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Abstract—Transportation management platforms provide com-
munities the ability to integrate the available mobility options and
localized transportation demand management policies. A central
component of a transportation management platform is the mo-
bility planning application. Given the societal relevance of these
platforms, it is necessary to ensure that they operate resiliently.
Modularity and extensibility are also critical properties that are
required for manageability. Modularity allows to isolate faults
easily. Extensibility enables update of policies and integration of
new mobility modes or new routing algorithms. However, state
of the art mobility planning applications like open trip planner,
are monolithic applications, which makes it difficult to scale
and modify them dynamically. This paper describes a microser-
vices based modular multi-modal mobility platform Mobilytics,
that integrates mobility providers, commuters, and community
stakeholders. We describe our requirements, architecture, and
discuss the resilience challenges, and how our platform functions
properly in presence of failure. Conceivably, the patterns and
principles manifested in our system can serve as guidelines for
current and future practitioners in this field.

Index Terms—Urban Mobility; Microservices; Reliability; Re-
silient platform; Extensible Platform

I. INTRODUCTION

Emerging trends and challenges. With increasing urban

population, moving people from one place to another is be-

coming an increasingly complex challenge. According to U.S.

Census Bureau 2013 survey reports [1], [2], about 86 percent

of all commuters commuted to work by personal vehicles,

either driving alone or carpooling. The fact that the majority

of personal vehicles used by commuters are single occupancy

only serves to exacerbate the issue [3]. metropolitan cities are

increasing their investment in public transit to provide better

mobility options to the residents of the city. However, public

transit networks have its limitations because they use existing

infrastructure to provide build public transit networks.

Technological innovations have enabled shared mobility

options which are increasingly being used by commuters often

in lieu of a personal vehicle. To support the demand for such

options, companies such as Uber and Lyft are increasingly

investing in making shared mobility services readily available

to the user on-demand in urban environments. While such

services may be deemed more convenient than riding public

transit due to their on-demand nature, reports show that they

do not necessarily decrease the congestion in major cities [4].

So, there is a need for shared mobility mechanisms in the

city, where commuters can judiciously mix multiple modes

of transportation for their commute. This problem of route

planning involving different modes of transportation is called

multi-modal route planning [5].

To fix these problems, many cities in the United States have

started implementing Transportation Demand Management

programs (TDM) whose goal is to understand how commuters

make transportation decisions and to increase the efficiency of

the transportation system by providing innovative technology-

based services. A mobility platform not only provides routing

services to people but also gives access to holistic information

which can be utilized by the city officials to understand the

mobility patterns of people in the city to improve services

and researchers to study and develop efficient algorithms for

transportation. Given the societal relevance of this platform, it

is necessary to ensure that they operate resiliently. Modularity

and extensibility are also critical properties that are required

for manageability. Modularity allows to isolate faults easily.

Extensibility enables update of policies and integration of new

mobility modes or new routing algorithms. However, state of

the art mobility planning applications like open trip planner,

are monolithic applications, which makes it difficult to scale

and modify them dynamically.

Contributions. In this paper, we propose Mobilytics- a

platform that integrates mobility providers, commuters, and

community stakeholders. The novelty of Mobilytics Platform

lies in three aspects: (1) a modular microservices-based ar-

chitecture that integrates services provided by multiple stake-

holders through loose-coupling of interfaces, (2) an extensible
platform that can add new data sources and build services on

top of it without affecting the entire system (3) a resilient
platform that has a set of decentralized coordinators for

orchestrating services and managing the entire system without

failing.

Paper outline. Section II gives an overview of Mobilytics

platform. Section III, Section IV, Section V describes how our

platform enables modularity, extensibility, resiliency, respec-

tively. Section VI gives an overview of the current literature

on mobility platforms. We discuss our approach, future work

and present concluding remarks in Section VII
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Fig. 1: This figure shows different abstract mode-types that are
categorized as per the relation of a user with the mode.

Fig. 2: This figure shows an abstract view of multi-modal graph which
can be realized as combination of uni-modal graphs where user can
switch from one mode to another using Switch Nodes and edges
connecting such switch nodes are called Switch edge.

