A Model-Based Integration of Network Emulation with HLA-based Heterogeneous Simulation Environments

Yuan Xue
ISIS,
Vanderbilt University

Timothy Busch Shelby Barrett
Michael Gacek
Air Force Research Lab

Himanshu Neema Gabor Karsai
 Janos Sztipanovits
ISIS, Vanderbilt University

Abstract—Evaluation of Command and Control (C2) concepts requires a sophisticated modeling, simulation and experiment infrastructure. This requires the integration of existing simulation tools, system prototypes and experiment platforms that can interact in a coordinated way. This paper presents our work on integrating the network experiment platform into the HLA-based simulation environment as a solution to this problem. Network emulation environments allow the use of real network devices, components and systems, thus providing greater realism in the network experiment. Integrating network emulation into the C2W system, however, is a challenging issue due to (1) the different time domains that the simulation and the real network platform operate on and (2) the need to controlling the communication overhead between the simulation and the emulation environment, while still ensuring the accuracy of the experiment. This paper presents our approaches to these two issues and shows our models, algorithms, and system protocols developed for such system integration.
Keywords- Command and Control System, Network Simulation, Network Emulation, Model-Based Integration
This research is sponsored by the Air Force Research Lab Visiting Faculty Research Program and the Air Force Research lab Summer Faculty Extension Grant.
Introduction
Evaluation of command and control (C2) concepts requires a sophisticated modeling and simulation infrastructure that allows for the concurrent modeling, simulation and evaluation. This requires the integration of multiple existing simulation tools, system prototypes, and experiment platforms so that they can interact in a coordinated way.

To address this urgent need, the “Command and Control Wind Tunnel (C2WT)” tool suite [1] is developed to support rapid synthesis of heterogeneous simulation environments. The C2WT system uses the High-Level Architecture (HLA) [3]framework which provides supports for the integration at the API level and the interaction level via a Run-Time Infrastructure (RTI). Using C2WT system, a range of simulation tools such as MATLAB/Simulink, OMNeT++[5], Java or C++ HLA-federates can be rapidly synthesized.

Network components and policies are essential aspects of C2 systems. Their impact on the performance and the behavior of C2 systems need to be accurately characterized when evaluating C2 systems. However, the current tool suite uses the network simulators, which lack the implementation details of network protocols and algorithms, and is insufficient in providing the level of accuracy required by the evaluation of C2 systems. For example, C2WT provides support for integration of OMNeT++-based network simulations. Being a discrete-event simulator, however, the accuracy of its simulations is dependent on the level of abstraction of the network protocol models. The operating system details, such as buffer copy overhead, are not simulated in the OMNeT++.

To enable realistic and accurate evaluation of the network component in the Command and Control system, we propose to integrate network emulation environment into the heterogeneous simulation tool suite “Command and Control Wind Tunnel”. Different from simulation, network emulation environments, such as Emulab, allow the use of real network devices, components and systems, thus providing greater realism in the network experiment. It allows the study of part of the C2 system running on real distributed hosts and communicating over more realistic emulated networks. If integrated into the C2W infrastructure, the network emulation platform could bring great realism and much better accuracy to the evaluation of C2 systems with real network traffic injected into the network. The emulation environment also provides a platform where prototypes of C2 components can also be deployed and interact with other simulated components. This integration is also critical for assessing the impact of various network attacks, which (e.g., TCP SYN flooding) is highly dependent on the detailed operating system implementation.

Integrating network emulation into the C2W system, however, is a challenging issue. (1) Being a simulation environment, the C2W system runs under the discrete event-driven time model and uses the RTI time management; on the other hand, the network emulation platform runs in continuous real time. The time synchronization issue between the simulation and emulation environment is a non-trivial issue. (2) There is potentially large volume of data communicated between the simulation and emulation environment. Controlling the communication overhead while still ensuring the accuracy of the experiment is also a challenging issue. This paper presents our approaches to these two issues and shows our models and algorithms developed for such system integration.
Time Synchronization
To reconcile the two different time models in the C2WT system and the network emulation system, we investigated the time management mechanisms of network emulation environment and analyzed their compatibility with the time management mechanism of RTI. Our work focuses on the real-time execution modes of execution, where the simulation system follows a time-stepped discrete time model, while the emulation system just uses the system time. Without communication delay between the simulation and the emulation environment, the two systems can synchronize to the physical real time separately. When communication delay exists, it will cause the time stamp discrepancy of the same packet at these two environments, which will result in measurement error and introduce causality violations in the simulation. To solve this problem, we proposed a novel time synchronization mechanism where the simulation runs under a virtual time that is separated from real time but still keeps close pace with real time.
Data Communication Architecture
There is potentially a large volume of data that need to be communicated between the simulation and the emulation environment. Such communication overhead will significantly affect the performance of the integrated C2W system. Controlling the communication overhead while still ensuring the accuracy of the experiment is a challenging issue. In this paper, we first propose a new architecture for incorporating network traffic from real networking environment into the HLA-based simulation environment. In this architecture, a federate serves as the gateway of the communication between the simulation federates and the real network application processes. Compared with the decentralized architecture, the centralized approach simplifies the design and limits the communication overhead over RTI. It also implies more efficient network application process execution, since it does not need to call the RTI library for communication.

