
Institute for Software Integrated Systems
Vanderbilt University

Nashville, Tennessee, 37235

PaNeCS: A Modeling Language for

Passivity-based Design of Networked Control

Systems

Emeka Eyisi, Joseph Porter, Joe Hall, Nicholas

Kottenstette, Xenofon Koutsoukos and Janos

Sztipanovits

TECHNICAL REPORT

ISIS-09-105



Abstract. The rapidly increasing use of distributed architectures in
constructing real-world systems has led to the urgent need for a sound
systematic approach in designing networked control systems. Commu-
nication delays and other uncertainties complicate the development of
these systems. This paper describes a prototype modeling language for
the design of networked control systems using passivity to decouple the
control design from network uncertainties. The modeling language in-
cludes an integrated analysis tool to check for passivity and a code gener-
ator for simulation in MATLAB/Simulink using the TrueTime platform
modeling toolbox. The resulting designs are by construction more robust
to platform effects and implementation uncertainties.

1 Introduction

The heterogeneous composition of computing, sensing, actuation, and commu-
nication components has enabled a modern grand vision for real-world Cyber
Physical Systems (CPS). Real-world CPSs such as automotive vehicles, building
automation systems, and groups of unmanned air vehicles are monitored and
controlled by networked control systems (NCS). NCS involve the interaction of
physical dynamics, computational dynamics, and communication networks. This
heterogeneity does not go well with current methods of compositional design. The
most important principle used in achieving compositionality is separation of con-
cerns which works if the design views are orthogonal, i.e. design decisions in one
view do not influence design decisions in other views. Unfortunately, achieving
compositionality for multiple physical and functional properties simultaneously
is a very hard problem because of the lack of orthogonality among the design
views.

Model-based design for embedded control systems involves creating mod-
els and checking correctness at different stages in the development process [1].
Model-based design flow progresses along precisely defined abstraction layers,
typically starting with control design followed by system-level design for the
specification of platform details, code organization, and deployment details, and
the final stage of integration and testing on the deployed system. This design
approach cannot be applied directly to NCS because domain heterogeneity and
tight coupling between design concerns create a number of challenges. Ensur-
ing controller stability and performance for physical systems in the presence
of network uncertainties (e.g. time delay, packet loss) couples the control and
system-level design layers. In addition, downstream code modifications during
testing and debugging invalidate results from earlier design-time analysis and
any component change often results in “restarting” the design process.

A number of research projects seek to address the problems of model-based
design for NCS. The ESMoL modeling language for designing and deploying
time-triggered control systems explicitly captures in model structure many of
the essential relationships in an embedded design[2]. The ESMoL tools include
schedule determination for time-triggered communications, code generation, and
a portable time-triggered virtual machine. AADL [3] is a textual language and



standard for specifying deployments of control system designs in data networks
[4]. AADL projects also include integration with verification and scheduling anal-
ysis tools. The Metropolis modeling framework [5] aims to give designers tools to
create verifiable system models. Metropolis integrates with SystemC, the SPIN
model-checking tool, and other tools for scheduling and timing analysis.

In order to tackle the challenges of designing NCS, we propose an auto-
mated model-based approach based on passivity control theory. We used Model-
Integrated Computing [1] to develop a domain specific modeling language (DSML)
called the Passive Network Control Systems language (PaNeCS). Our approach
is based on the passive control architecture presented in [6] which provides the
theoretical foundations for analysis and design of NCS emphasizing robustness to
network delays and packet loss. This paper focuses on the design of the DSML
as well as a compositional tool for passivity analysis and code generation for
Matlab/Simulink/Truetime models. We aim to address a number of significant
challenges:

– Changes made during design, development, and testing cycles may cause ex-
tensive software revisions and force expensive re-verification. Model-integrated
computing tools provide automated software generation, analysis, and sys-
tem configuration directly from models. PaNeCS supports forward genera-
tion of platform-specific simulation models as well as passivity analysis of
system components.

– Control systems are often verified using complex optimization techniques.
For example, linear matrix inequalities (LMIs) can model many important
controller properties (e.g. stability, response time, reachability). In a system
built from the composition of multiple blocks, such analysis quickly becomes
intractable. In order to assess global stability, designers would have to build
a single, large analysis model which includes all possible state variables in
the system. In contrast, the passive control architecture can ensure global
stability (in a robust way) by a combination of component analysis and
specific rules for composition of passive components.