II. MOBILYTICS PLATFORM

In this section, we will provide a brief description of Mo-
bilytics- a holistic platform that integrates mobility providers,

commuters, and community stakeholders. Some key logical

layers of our platform are:

A. Database Layers

1) Geospatial Layer: This layer contains geospatial infor-

mation, which contains relationships between the points,

lines, and polygons that represent the features of a

geographic region. Each geometric feature consists of

a unique geographical identification code, topological

information such as coordinates and some optional prop-

erties of the feature such as buildings, roads, monuments,

etc. In case of roads, the properties also contain infor-

mation on type of road (residential, motorway, highway,

transit), number of lanes on a road etc. This layer can

be built from different types of Geographic Informa-

tion System (GIS) file formats such as OpenStreetMap

(OSM), GeoJson, Shapefile etc. Some optional user-

defined properties can be added too, such as real-time

congestion, flow information etc.

2) Abstract Modal Layer: This layer abstracts mode-

specific information from the Geospatial Layer and hence

provides a clear separation of static topological data

present in Geospatial Layer. To make our platform modu-

lar and extensible we need different layers of our platform

to be mode-independent so that addition and deletion

of a mode don’t affect other services. So, we need to

find common properties between different modes and

define a mode-type such that each mode having same

properties belong to the same mode-type. Figure 1 shows

different modes and the categories they belong to. A

mode can be pedestrian, non-motorized, motorized or

transit. Mobility services can be categorized as per the

relation of a user with the mode. They are Ownership
and Control. Ownership can be Public if the mode is

not owned by user otherwise it’s Private. Control can be

shared if the user is not in control of the mode else it’s

Non-shared. So, based on these categories, Pedestrian is

private, non-shared while transit is public, shared. Rental

services are public, non-shared because user drives the

vehicle but doesn’t have ownership of it. Associated with

different mode-types are a set of rules and conditions

by which they can update the Geospatial layer, such

as mode-capacity, mode-specific lanes, accessibility of

modes, temporal rules for specific modes (no heavy-

vehicles in morning), availability of modes at certain

nodes etc.

3) Concrete Modal Layer: In this layer concrete classes

of mode-types mentioned in Abstract Modal Layer, are

defined. As shown in Figure 1, we can categorize specific

modes such as Car, Walk, Bike, B-cycle, Transit, Lyft

etc. to their specific mode-types. If a given mode can be

mapped to one of the mode-type in Abstract Modal Layer,

then that mode can be added dynamically by just updating

the Geospatial Layer. But if we cannot map a new

mode, then we have to change the Abstract Modal Layer
to define new mode-type and rules associated with it.

Such mode-specific information needs to be in a standard

format for better integration and interoperability. GIS files

such as OSM, GeoJson provides some standard rules for

Pedestrian, Non-Motorized and Motorized mode-types,

while Static General Transit Feed Specification (GTFS)

[6] provides some standard rules for Transit mode-type.

So, Geospatial layer along with Abstract Modal Layer
and Concrete Modal Layer can be visualized as com-

bination of uni-modal graphs where switch nodes are

candidate nodes where we merge and link the uni-modal

graphs, as shown in Figure 2. As shown in Figure 2,

Switch nodes are the candidate nodes where user can

switch from one mode to another and edges connecting

switch nodes are called Switch edge. Associated with

each switch edge are list of pre-conditions, that needs

to be satisfied to traverse that edge. Such conditions are

called the Switch condition module (SCM) and depend on

the user preferences, geospatial information in Geospatial
Layer and mode-specific rules, conditions in Abstract
Modal Layer. Such conditions along with its associated

costs are encoded in the switch condition module (SCM)

present in each switch node.
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B. Real-time Sensor Layer

This layer contains Real-time sensor information. Some

sensors are mode-specific and some are not. For example, real-

time GTFS updates the Geospatial layer for only a specific

transit agency with the help of Abstract Modal layer. However,

some real-time such as sensors such as Traffic sensors give an

aggregate information on state of the network and Weather

sensors give weather information for a given area. These

sensors don’t depend on mode-types and thus update the

Geospatial layer directly.

C. Service Layers

1) Routing Layer: This layer contains state of the art

algorithms for multi-modal routing. They are variants

of goal-directed search methods such as ALT [7] and

contraction techniques such as highway hierarchies [8], to

speed-up the shortest path computation. These techniques

depend on Abstract Modal Layer and Geospatial layer
to suggest routes to user for their commute. Since this

layer uses mode-types defined in Abstract Modal Layer,

it doesn’t depend on concrete modes and hence improves

modularity of our platform. These routing algorithms

use the abstract mode-types present in Abstract Modal
Layer and switch junctions present in Geospatial Layer
in making multi-modal routing decisions.