Observing that different C2 system experiment may have different communication needs and semantics, efficient communication can be only achieved by recognizing such differences and tailing the communication protocol based on each experiment unique semantics. To enable such capability in the integrated system, we enhance the meta model of the existing C2WT system with the emulation meta model which specifies the major attributes of the information communicated between the simulation and the emulation environment. Then the C2 system experiment configuration can specify the communication context through network modeling, which can in turn customize the communication protocol between the simulation and the emulation environment to achieve the best tradeoff between experiment realism and performance.

The remainder of this paper is organized as follows. Section II introduces the background information of our work and discusses the relevance and difference of our work to previous work. Section III, IV and V present our approach to the data communication architecture, meta-model, model and the time management design, respectively. Section VI describes the implementation details. Section VII presents the experiment results. Section summarizes the paper and discusses the possible future directions of this work.

Related Work
There are a few existing works that support the integration of network simulation and emulation. For example, the ns2 emulation facility, so-called nse [8], supports introducing live traffic into the ns-2 simulator [9]. Special objects are developed within the ns-2 simulator, which inject traffic from the simulator into the live network and accept the traffic from the live network [7,19]. Based on this facility, the Emulab software also supports its integration with ns-2 simulation [10]. The network simulator OMNeT++ also has similar support [11] to incorporate live traffic. The work of [18] extends ns2 emulation facility with wireless multicast support. [15] improves the ns2 emulation facility with real-time capability.

The early work on network simulation and emulation integration usually requires simulation to be real-time capable as a time drift between the simulation and the real network may occur and corrupt the results. The work of [14] presents an approach on synchronizing network emulation with simulation by virtualizing real systems. The work of [13] further develops a new model of time called relativistic time that combines the controllability of virtual time with the naturally flowing wall-clock time to facilitate the time coordination between the simulation and emulation systems.

Our work is related to these previous works in that we both combine real network elements with simulated ones -- each modeling different portions of a networked distributed system. Our work is fundamentally different from the existing work in that (1) in the existing work, the network is simulated, the application is real, while in our work, the network is real, the application is simulated; (2) though both require time synchronization, in our case, the network communication (e.g., packets in fly) can not be controlled. In short, we need new designs for the simulation-emulation communication and time synchronization. Moreover, there has not been an effort, however, for integrating heterogeneous simulation environments (including not only networks, but also physical environment, organizations, etc) with network emulation environment.

Data Communication Architecture
Figure.1 illustrates the C2WT system framework extended with the network emulation capability under the centralized data communication architecture. In the figure, the EmuGateway federate serves as the gateway between the simulation federates and the network applications. At run time, it communicates with other simulation federates over RTI. The EmuGateway federate will publish and subscribe to all the network related interactions on RTI. The EmuGateway federate communicates with the network applications through the Simulation-Emulation tunnel. This tunnel is implemented using Interaction Delivery Protocol based on the TCP unicast socket.

Figure 1 C2W system framework with network emulation capability

In this framework, the network models (including network interaction models, network application deployment models, and network topology models, as detailed in Section III) are integrated with other models such as controller models and environment models using GME at the model integration layer. Model transformations, implemented via custom interpreters, generate scripts for Emulab to configure the network experiment (topology, running commands) and glue code for the EmuGateway federate and the network applications that run on the emulated/real network.

Meta Model and Domain Model for Network Emulation

We enhance the meta-model of the C2WT system with the network emulation meta-models which specify (1) the major attributes of the information communicated between the simulation and the emulation environment; (2) the network application deployment configuration. The C2 system experiment configuration can specify the communication semantics through network modeling, which can in turn customize the communication protocol between the simulation and the emulation environment to achieve the best tradeoff between experiment realism and performance.