– Control designers create models for both physical systems and controllers
using tools like Simulink and Stateflow [7]. Deployment of a control design
such as a Simulink model to a networked architecture introduces uncer-
tainties due to time-varying delay, data rate limitations, jitter, and packet
loss. Deployment of the design is often expensive, and failure during test-
ing can be costly. An increasingly accepted way to address these problems
is to enrich abstractions in each layer with implementation concepts. An
excellent example for this approach is TrueTime [8] that extends Simulink
with platform-related modeling concepts (i.e., networks, clocks, schedulers)
and supports simulation of networked and embedded control systems with
the modeled implementation effects. While this is a major step in improv-
ing understanding of implementation effects, it does not help in decoupling
design layers and improving orthogonality across design concerns. A control
designer can factor in implementation effects (e.g., network delays), but if
the implementation changes the controller may need to be redesigned. Our



approach imposes passivity constraints on the component dynamics, so that
the design becomes insensitive to network effects, thus establishing orthog-
onality (with respect to network effects) across the controller design and
implementation design layers.

The paper is organized as follows: Section 2 presents a passive control archi-
tecture for NCS. Section 3 presents our prototype modeling language. Section 4
discusses an integrated analysis tool for automatically checking passivity. Sec-
tion 5 presents a model interpreter for generating Matlab/Simulink simulation
code using the TrueTime platform modeling toolbox. Section 6 shows a case
study of a NCS consisting of two discrete plants and a controller. Section 7
provides our conclusion.

2 Passivity-Based Control of Networked Control Systems

Our approach for designing NCS is based on passivity theory. There are various
precise mathematical definitions for passive systems [9]. Essentially all defini-
tions state that the output energy must be bounded so that the system does not
produce more energy than was initially stored. Passive systems have a unique
property that when connected in either a parallel or negative feedback manner
the overall system remains passive. Passivity provides an inherent safety – pas-
sive systems are insensitive to certain implementation uncertainties [10] [11][12],
so passivity can be exploited in the design of NCS. The main idea is that by
imposing passivity constraints on the component dynamics, the design becomes
insensitive to network effects, thus establishing orthogonality (with respect to
network effects) across the various design layers. This separation of concerns al-
lows the model-based design process to be extended to networked control systems
which is what our model-based approach provides.

Fig. 1. A networked control system

We briefly discuss the passivity based control architecture for multiple plants
controlled by a single controller via a network [6]. Fig. 1 depicts a sample net-
worked control system where only one plant is shown. The Bilinear Transform
block represents a transformation between signals and wave variables. Wave vari-
ables were introduced by Fettweis in order to circumvent the problem of delay-
free loops and guarantee a realizable implementation for digital filters [10]. Wave



variables also allow systems to remain passive while transmitted data over a net-
work subject to arbitrary fixed time delays and data dropouts [11], [12]. In Fig.
1, upk(i) (k=1,2), can be thought of as sensor output data in wave variable form
from each plant. Likewise, vcj(i) (where j=1,2) can be thought of as a command
output in wave variable form from the controller.

The power junction in Fig. 1 is an abstraction used to interconnect wave
variables from multiple controllers and multiple plants in parallel such that the
total input power is always greater than or equal to the total output power.
This provides a formal way to construct a networked control system. The power
junction makes it possible for a single controller to control multiple plants over
a network and guarantee that the overall system remains stable. A detailed
mathematical definition of the power junction can be found in [6]. In Fig. 1,
the power junction has waves entering and leaving as indicated by the arrows.
The waves entering the power junction from the controller are the network-
delayed version of the waves leaving the controller, as indicated by the time
delay block. Also, the waves entering the controller are the delayed version of
the waves leaving the power junction. Likewise, the waves entering the plant are
the delayed version of waves leaving the power junction and the waves entering
the power junction are the delayed version of waves leaving the plant.

Fig. 2. The passive upsampler and passive downsampler.

Due to bandwidth constraints, the controller typically runs at a slower rate
than the sensors and actuators of the plants. In order to preserve passivity in the
multi-rate digital control network we use the passive upsampler (PUS) and pas-
sive downsampler (PDS) pair to handle the data rate transitions. Fig. 2 depicts
the passive upsampler (PUS) and passive downsampler (PDS). wo(i) denotes a
discrete wave variable going out of a wave transform block. For example, in Fig.
1, vc1(i)and up2(i), the wave variables going out of the Bilinear Transformation
block, are each connected as wo(i) to their respective downsampler blocks. Sim-
ilarly, wi(i) represents the respective discrete wave variable going into a wave
transform block. uc1(i) and vp2(i), correspond to the wi(i) connections in Fig.
2. The PUS and PDS provide the upsampled and downsampled versions of their
respective wave variable inputs while preserving passivity. The block parameter
M is the sampling ratio – the data rate of the fast side of the connection divided
by the data rate on the slow side.