2) Analytic Service Layer: This layer contains analytical

services that use historical data and data collected by

the platform. These services are used internally by the

platform and some are used by various stakeholders to get

holistic information. Our traffic speed prediction service

gives a time-variant predicted speed information for a

given link and is based on our previous works [9], [10].

3) Simulation Service Layer: This layer helps in analysis

of Urban traffic dynamics such as congestion, vehicular

emissions by doing agent-based simulation with help of

MATSim [11].

Our platform has a lot of similarity with the services

provided by OTP and the algorithms implemented in OTP.

However, it only solves part of the problem. Firstly, all the core

components in OTP are mode-specific. So, adding or deleting

a completely new mode becomes difficult because the code

needs to be updated and re-deployed again to add a new mode.

This process is one of the reasons why OTP cant be easily

deployed in regions it is not properly configured for. Secondly,

OTP is a monolithic application. So, integrating services from

different stakeholders becomes increasingly complex because

each service providers should be independent and not affected

by external services. Since a monolithic application like OTP

needs to redeployed with each addition of new services,

managing and maintaining becomes difficult with scale. So, we

need a mobility platform that is modular– integrates services

provided by multiple stakeholders through loose-coupling of

interfaces, extensible– can add new data sources and build

services on top of it without affecting the entire system and

resilient– can manage the entire system without failing.

III. ENABLING MODULARITY

A modular system can be characterized by functional

partitioning into discrete reusable components with rigorous

use of well-defined modular interfaces and making use of

industry standards for interfaces. We need our platform to

be modular so that different stakeholders can integrate their

services without being much dependent on other services.

There are some dependencies, of course, because modules may

need certain features of the core library, but looser coupling

of interfaces will help in quickly coordinating such changes.

To this end, we follow a microservices-based architecture style

[12] where a single application is developed as a suite of small

services, each running in its own process and communicating

with lightweight mechanisms such as ZeroMQ or HTTP. In

a microservices architecture, services should be fine-grained

and the benefit of decomposing an application into different

smaller services is that it improves modularity and makes

the application easier to understand, develop and test. It

also parallelizes development by enabling small autonomous

teams to develop, deploy and scale their respective services

independently [12].

Fig. 3: This sequence diagram shows the interactions between various
layers, to serve a routing request from client.

In our platform, each logical layer can be interpreted as

an independent module with loose coupling between other

layers. So, we can make changes to each layer with only the

interfaces provided by each layer. Geospatial Layer contains

topological information of a region and hence, we can change

how this information is actually stored without affecting the

upper layers, as long as the interfaces are same. For example,

we can use different geospatial database for this layer such

as MongoDB, PostGIS etc. Abstract Modal Layer abstracts

the mode-specific information from the Geospatial Layer.

Figure 3 shows a sequence diagram that details the interactions

between various layers, to serve a routing request from client.

Routing algorithms in Routing Layer use the abstract mode-

types present in Abstract Modal Layer and switch junctions

present in Geospatial Layer to make multi-modal routing

decisions. So, changing Routing algorithms in Routing Layer
may require update in Abstract Modal Layer. Different layers

can be discovered dynamically in platform.
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IV. ENABLING EXTENSIBILITY

The platform should be designed in such a way that it

evolves as the underlying technology and requirements change

and should be able to support new standards and services

in the future. It should also enable addition and removal

of different modes of transportation, services from different

stakeholders. For example, new modes can be added by

updating the Concrete Modal Layer and Abstract Modal Layer.

New services can be creating new service in Service Layers.

Figure 4 shows a sequence diagram that details the interactions

between various layers, to add a bike mode to our platform.

This is initiated by a service provider such as a rental bike

owner who wants to add bike mode and integrate it’s bike

services with the platform, at run-time without any change to

the source code.

Fig. 4: This sequence diagram shows the interactions between various
layers, to add a bike mode to our platform.

Evaluation. For testing code efficiency, we took an example

of adding a new mode to the system and then deleting the

mode added. For OTP, more than 40 classes and interfaces

were changed, but with our platform, less than 5 classes were

changed, to build the graph and serve routing requests to

clients with new mode. Additionally, for OTP we have to

redeploy the application every time code is updated, while

the same doesn’t happen on our platform. This improved

efficiency will make it easier to extend and expand community.