The C2 Wind Tunnel project has developed DSMLs that are based on the semantics of each integrated simulation platform and an overarching DSML to model the interactions between simulation models. Custom translators (model interpreters) are developed to dynamically import and export platform-native models into the GME DSMLs and to generate HLA configuration files and glue code. These tools allow the composition and execution of the entire simulation to be configured using the central modeling environment. To support the integration of network emulation into the C2WT environment, we extend the overarching modeling environment in GME to capture the operational semantics of the network emulation and the interaction between the network application processes in the emulation environment and the simulation models. In what follows, we will present our extension from three aspects: (1) Application Process Deployment Model, and (2) Network Emulation Interaction Model.

Application Process Deployment Model
[image:]
Figure 2 Application Deployment Meta-model
This model specifies the deployment of application processes on the hosts and the transport-layer communication model that will be used. This model includes the following objects.

(1) NetworkApp, which models the network application process that is running on the emulation host. It has at least a port. The TCPBasicApp and UDPBasicApp can be prebuilt as two basic forms of network application processes to facilitate network experiments (e.g., for background/attack traffic generation).
(2) OnHost, which models the deployment of a network application on an end host (i.e., Host in the topology model). Note the host defined in the network model is a “virtual host”. When Emulab is used, the “virtual host” will be mapped to a real host where the IP address is assigned. In this case, the emulation gateway needs to keep track of the IP address and performs host mapping.
(3) NetworkAppInteraction, which models the communication connection between network applications. There are two types of communication models between application processes: Connection-oriented and connectionless communication. TCP protocol is connection-oriented. UDP protocol can work in both connection-oriented and connectionless communication manners. For connection-oriented communication, two application processes need to establish a connection. The destination application process information is predefined (prewired) in the Application Deployment Model so that it does not need to be carried in the Network Emulation Model (detailed in the next subsection). In the connectionless model, the destination process information is unknown during the deployment. Thus it requires to be carried in the Application Deployment Model.
[image:]
Figure 3 shows an example of application deployment model over the network as shown in Figure 2.
 (
Figure 4
 Network
Interaction
 Meta-Model
)[image:]
Figure 3 Example Application Deployment Model
Network Emulation Interaction Model.
This specifies how the network application processes in the C2 system communicate through the network, particularly, what information needs to be exchanged between the simulated C2 elements and the real network applications through EmuGateway in the experiment. In our design, this function is enabled through NetworkInteraction, a special type of HLA Interaction.

As shown in Figure 4, each NetworkInteraction needs to have three attributes in order to be processed by the EmuGateway:

(1) Timestamp, the time this interaction should be processed by the network application process. Note that this is not the timestamp of the NetworkInteraction itself. The NetworkInteraction needs to be sent at an earlier time though RTI before this Timestamp for the sake of time.
(2) ProcName, the name of the network application process that handles this NetworkInteraction. This name should be exactly the same as the process’s name used at the end host, as it will be passed directly by the EmuGateway to the TapClient (details in Section IV.).
(3) NodeName, the name of the node that hosts the network application process which handles this NetworkInteraction. Note that the deployment of the application process onto real hosts may not be known at the modeling time, the EmuGateway will convert this name to the real hostname/IP address at runtime.

Inheriting from Interaction, NetworkInteraction has a list of Parameters, which are used to model the content/information carried in NetworkInteraction.

NetworkInteractionWithPeerInfo extends NetworkInteraction with two more attributes -- PeerProcPort and PeerNodeName, which are the communication peer’s application process name and node name. The PeerNodeName will be converted to the node’s hostname/IP address at the EmuGateway federate at run time. The PeerProcPort will be directly passed. This type of interaction is used where peer network application information is needed, typically in two scenarios: (1) the network application is a connectionless UDP sender. The PeerNodeName and PeerProcPort information is needed to tell the UDP sender the destination application information. This type of NetworkInteractionWithPeerInfo is published by other federates and subscribed by EmuGateway federate; (2) the network application is a server (either TCP or UDP) which accepts requests from multiple clients. The client information cannot be known at the modeling time. This type of NetworkInteractionWithPeerInfo is published by EmuGateway federate and subscribed by other federates.

Figure 5 shows an example of the Interaction Model for the network scenario outlined in Figure 3. Note that the NetworkInteraction has one Parameter ImageURL, which is the information carried in this interaction. This implies that in this simulation experiment, only ImageURL is passed from the simulation environment to the emulation environment.

