinyOS components exists in text form only. There-
fore, the Gratis model translator is bi-directional; not only
does it generate the nesC files from graphical models, but it
is also capable of parsing existing source files and building
the corresponding models automatically. The main use of
this parsing feature is to automatically generate the graph-
ical equivalent of the TinyOS system components and to
provide them as a library to the user in the Gratis++ en-
vironment. This library can then be refreshed when new
TinyOS versions become available without any modifications
to existing graphical application models.

Figure 3: Example application model

Example. An example model specifying one of the alter-
natives for the detection component of an acoustic shooter
localization application [10] is shown in Figure 3. The main
window shows the structure of the model in the Hierarchy
aspect. The Constraint and Interface Automata aspects are
not shown, but they can be selected by clicking on a tab
in the bottom center window, the Partbrowser showing the
available parts for this kind of model. The bottom right win-
dow shows the hierarchical structure of the entire application
and TinyOS, over a thousand components. The bottom left
window shows the attributes of the selected model. It is
here where the user can pick this option from the available
alternatives.

3.2 Design Space Exploration
Given the flexibility in defining design alternatives and

configuration parameters, the design spaces for the systems
represented can be extremely large. However, it is expected
that only a subset of these designs will satisfy all the con-

straints and, hence, meet the design goals. Thus, a design
space exploration method is desired to be able to rapidly
navigate, and prune this large design space to select feasi-
ble design alternatives, and configuration parameters, that
satisfy the user-defined constraints. Given the size of the de-
sign space, and the complexity of the analysis, DESERT, a
powerful, scalable Ordered Binary Decision Diagram-based
(OBDD) design space exploration tool was developed.

The design space exploration method relies on a symbolic
Boolean representation of the space. A binary encoding is
defined over the member elements of this space. The entire
space can be symbolically represented as a conjunction over
the Boolean representations of individual elements. OBDD-
s represent Boolean functions as directed acyclic graphs in
a memory efficient format. The operations over these func-
tions are implemented as graph algorithms, thus rendering
”manipulation” of the space fast and efficient. Logical (com-
positional) constraints can be solved with ease with this
symbolic Boolean representation. The logical relation ex-
pressed in the constraint over the elements of the design
space is simply transformed to a logical relation between
the Boolean representations of these elements. The resultant
expression represents symbolically the ”constrained” design
space. Performance constraints can also be solved, however
the mapping is non-trivial [9].

The power of this approach is the fact that it obviates the
need for exhaustive combinatorial enumeration of all design
choices. The entire design space can be symbolically eval-
uated without enumerating individual design points, thus
rendering the approach highly scalable for exploring large
design spaces. However, in large design spaces with many
constraints simultaneously applied, an exponential explo-
sion of the OBDD can occur. To address this problem, the
constraint processing is done hierarchically with constraints
scoped to a particular level; i.e. constraints are applied to
sub-spaces first, pruning them to the extent possible and
then progressing upwards in the hierarchy. This technique
is very effective when there are a large number of constraints
with a limited scope.

The design space exploration step, progresses by applying
the constraints one at a time. Each constraint application
results in a pruning of the space. Moreover, the pruned
design space contains only the designs that are ”correct”with
respect to the applied constraints. When the initial design
space is reduced to a manageable number of designs, the
designer can progress to the next step of design simulation.
Notice that some conflicting constraints may result in the
elimination of the design space altogether, i.e. no design
satisfies all the constraints simultaneously. In this case, some
of the constraints must be relaxed.

DESERT has a bi-directional interface to Gratis++. A
model translator generates a representation of the design-
space and all constraints in an XML file. This file is parsed in
DESERT and a tree-based view of the space is presented to
the user in a GUI. The user can either apply all constraints
at once or explore the space by selectively applying some
of the constraints. DESERT always displays the size of the
resulting pruned space. Once the user is satisfied with the
results, i.e. the size of the space is manageable and all the
important constraints have been applied, the resulting space
is shipped back to Gratis++. If the size of the space is larger
than one, the user needs to select manually from the still
available choices.