Because starting new projects and getting releases out faster

should make it easier to join, get started and productive, and

thereby lower threshold for participation.

V. ENABLING RESILIENCE

The platform should be able to elastically cope with

problems and recover itself during failures so that it can

provide mobility services to users without any disruptions.

Each module of our platform, as mentioned in Section III,

can be independently deployed in container such as Docker,

LXC etc. Figure 5 shows various components of our platform

during deployment. The Service Providers contains services

from various stakeholders. All the modules are deployed in

multiple nodes, in a distributed manner.

Fig. 5: This figure shows various shows various components of our
platform during deployment.

We need our deployments to be reconfigured automatically

so that they can deployed quickly in resource-constrained envi-

ronments. In our prior work on CHARIOT [13], we developed

a self-adaptive and resilient Deployment and Configuration

(D&C) infrastructure for highly dynamic component-based

CPS operating in resource-constrained environments. However

this self-reconfiguration approach was policy-based and later

in [14] we improved upon our existing work on CHARIOT by

proposing a framework for formulating the system reliability

as a dependence problem derived from the software component

dependencies, functional requirements and physical system

dependencies. This framework is codified in a domain-specific

modeling language and is used to make reconfiguration deci-

sions at runtime. This makes our deployments resilient and

reliable.

Each node has a container which has modules and a Node
Manager that coordinates communication between various

containers. Each node manager has a centralized service called

Consul [15] for service discovery and allows for coordination

among various services in different layers, through their update

managers. We use Consul for (a) Storing globally persistent

data, (b) Watching changes and monitoring the system, (c)

Get notified whenever a microservice fails and (d) Register

and de-register services dynamically.

It should be noted that we have a thin layer of reliable cloud

layer, which contains core services such as Resource Manager
that is responsible for deployment of our modules among

various resources available in our platform. When any module

fails or any module needs scaling due to a large number of

requests, Consul gets notified and it interacts with Resource
manager to deploy same instance of services in another

container. This makes our platform resilient and scales with

increasing number of requests. Whenever a failure happens,

both platform goes through multiple phases before they are

able to process requests again. The phases are (a) Failure
Detection phase occurs right after a system failure. During

this phase Consul detects failure of a system component and

identifies the standby service that needs to be started and

configured in a new node, (b) Configure new node phase

occurs after Failure detection phase, and in this phase Consul

starts and configure the new node so that the identified service
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Fig. 6: This figure shows response times of all the requests made to
both OTP and Mobilytics platform.

Phase OpenTrip Planner Mobilytics

mean (min) sdv (min) mean (min) sdv (min)

Failure Detection 1.07 0.3 1.2 0.17

Configure new node 2.24 0.26 2.5 0.21

Restart Service 3.97 0.4 1.47 0.11

TABLE I: This table shows the mean and standard deviation time of
various phases during failures. The mean time for Failure Detection
and Configure new node phase is marginally higher for Mobilytics
platform than OTP, while there is a significant difference in mean
time of Restart service phase, between both platforms.

can be deployed, (c) Restart Service phase is the final phase

which is responsible for starting the service and make it ready

for serving web requests.

Evaluation. We setup OTP and Mobilytics services with

Nashville OSM data and one GTFS feed of Nashville

Metropolitan Transit Authority (MTA). Since OTP is not

resilient, we modified OTP so that a new OTP instance starts

automatically in presence of failure with the help of Consul.

From a client terminal, we queried both the services with

a total of 360 requests, sent discretely with 30 requests per

1-minute interval. The requests are generated by combining

a range of routing parameters (time of day, maximum walk

distance, transportation modes) with endpoints chosen ran-

domly but located within 2km of a transit stop. Response

times reported, represent the full round-trip time of a request

to the REST API. Figure 6 response times of all the requests

made to both OTP and Mobilytics platform. As shown in the

figure, the response times of requests made to OTP platform

are less than the requests made to our Mobilytics platform,

which we expected since we are using a different graph model

and routing algorithm for queries. OTP has better performance

in routing because of the fast algorithms and optimization

they use, which we don’t have yet. However, the advantage of

resilience and extensibility offsets this minor disadvantage.