Figure 5 Example Network Interaction Model

This modeling framework is flexible to handle a variety of communication semantics. In the example shown in Figure 5, the UDP traffic from the application process SendImage is triggered by the SendImageToNetwork interaction, which specifies the location of the image. Real image data will be communicated within the emulated/real network. This experiment setup could allow us to evaluate the impact of data corruption (e.g., by malicious attacks) on the C2 performance. If the experiment is only interested in the transmission delay of the data (the traffic load it incurs), instead of its content, we can setup another interaction model with lower communication overhead between the simulation and the emulation environment. In this case, no real data is sent between for image transfer application. Instead, dummy data is sent with the specified sending rate and packet size to create the appropriate traffic load. Using the SendImageToNetwork NetworkInteraction, the simulated UAVs (UAVfederate) notify the network application process SendImage two parameters: FrameInterval and FrameSize.

Together with other domain models, this network interaction model will be used to generate HLA configuration files and glue code for the C2WT system.

Time management
To reconcile the two different time models in the C2WT system and the network emulation system, we investigated the time management mechanisms of network emulation environment and analyzed their compatibility with the time management mechanism of RTI. Our work focuses on the real-time execution mode, where the simulation system follows a time-stepped discrete time model, while the emulation system just uses the system time.

Under the real-time execution mode, the simulation system follows a time-stepped discrete time model, while the emulation system just uses the system time. The simulation (ts) and operation system (to) time are synchronized with real time (tr) separately. ts=to=tr. Without communication delay between the simulation and the emulation environment, such time synchronization will not violate local causality constraint.

When communication delay exists, it will cause the time stamp discrepancy of the same packet at these two environments, which will result in measurement error and introduce causality violations in the simulation. The following figure illustrates this problem.

Since the simulation environment will receive events from the emulation environment, simulation time should lag behind or equal to emulation time so that the events from emulation will not arrive at simulation in its past time. Similarly, the emulation environment will receive events from the simulation environment, thus simulation time should lead or equal to emulation, so that the events from simulation will not arrive at emulation in its past time. Without delay, simulation and emulation should be synchronized to the same time. With delay in both directions, this issue is non-trivial.

To solve this problem, we proposed a novel time synchronization mechanism where the simulation runs under a virtual time that is separated from real time but still keeps close pace with real time. In particular, the operation system time is synchronized with real time (to=tr), while the simulation time is separated from real time. The simulation environment should have at least a lag of (L 2) from real time to accommodate the communication delay emulation to simulation environment, if any incoming traffic is expected (ts = tr- L). Simulation clock advances at the same pace as real physical clock. All outgoing traffic event with time stamp t will be actually scheduled/tunneled to emulation environment at simulation time t - 1- L to compensate the delay from simulation to emulation and the lag between simulation and emulation so that it could arrive at emulation at real time t. For incoming traffic with time stamp (t+), it will arrive at the simulation at simulation time ts = t-L+ +2. Since L 2, the event can be scheduled at ts = t+. The figure below illustrates this scheme.

The above scheme works well when the outgoing traffic event with time stamp t is always generated at a simulation time t’ smaller than t - 1- L. If t’ is larger than t - 1- L, the system will issue a run-time exception.

Implementation
Figure 6 outlines the components in the implementation.

Figure 6 Implementation Architecture
Interaction Delivery Protocols
We present how the NetworkInteractions are delivered and triggers appropriate network operations at the emulated/real hosts. First, the InteractionHandler in EmuGateway will publish and subscribe to all NetworkInteractions. For incoming NetworkInteractions from RTI, the handler will wrap them into tasks and send them directly to the TapServer. A task object has as its attributes (1) ProcName, which handles the task, (2) Timestamp, when the task should be executed, (3) list of Parameter objects, which specify the content of the task. For each Parameter object, it has (1) ParameterName, (2) ParameterLength, and (3) ParameterValue. The tasks will be serialized and transferred from the TapServer to the TapClient according to the Interaction Delivery Protocol. Figure 11 shows the message format in the Interaction Delivery Protocol and an example message.