3.3 Design Flow
The tool architecture is shown in Figure 4. When the user

starts a new design he has a library of TinyOS and possi-
bly HDL component models already available in Gratis++.
Any new application-specific components need to be mod-
eled and implemented in nesC and/or VHDL. These compo-
nents also need to be characterized for resource usage and
performance. Then the user can model the entire applica-
tion in Gratis++. If there are alternative implementations
available for certain components, the design-space needs to
be pruned either manually or through the use of DESERT.
The user then chooses a particular design from the pruned
set, that is, a concrete binding of components to hardware
or software, which is then mapped to a concrete application
image.

Figure 4: Example application model

Mapping of the component specification of an applica-
tion involves the following steps: 1. Component hierarchy
is flattened, resulting in a component graph that contains
non-composite components and the connections of their in-
terfaces. 2. Static interface compatibilities are checked
(function/signal names, types, etc.). Optionally, a model
translator generates a representation of the system utilizing
the Interface Automata models and feeds it to SPIN where
dynamic compatibility checks are performed. 3. Interface
connections are mapped to (a) hardware configurations con-
necting hardware components, (b) software configurations
connecting software components, or (c) adapters connecting
a software component to a hardware component. 4. nesC
code is assembled from software components, VHDL code is
assembled from hardware components. 5. The HDL code
is handed over to the FPGA synthesis toolchain, the nesC
code to the corresponding compiler. 7. The hardware is
programmed with the resulting images.

4. CONCLUSIONS
The paper presented a work-in-progress system to develop

a toolset to support application development for a novel

FPGA-based sensor node platform. The foundation of the
approach, Model Integrated Computing and its supporting
tools, GME and DESERT in particular, are mature and have
been proved in many domains in industry and academic re-
search alike. However, Gratis++ is only partially functional
at this stage. Significant effort remains to fully implement
its VHDL capability. There are also hurdles as far as user
adoption is concerned. Our experience with the original
GRATIS environment was that only hardcore engineers pro-
gram in TinyOS and they want to stick to their text-based
programming tools. The hope is that the increased complex-
ity brought about by the flexible hardware/software bound-
ary and the capability to deal with design spaces not just
point solutions will provide enough incentive for users to
switch to our model integrated approach.

5. ACKNOWLEDGMENTS
This research was partially supported by ARO MURI

grant W911NF- 06-1-0076 and the TÁMOP-4.2.2/08/1/2008-
0008 program of the Hungarian National Development Agency.

6. REFERENCES
[1] L. Alfaro and T. A. Henzinger. Interface automata.

Ninth Annual Symposium on Foundations of Software
Engineering (FSE), 2001.

[2] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose,
A. Sheth, B. Shucker, C. Gruenwald, A. Torgerson,
and R. Han. Mantis os: an embedded multithreaded
operating system for wireless micro sensor platforms.
Mob. Netw. Appl., 10(4):563–579, 2005.

[3] H.-L. Chang, J.-B. Tian, T.-T. Lai, H.-H. Chu, and
P. Huang. Spinning beacons for precise indoor
localization. In Proc. of ACM Sensys, 2008.

[4] K. Compton and S. Hauck. Reconfigurable computing:
a survey of systems and software. ACM Comput.
Surv., 34(2):171–210, 2002.

[5] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny
networked sensors. EmNetSI, nov 2004.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. In Proc. of ASPLOS-IX, Nov. 2000.

[7] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi,
G. Nordstrom, J. Sprinkle, and G. Karsai. Composing
domain-specific design environments. IEEE Computer,
pages 44–51, 2001.

[8] A. Ledeczi, J. Davis, S. Neema, and A. Aggraval.
Modeling methodology for integrated simulation of
embedded systems. ACM Transactions on Modeling
and Computer Simulation, 13, 2003.

[9] S. Neema. System level synthesis of adaptive
computing systems. Ph.D. Thesis, 2001.

[10] P. Volgyesi, G. Balogh, A. Nadas, C. Nash, and
A. Ledeczi. Shooter localization and weapon
classification with soldier-wearable networked sensors.
5th International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2007.

[11] P. Volgyesi, M. Maroti, S. Dora, E. Osses, and
A. Ledeczi. Software composition and verification for
sensor networks. Journal of Science of Computer
Programming (Elsevier), 56(1–2), 2005.