3 PaNeCs

We introduce the passivity-based modeling language (PaNeCS). The modeling
language is developed using a meta-configurable tool, the Generic Modeling En-
vironment (GME), from the Model Integrated Computing (MIC) tool suite [13].
GME provides a metamodeling environment similar to UML. The class stereo-
types are defined as follows: Models are entities that may contain other objects
while Atoms are indivisible entities which cannot contain other objects; Con-
nections are association classes used to describe the relationship between two
entities. It represents a line that connects two entities of a model. Connectors
signified by “.” specify a visualization for a connection in the model. Associa-
tions to the connector have possible roles (“src” and “dst”) to define the allowed
direction of a connector.

3.1 Components

The language top level consists of four main components: the PlantSystem,
the ControllerSystem, the PowerJunction and the WirelessNetwork.

PlantSystem Fig. 3 shows a part of the PaNeCS metamodel that describes
the plant subsystem. Plant represents a model for any discrete linear time-

Fig. 3. PlantSystem portion of the Metamodel

invariant (LTI) system and can be extended to a nonlinear system. The dynamics
of the Plant are represented by the following state space equations:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k).

(1)



The Plant dynamics are parameterized by matrix attributes A, B, C, D, and a
scalar SamplingTime. The attributes can be specified using any valid Matlab ex-
pression that evaluates to the proper dimensions. BilinearTransformP represents
a model for the wave scattering technique for transforming the wave variables
received from the power junction into control input to the plant and for trans-
forming the plant output signal into wave variables that are transmitted over the
network. PassiveUpSampler and PassiveDownSampler pair represent the PUS
and PDS pair discussed in Section 2.

ControllerSystem Fig. 4 shows the part of the language that describes the
controller subsystem. DigitalController is a model representing the algorithm

Fig. 4. ControllerSystem portion of the Metamodel

for controlling the networked plants. Similar to the model of the Plant in the
PlantSystem, the DigitalController is modeled as a LTI system and its dy-
namics can also be represented in the state space form of Eq. (1). Therefore, the
DigitalController parameters have similar attributes to the Plant. BilinearTrans-
formC is similar to the BilinearTransformP described in the PlantSystem.
ZeroOrderHold represents a component that holds its input for the time period
specified in the sampling time attribute. ReferenceInput represents the desired
signal to be tracked by the plants.

Power Junction Fig. 5 shows the part of the language that describes the
power junction. The PowerJunction can contain ports for the connection of the
plants and controllers. They are briefly described as follows: PowerInputPower-
Output represents a port through which the PlantSystem connects to the Pow-
erJunction. Through it, the PowerJunction sends calculated control signals
to the PlantSystem and also receives sensor signals from the PlantSystem.
PowerOutputPowerInput represents a port through which the ControllerSys-
tem can connect to the PowerJunction. Through it, the PowerJunction



Fig. 5. PowerJunction portion of the Metamodel

sends the averaged sensor signal to the ControllerSystem and receives the
calculated control signal from the ControllerSystem.

WirelessNetwork Fig. 6 represents the network and its parameters for the
NCS. The WirelessNetwork model provides modifiable parameters for simu-

Fig. 6. Wireless Network portion of the Metamodel

lation. Data rate sets the throughput for simulating network activity. Disturban-
cePacketSize configures the size of simulated disturbance attack packets on the
network (introduces delays). This provides a way for simulating the NCS under
non-optimal conditions. DisturbancePeriod configures the frequency of distur-
bance attacks on the network.

3.2 Language Aspects

Our modeling language has two aspects (GME aspects are similar to modeling
views in other tools): Control Design Aspect and Platform Aspect. The
Control Design Aspect visualizes the controller modeling layer. This includes
the plants, controller, and power junction, as well as their interconnections –
indicating the flow of control and sensor signals.
The Platform Aspect visualizes the physical platform layer. This model view
shows the physical components of the NCS. The entities in this view include
the plants, controller, and the wireless network as well as their interconnections
indicating the flow of data packets over the network. Though the plants and
controller appear in both aspects, in the Platform aspect they represent physical
entities rather than control design concepts.