Figure 7 Interaction Delivery Protocol Message Format

The TapServer is a multi-thread TCP server in the EmuGateway federate. It communicates with TapClient (a TCP client) that resides on each emulation host. Once receiving the message from the TapServer, the TapClient will convert it back to a task object. During the conversion, the TapClient also need to convert its Timestamp from the simulation time to the real time on the emulation host (details discussed in subsection B.) If the Timestamp is larger than the current time, which means the task should be executed in the future, the task will be sent to a buffer. When the Timestamp becomes current, the task will be scheduled for execution, which means the parameter will be set to the application process indicated by ProcName. In our example here, the SendImage process will receive the value of ImageURL, retrieves the image data and send them out via UDP. (Further performance optimization can be done here to prefetech the image before schedule.)

When the image is received by the TapClient, the TapClient will create a new task based on the NetworkInteraction Model. As in the example shown in Figure 8, the task will have (1) RecvImage as its ProcName, (2) the time the packet (here we put a frame in one UDP packet) is received as Timestamp (note that the time is converted from the real time to the simulation time here) (3) calculated packet delay as the ParameterValue for Parameter PacketDelay. The tasks will be serialized and transferred from the TapClient to the TapServer according to the Interaction Delivery Protocol. When it arrives at the TapServer, its Timestamp will be compared against the current simulation time, and it will be sent to the LocalTask buffer waiting to be scheduled if the Timestamp is larger than the current time.

System Initialization
When the integrated C2WT system starts, the TapClient will initialize the network application processes and register itself to the TapServer (the TapClient needs to know the address of the TapServer a priori) by sending its address (real hostname or IP address), its virtual host name and its current OS time. Based on this information, the TapServer will build the HostMap, which keeps the mapping information from the NodeName to the host IP addresses. The TapServer then provides this HostMap back to the TapClient. The TapServer also returns the current simulation time to TapClient as a response after the simulation starts to run. Due to the delay variation, multiple rounds of handshake are necessary to have a good estimation of the worst-case delay, as we will show in the experiment study. The TapClient will use this information to synchronize the simulation time with the emulation time, which is discussed below.

Time management
To implement the time management scheme, we have a time converter at each emulation host which converts the Timestamp on each task. The time converter keeps the difference between the simulation time and the emulation host OS time, which is initialized when the system starts. We make the following notations to illustrate the timestamp calculation:

· Tos_client_start: the OS time (real time) when the TapClient register itself to the TapServer.
· Tos_server_start: the OS time at the TapServer when the client registration message is received.
· Ts_start: the value of the simulation time when the client registration message is received.
Then the difference between the simulation time and the OS time at the TapServer is Tos_server_start - Ts_start. We assume that the system clocks of the emulation hosts and the simulation host are synchronized a priori (e.g., via Network Time Protocol). Thus this difference (Tos_server_start - Ts_start) is also the difference between the simulation time and the real time at the TapClient. At the TapClient, each incoming task with Timestamp will be converted from the simulation time to its emulation time with respect to the TapClient OS time for scheduling according to the following relation.

Timestamp_emu = Timestamp + (Tos_server_start – Ts_start) – L.

For outgoing tasks, the converter will convert its Timestamp_emu with respect to the emulation time to the simulation Timestamp as follows.

Timestamp = Timestamp_emu - (Tos_server_start – Ts_start) + L

Here L is the lag from the simulation to the emulation time. As we have discussed earlier, L needs to be larger than 2, the delay from the TapClient to the TapServer, which can be calculated as 2 = Tos_server_start - Tos_client_start. Here we take L to be twice the maximum value of 2 measured multiple times during system initialization, taking into account the delay variation.

Experiment Results
Experiment Platform

To validate the design of our integrated C2 simulation and emulation environment, we conduct experiment over a wireless network testbed. The experiment scenario is the same as the one in Figure 3 and 5.

In our wireless experiment testbed, the wireless nodes which emulate the UAVs are laptop. Each laptop is equipped with two adaptors: one IEEE 802.11b wireless adaptor is used for data communication between the experiment network applications (e.g., SendImage and RecvImage), one Ethernet adaptor is used for the interaction communication between the TapClient and the TapServer. In this way, the experiment data will not interfere with the control data for the integrated simulation and emulation environment. For experiment, the wireless adaptors communicate with a wireless Access Point which is connected to a wired network. The control station node is emulated using a desktop that is connected to the same wired network. The simulation environment runs on a high performance workstation that is connected to the same wired network (on the same switch) with the desktop (ControlStation), Ethernet adaptors of laptops (UAVs) for extremely low delay communication.