Table I shows the mean and standard deviation time of

various phases during a failure. As shown in the table, mean

time for Failure Detection phase of OTP is marginally less

than Mobilytics platform. It’s because Mobilytics is made

up of multiple microservices and distributed among multiple

nodes, hence more communication is needed during failure

detection than OTP, where there is only one active instance

of OTP. The mean time for Configure new node phase is

marginally higher for Mobilytics platform because of some

extra dependencies that were required to be installed on our

platform. This result can vary with varying implementations.

Most significant difference was noted in mean time of Restart
service phase, because a new instance for just the Routing
layer microservice is started in Mobilytics platform which

requires less initialization time of 1.47 minutes and memory of

1.4GB, while a new instance is started for OTP which required

higher initialization time of 3.97 minutes and memory of 6GB.

VI. RELATED RESEARCH

Architecture The mobilytics platform described in this pa-

per is a cyber-physical system. Such systems are increasingly

being used in several domains of technology, engineering,

and medicine such as smart power systems, smart buildings,

smart public transportation, to name a few. It has been pre-

viously established that the design of these systems should

be modular with an emphasis on resilience [16]. Component-

based software engineering (CBSE) has been accepted as a

standard practice to develop robust, modular and maintainable

software stacks for embedded systems [17]. The guiding

principles of CBSE are interfaces with well defined execution

models [18], compositional semantics [19] and model driven

analysis [20]. In the past, our group has developed several such

frameworks, including ARINC-653 component model [21],

[22], which combines the principle of spatial and temporal

partitioning with the interaction patterns derived from the

CORBA Component Model (CCM) [23]. DREMS (Distributed

Real-Time Embedded Managed Systems) component model

[24] extended ACM to networked cyber-physical systems that

can be used by several concurrent users, by allowing config-

urable real-time scheduling policies in addition to configurable

secure information flow policies. The micoservices based

architecture described in this paper is an extension of these

embedded system component models towards the enterprise

system models. Design of common interfaces and abstractions

is a crucial step in enabling this architecture [17].

Resilient System Design Reliability and Resilience are crit-

ical properties of computation platforms that need to provide

critical service to humans. While reliability is a measure of the

likelihood of of a failure, resilience is the measure of overall

availability, a ratio of mean time to failure and mean time to

recovery [25]. Our concept of using monitors and Consul to

reconfigure the system dynamically upon failure is principally

similar to the concept of “runtime reconfiguration”. In [26],

the authors present middleware that supports timely reconfig-

uration in distributed real-time and embedded systems based

on services. At design-time, the schedulability and complexity

of a system is analyzed and fine-tuned to bound sources of

unpredictability. The resulting Scheduled Expanded Graph is

used at runtime to determine the Execution Graph, which

represents the application in execution. Although this approach
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is flexible and relies on runtime search of the execution graph

for viable reconfiguration solutions, the predictability and

schedulability analysis is conducted at design-time, so system

resources cannot be modified at runtime. In contrast, our

approach supports runtime modification required for systems

with dynamic resources.

Dynamic Software Product Lines (DSPLs) have also been

suggested for dynamic reconfiguration. In [27], the authors

present a survey of the state-of-the-art techniques that attempt

to address many challenges of runtime variability mechanisms

in the context of DSPLs. The authors also provide a potential

solution for runtime checking of feature models for variability

management, which motivates the concept of configuration
models. A configuration model acts as a database that stores

a feature model along with all possible valid states of the

feature model. Ontology-based reconfiguration work has been

presented in [28], [29], where the analytical redundancy of

computational components is made explicit. On the basis of

this ontology, the system can be reconfigured by identifying

suitable substitutes for the failed services. Our architecture

relies on the use of consul and goal-based reconfiguration

[30].

VII. CONCLUSION

In this paper, we described a microservice architecture

which made our mobility platform modular, resilient, and scal-

able. We also discussed the advantages of this architecture over

a monolith application like OTP. As part of our ongoing work,

we are using this platform for developing a socially optimal

routing solution to the multi-modal routing problem. To that

end, we are following a game-theoretic approach to study the

multi-modal routing problem and devise solutions that will

benefit society as a whole and not just individual users. We

are also designing incentive mechanisms to encourage users

to take public transport more often. We are also extending our

data to include parking lots, rental vehicles, and ride-share

services like Uber and Lyft.
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