3.3 Structural Semantics

The main objective of our language design is to ensure the “correctness-by-
construction” for passive designs of NCS designed using PaNeCS. In order to
achieve this objective, we impose constraints on the properties of components
of NCS as well as their interconnections. The metamodel notations described
above does not capture all the required structural constraints. Using the Object
Constraint Language (OCL), we can describe well-formedness rules for defining
precise control of static semantics of the language. GME is embedded with an
OCL engine which can be used to define constraints that are enforced at design
time, giving direct feedback when the user attempts to create faulty connections
in the model or violates any of the specified constraints. In Section 4, we will
describe an analysis tool that is used to verify that system components satisfy
the component-level passivity constraints.

We implemented three classes of constraints: Cardinality Constraints, Con-
nection Constraints and Unique Name Constraints. Cardinality Constraints en-
sure that the required and correct number of components are used in the NCS
design. For example, for each PlantSystem model there must be one Plant.
Connection Constraints restrict the number of allowable connections between
components. For example, in the PlantSystem model there can be only one
bidirectional connection between the Plant and BilinearTransformP. Unique
Name Constraints ensure the uniqueness of the names of components in the
Plant and Controller subsystems as well as in the top level model of the NCS.

An example of an OCL constraint implementation is shown below. This spec-
ifies that the number of allowable connections from a BilinearTransformC model
to a DigitalController to be one.

Desc r ip t i on : There must be only one b i d i r e c t i o n a l connect ion
between Bil inearTransformC to the D i g i t a l C o n t r o l l e r

Equation : l e t dstCount = . . .
s e l f . a t tach ingConnect ions (” s r c ” , C o n t r o l l e r B i l i n e a r )−> s i z e in
dstCount <> 0 implies dstCount = 1

3.4 Operational Semantics

NCS modeled in PaNeCS are implemented in MATLAB/Simulink using models
generated by an integrated code generator which is discussed in Section 5.

The Plant and DigitalController entities are implemented as Simulink blocks
that model the behavior of each entity based on user-specified parameters. The
PlantSystem and ControllerSystem are modeled as Simulink subsystems.
In order to model the behavior of a real network, Simulink is extended with
TrueTime as described previously.

Each PlantSystem and ControllerSystem are connected to a TrueTime
Kernel block. The TrueTime Kernel essentially represents each subsystem as
a node in the network. It is responsible for I/O and network data acquisition



as well as implementing other user-defined tasks, and models the computer or
processor on which the subsystem is implemented. The task in each TrueTime
kernel connected to a PlantSystem is performed periodically based on the
specified sampling time of the subsystem. For this version of our language, the
PowerJunction is implemented as a task in the TrueTime Kernel connected to
the ControllerSystem. The task that implements the power junction operates
based on the occurrence of an event such as the arrival of sensor data or control
signal. Each TrueTime kernel has two main scripts: 1) The Initialization script
specifies the number of inputs and outputs, the function code name and also
indicates the kernel’s node id which is used to identify the kernel on the net-
work. 2) The function script essentially implements the user specified task such
as sending and receiving of wave variables over a network. The function code for
the TrueTime kernel connected to the ControllerSystem also performs the ad-
ditional task of implementing the PowerJunction. Hence, the PowerJunction
sends and receives wave variables from the ControllerSystem locally while the
PlantSystem sends and receives wave variables from the power junction over
the simulated wireless network.

The wireless network is implemented using the TrueTime Wireless network
block. It simulates the network dynamics, implementing the transfer of data
packets over a wireless network from one node to another. It essentially simulates
the routing of data received from the TrueTime kernels over the wireless network
to their respective destination.

In a typical cycle of operation of the NCS, the wave variables from a PlantSys-
tem or multiple PlantSystems are computed and sent to the PowerJunction
from each TrueTime kernel. The received wave variables are sent to the Con-
trollerSystem to compute the control signal which is then sent back to the
PlantSystems.

4 Passivity Analysis

4.1 Component Analysis

In order to achieve the desirable properties observed in passive systems, we have
to analyze the components of the networked control system and make sure they
satisfy passivity constraints.

The analysis of the Plant and DigitalController components of the networked
control system for passivity is done automatically by an integrated Matlab anal-
ysis function. Each component is assumed to have a linear time-invariant (LTI)
discrete-time model, so we use LMIs together with the CVX semidefinite program-
ming tools for Matlab [14, 15]. On invocation (i.e. the modeler presses a button),
a C++ model interpreter within GME [13] visits each component, and invokes
the analysis function. Any components failing the passivity test are reported to
the user.