Experiment Results

We first study the delay between the simulation and the emulation environment. This value is an important parameter in our system as it decides the time synchronization between the two environments. Figure 7 shows the measurement from one laptop that emulates the UAV to the simulation host. We perform multiple rounds of measurements. The x-axis shows the measurement number. The y-axis shows the corresponding delay in nanosecond. The packet size used in the experiment is 20K byte. We observe that the delay varies a lot across different experiments, with the maximum value as 6ms and average around 1ms.

Figure 7 delay between simulation and emulation environment
Since tasks in the Interaction Delivery Protocol may have different sizes due to the different types of parameter lists, we would like to study whether the size of packets will affect the delay. Figure 8 shows the delay measured for packet sizes with 10K byte, 5K byte and 20K byte, sorted individually according the delay value in each experiment.

Figure 8 delay under different packet sizes
From the figure, we observe that the packet size is not a significant factor in the delay. The delay is mostly due to the OS scheduling overhead instead of the network transmission time. We use L = 12ms in the system experiment.

Now we show the experiment result under the simple scenario as shown in Figure 3 and 5. In the experiment, UAV1 starts to send images at 2 frames/sec at time 0. Then the control station instructs UAV2 to send images after 100 frames are delivered.
Figure 9 below shows the packet delay for UAV1 in millisecond for each packet. As we could observe from the figure, the packet delay increases after UAV2 joins the wireless network, due to contention.

Figure 9 packet delay from UAV1

Summary and Future Directions

This paper presents our work on integrating the network emulation into the C2 Wind Tunnel system – a model-driven HLA-based heterogeneous C2 system simulation tool suite. We present the architecture and the detailed implementation of the integration under the real-time mode time synchronization model. A system prototype is developed to validate the proposed design. In the future, we will expand our results to larger experiment platforms and experiment on more diverse network application scenarios.

References
[1] Command and Control Wind Tunnel, https://wiki.isis.vanderbilt.edu/OpenC2WT/index.php/Main_Page
[2] GME, http://www.isis.vanderbilt.edu/projects/gme/
[3] HLA standard – IEEE standard for modeling and simulation (M&S) high-level architecture (HLA) – framework and rules, http://ieeexplore.ieee.org/servlet/opac?punumber=7179
[4] Portico RTI, http://www.porticoproject.org
[5] OMNeT++, http://www.omnetpp.org/
[6] Emulab, http://www.emulab.net/
[7] DETERlab -- cyber-DEfense Technology Experimental Research laboratory Testbed, http://www.isi.edu/deter/
[8] Nse -- the ns emulation facility, http://www.isi.edu/nsnam/ns/ns-emulation.html
[9] ns-2 simulator, http://www.isi.edu/nsnam/ns/ns-emulation.html
[10] Integration of ns2 and emulab, https://users.emulab.net/trac/emulab/wiki/nse
[11] OMNeT++ support for emulation, http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
[12] Sztipanovits, J., and Karsai, G. 1997. “Model-Integrated Computing”, IEEE Computer, vol.30, pp. 110-112.
[13] C. Bergstrom S. Varadarajan G. Back, “The Distributed Open Network Emulator: Using Relativistic Time for Distributed Scalable Simulation”, Workshop on Principles of Advanced and Distributed Simulation, pp19-28, 2006.
[14] Weingartner, Elias and Schmidt, Florian and Heer, Tobias and Wehrle, Klaus, “Synchronized network emulation: matching prototypes with complex simulations”, SIGMETRICS Perform. Eval. Rev., vol. 36, no. 2, pp58-63, 2008.
[15] Mahrenholz, D.; Ivanov, S., “Real-Time Network Emulation with ns-2”, IEEE International Symposium on Distributed Simulation and Real-Time Applications, pp 29-36, 2004.
[16] Richard M. Fujimoto, “Time Management in the High Level Architecture”, Simulation, vol. 71, pp388-400, 1998.
[17] Guruprasad, S., Ricci, R., and Lepreau, J., “Integrated Network Experimentation using Simulation and Emulation”, In Proceedings of the First international Conference on Testbeds and Research infrastructures For the Development of Networks and Communities, 2006.
[18] S. Penz, "Wireless Multicast Support for the NS-2 Emulation Environment," 15th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp.267-273, 2007.
[19] Shashikiran B. Guruprasad, “Issues in Integrated Network Experimentation using Simulation and Emulation,” Master's Thesis, University of Utah, August 2005.
20K	471010	482184	486375	487492	492800	496711	497829	500063	510958	515149	518501	518502	518502	519339	519340	522133	523530	525206	529676	530515	532470	534984	535543	536660	537778	537778	540012	540013	540851	541131	542248	544482	544762	545321	546717	553143	553981	558730	564596	567390	567669	570463	588902	598958	607061	612368	614883	626336	628571	631086	637511	639187	661816	669359	672711	693105	700368	733054	736685	749816	760432	767696	793956	794515	795911	814070	858489	886705	890337	902908	918273	919949	935035	948165	948165	963531	967162	983924	996496	1002083	1055720	1254070	1267200	1414984	1421410	1463314	1464152	1474210	1525893	1806096	1822857	1830959	1882921	1889346	1899403	2166756	2417626	2871595	3277232	3849372	10K	358146	372115	374628	376863	392508	392787	396419	399492	400610	403683	405918	406755	408432	411226	412623	414019	418768	419606	419607	420445	421283	424356	424635	426590	426591	427149	427429	428546	429105	429663	430782	431619	432457	433296	438883	442514	443353	444190	448381	454248	454806	457600	458158	459276	464025	469892	472407	474362	475200	478553	484978	487213	488050	492521	493918	499505	503974	504254	504254	504813	508445	508723	511517	514870	517663	524368	530514	538616	549232	561524	570743	581918	595048	658185	663492	704280	734451	735010	754006	767416	797587	800940	835302	868825	909333	909613	921905	976381	1069968	1135619	1203225	1546286	1773689	1880406	1957791	2028470	2477969	3357968	3896026	4453080	5K	334400	339428	340266	343060	345295	346133	348089	350324	357866	362337	363733	364851	370718	371556	371556	374908	376025	379937	380495	381892	382171	382451	385524	385803	388038	391669	391950	393905	397536	406755	407035	407314	408990	410667	411225	411505	412343	414299	415415	423238	450616	452571	468495	469334	488609	488889	493918	536940	539733	564597	569905	583314	587226	628851	631924	653435	659860	687238	697016	699251	734731	794794	802895	806248	815466	820775	845080	874133	878044	898997	911289	915758	924698	938946	1080864	1095949	1106845	1186185	1191492	1202946	1274743	1491251	1497677	1521981	1535670	1657194	1662502	1681778	1741283	1777321	1887391	1954439	1971201	2268724	2299734	2374883	2882489	2947022	3710528	5272458	