The dynamics of the Plant and DigitalController models can each be defined
by Eq.(1) and are characterized by the matrices A, B,C, D of size compatible



with the number of inputs and outputs in the system and the number of states
in the model. The passivity constraints for these models is defined by Linear
Matrix Inequality (LMI) constraints [16]. For example, a LMI formula for strict
output passivity for an LTI digital controller is given by[

AT PA− P − Q̂ AT PB − Ŝ

(AT PB − S)T −R̂ + BT PB

]
6 0

Q̂ = CT QC, Ŝ = CT S + CT QD

R̂ = DT QD + (DT S + ST D) + R

∃ε > 0, Q = −εI, R = 0, S =
1
2
I

(2)

The CVX semidefinite programming (SDP) tool is used in a Matlab script to
solve the LMI for each component.

4.2 System-Level Analysis

Due to the “correct-by-construction” approach we use in designing networked
control, we only analyze the Plant and DigitalController elements for passivity.
If the Plant and DigitalController both satisfy the passivity constraints, the
network control system as whole also satisfies the passivity principles.

The realization of the power junction element enforces some simple mathe-
matical constraints which ensure passivity for interconnected components at run-
time. These effects are also captured in the simulation of the power junction, so
simulation should reveal any destabilizing effects. Further, the component inter-
connections are restricted in such a way that they are “correct-by-construction”.
Only valid (parallel) connections are allowed to the power junction, so any inter-
connected system of passive components in the language will be globally passive.
The modeling language and its constraints encode the passive composition se-
mantics, greatly reducing the analysis burden for determining passivity (and
hence stability [6], [9], [17]) of the composed system design.

5 Code Generation

The main objective of the code generator is to generate MATLAB code that
maps the models designed using the modeling language to Simulink models that
represent the networked control system.

We developed a model interpreter that is used to synthesize simulation code
from an instance model of the passivity based modeling language. The interpreter
is developed in C++ using the Builder Object Network (BON2) API provided
with GME [13]. The interpreter traverses all the entities of a particular networked
control system instance model and extracts model parameters. These parameters
and model structure are used to generate MATLAB files for configuring and
building Simulink and TrueTime models to simulate the NCS.



The model interpreter creates translation rules between models and desired
outputs. The entities in the instance model each map to a set of equivalently-
defined components in Simulink and components from an advanced Simulink
passivity-based control library. For example, the Plant and DigitalController
entities discussed in Section 3 each map to an equivalent discrete state-space
Simulink block. For these two entities the parameters for the equivalent Simulink
blocks are instantiated using the parameter values entered by the user describ-
ing the dynamics of the entities. These parameters include the A, B, C and D
matrices as well as the sampling time.

6 Case Study

We introduce a case study to demonstrate our design approach and also show
that networked control systems designed using this approach are robust and
remain stable when subject to uncertain network effects.

We created a networked control system which involves the control of two
discrete plants using a single controller. The controller controls the two discrete
plants to track a specified reference signal. The goal of the experiment was to
model the network control system and generate a simulation of the behavior
of the system. Although we used only two discrete plants for this case study,
PaNeCS can model and simulate an arbitrary number of plants.

Fig. 7a and 7b respectively show the control design and platform aspects
of the instance model respectively. Also, Fig. 7c shows the details of the plant
system while Fig. 7d show the details of the controller system. The two plants
modeled in the experiment are simple integrators (corresponding to physical
models of inertial masses of 2kg and .25kg respectively) which are discretized.
The plants’ dynamics were modeled in state space form and the corresponding
A, B, C and D matrices as well as the sampling time, Ts were provided as
parameters to the instance model.

We used a proportional controller as the digital controller to command the
plants to track a user-specified reference. The digital controller was also modeled
in state space form and the A, B, C and D matrices and also the sampling time,
Ts were provided as input parameters to the instance model. The parameters for
the dynamics of the plants and controller are provided in Table 1. The analysis
tool checked and verified that the Plant and DigitalController models satisfied
the passivity constraints. Then the code generator was used to generate code for
creating a platform-specific Simulink simulation model from the parameters and
design models in the modeling language.