47.597437151540035	77.935854554519352	57.904611136047954	71.114100088571064	64.957749042621288	67.407288661844035	45.124566843062993	67.658067622694276	66.714073917581871	64.531329447789346	49.02561069325624	65.266958719964578	62.739494824313788	49.241870654143341	60.385778429900185	50.361027517949559	49.114374739968838	62.152114323938633	73.880408322189083	63.018244643019905	55.060110769760684	49.984586616629315	79.299838376158277	52.205703943538225	67.372981395615398	66.20167470637557	45.101394102210804	55.316466479448877	63.293721416855433	47.806175176780812	62.885531065429142	69.397541911456258	55.044762042010504	79.758279072471595	43.312930036251061	50.230784792485778	57.630124002666754	58.029693167802641	55.666979776275518	57.180550643810008	57.818444635278702	70.272185648393432	48.520846403866514	55.490979615587584	51.024329281642743	54.344925308951161	56.493782315844484	48.37685870460529	70.730779881374161	60.880422115126528	73.295111148313325	42.78811020082145	48.451892985898198	52.589295444268402	38.650714300668355	65.058716872854419	66.968886852257143	71.527332922373077	52.615178229506313	57.134897346308307	54.238143199679442	40.813418780026296	49.797165173990187	55.878052834519913	71.864203803879434	43.302201969107209	57.930173413641086	76.075844538106139	65.386592848036926	65.639773332955954	74.844637797789659	62.139884484622947	74.489795353934198	54.75582361982076	64.982729631551749	63.760035541144212	59.538113331742814	64.154660177610182	49.178502400206355	82.141329648051382	71.043942857848748	52.355301727390618	49.324796559436287	80.531168057939979	73.310706742400214	74.862210553291078	61.089457531994796	71.041326591750362	58.822414434426882	63.11510473187451	64.904310042263717	56.908348685741295	58.555353416739763	66.368628597877603	79.78795695614356	44.104731860932596	59.140657012602965	54.577801132509421	53.005479021143877	72.543181096769189	67.828015035729734	105.87794000107868	84.30330535418814	113.56934146672941	85.693941968166001	73.637275635859311	87.221928751681588	114.9466889649174	108.29244404387158	121.6044330890969	96.879665512194848	95.479149554270364	90.569862691508817	100.50456424930555	101.15152853428705	102.01590302511468	102.38153678061332	103.69585670418221	105.12754646721626	121.75909129864634	111.43689232878275	109.17653646287482	84.173016439461279	106.72328907201378	115.49679423079012	87.852401076876717	94.392605773781113	118.25438705256394	92.944748629157345	86.924086377055858	116.09199825844441	105.12380064659489	95.246607037264411	91.719695034605195	96.723282930651237	136.1507078643665	95.468816822020386	98.06162046933602	95.266476469292627	81.889182632350639	100.11516322490058	99.337482306181528	115.72640366260427	92.190684351586341	97.291290848278535	109.10515054433317	118.88450927371366	103.22706474920626	85.188891877447887	106.32229233647408	92.933939147692101	91.54135836387978	91.315299310018432	115.33944406943522	97.156628667547963	127.2725666649487	82.687727600864051	66.54987130075817	101.29700858932992	67.826106149621594	116.26317447909112	110.40598251538405	95.989856749399067	80.823224543636087	116.10081380379373	95.950516311237863	132.27441450024517	81.221088505194302	97.690853426798853	102.15665315251643	98.427621771426217	103.06401974022214	109.27476662720507	81.687381970742152	126.13479195299547	142.56888269172671	130.677362275924	119.82144662833528	106.16809377397917	101.59216997664211	104.42444744610536	87.920802506914768	98.923149614733774	99.190058925328202	107.84305925843431	123.41593476529773	112.67120023603354	128.82962484205521	113.94807039976834	105.34510770435951	114.74407820314958	115.89297076695711	85.187061914210844	111.07956205329926	106.30765403013896	106.99919730974099	100.54444958834527	102.95018113621781	126.26328514952368	78.247660968415531	90.775920084430581	119.11008005371943	110.70830946465981	92.093416252652688	115.98081734613443	125.6370313185602	98.07786290324178	121.77483498105047	107.08775461867604	94.415128416075305	108.5400677816458	85.777961645456003	115.32708100043033	129.5577700564512	99.963738171070958	128.16816739665188	117.8213964126144	98.797229899642701	120.41842701257454	115.35976825834447	106.18381991022044	126.48633480821206	114.41895301821741	124.25892273162765	138.33653896701387	99.432577723188828	114.56205842276518	118.18237121956362	110.27114618768927	114.55109160706111	106.16303435621917	102.35443066003239	107.71367067502032	125.75873448057457	
5Kbyte	1497677	806248	536940	924698	411225	391950	407035	1080864	408990	412343	1095949	628851	397536	423238	381892	379937	1186185	1681778	1971201	874133	1191492	3710528	734731	406755	371556	845080	1106845	915758	388038	370718	1657194	393905	493918	659860	820775	878044	569905	1954439	1662502	1887391	583314	1521981	815466	382451	385524	488889	539733	687238	469334	363733	1274743	1741283	5272458	564597	488609	1535670	794794	391669	371556	2947022	2374883	802895	2299734	1777321	415415	2268724	911289	2882489	414299	450616	411505	898997	452571	938946	587226	468495	1202946	653435	697016	1491251	343060	346133	339428	410667	345295	362337	631924	348089	350324	407314	376025	380495	374908	334400	382171	340266	364851	385803	357866	699251	
image1.png
o

ApplicationDeployment
=<ladel>

_

o

HostProxy
<<ModelProy>>

NetworkAppInteraction
<=Connection=>

=l NetworkAppBase

Jutifiesiivie

-

OnHost

~

Ports NetworkApp

<<tom-> | =<Madel>>

porinumber : field

NetworkAppProxy
=<Reference=>

TCPBasicAp
=<adel>

UDPBasicAnn
=<adel>>

7| <<Connection=>

image2.png
InteractionProxy
7| <<ModelProg>>

Delivery: enum
Order: enum
-

Networkinteraction
=<Madel>

Timestarp field
ProcName : field
NodeName . field

NetworkinteractionWithPeerinio
=<Mladel>

PeerProcPort field
PeerodeNarme feld

image3.png
Recvimage

SendCgmmand

[—

ControlStation

image4.png
RecvCommandFromMetwork|

EmuGatewayFederate

[SendimageToNetwork
UAVFederate
RecvimageFromNetwork|
[SendC: dToNetwork]]
endCommandToNetworl nFederate