PaNeCS provides the flexibility to easily model networked control systems
using passivity and more quickly configure the model parameters of the system
for many different adaptations. Using PaNeCs we tested the dynamics of the
NCS by running different experiments under different network conditions by ad-
justing parameters in the language and then generating code for simulating each
configuration of the model. Table 2 shows the parameters for the simulations.



(a) Control Design Aspect

(b) PlatformAspect

(c) Plant Subsystem

(d) Controller Subsystem

Fig. 7. Sample Model of a Networked Control System

Experiment 1: Nominal Conditions In experiment 1, the system operated
without the introduction of disturbance attacks. The three sample periods con-
sidered were 0.1s, 0.5s and 1s. The data rates were achieved by modifying the
Sample, M parameters of the PassiveUpSampler and PassiveDownSampler enti-
ties. We only present plots for the results of the NCS having a sample period of
0.1s. Fig. 8 displays the velocity of the plants and the reference velocity provided
to the controller. The plants closely tracked the reference velocity. The round
trip delay for each plant seemed to have very little effect on the stability of the



plants’ velocity response. The delay can be attributed to the internal processing
of the plants and controllers rather than network delay itself.

Table 1. Plant and Controller Dynamics.

A B C D Ts

Plant1 1 1 .005 .0025 .01s

Plant2 .996 1 .04 .02 .01s

Controller 0 0 0 10π .1s

Fig. 8. Nominal velocity response and time delays (Data rate=0.1s)

Experiment 2: Network disturbances In experiment 2, a disturbance attack
was introduced in the network. A disturbance node is configured using the Dis-
turbancePeriod and DisturbancePacketSize from the WirelessNetwork model.
Disturbance packets were sent over the network based on the value of a uniformly
generated random number. Similar to Experiment 1, three different sample rates
were tested, but we only present the results for the 0.1s sample period. Fig. 9
shows the velocity response of the plants and the time delay for each plant. The
results show that even in the presence of disturbance attacks, the plants remain
stable in tracking the reference velocity. This demonstrates the advantage of the
passivity approach we use in designing networked control systems which guar-
antees the stability of the NCS in the presence of uncertainties due to network
effects.

Table 2. Simulation Parameters Summary.

Sample Periods

0.01s 0.05s 0.1s

Plant1,M 10 50 100

Plant2,M 10 50 100

Disturbance Ts = 0.01 Packetsize = 110, 000bits



Fig. 9. Velocity response and time delays with disturbance attack (Data rate=0.1s)

7 Conclusion and Future Work

Our model-based approach simplifies the process of designing passive networked
control systems. We presented PaNeCS, a prototype modeling language for that
purpose. We have presented an analysis tool that is used to test system com-
ponents for passivity. We have also described model interpreters that generate
code for simulation in MATLAB/Simulink using the TrueTime platform model-
ing toolbox. A case study involving the control of multiple discrete plants over
a wireless network was used to demonstrate the details of models generated us-
ing the modeling language as well as the resulting simulation of the generated
networked control system. The results showed that a networked control system
could be designed using our approach which is robust and insensitive to un-
certainties due to a few particular network effects. Our future work focuses on
two major directions: (i) extending the language to include nonlinear and more
complex systems,(ii) generating executables for deployment on actual systems.

References

1. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development
of embedded software. Proceedings of the IEEE 91(1) (Jan. 2003)

2. Porter, J., Karsai, G., Volgyesi, P., Nine, H., Humke, P., Hemingway, G., Thi-
bodeaux, R., Sztipanovits, J.: Towards model-based integration of tools and tech-
niques for embedded control system design, verification, and implementation. In:
Workshops and Symposia at MoDELS 2008, Springer LNCS 5421, Toulouse, France

3. AS-2 Embedded Computing Systems Committee: Architecture analysis and de-
sign language (aadl). Technical Report AS5506, Society of Automotive Engineers
(November 2004)

4. Hudak J. and Feiler P.: Developing aadl models for control systems: A practitioner’s
guide. Technical Report CMU/SEI-2007-TR-014, CMU SEI (2007)

5. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Paserone, C., Sangiovanni-
Vincentelli, A.L.: Metropolis: an integrated electronic system design environment.
IEEE Computer 36(4) (April 2003)



6. Kottenstette, N., Hall, J., Koutsoukos, X., Antsaklis, P., Sztipanovits, J.: Digital
control of multiple discrete passive plants over networks. Intl. Journal of Systems,
Control and Communications, Special Issue on Progress in Networked Control
Systems (2009)

7. The MathWorks, Inc.: Simulink/Stateflow Tools. http://www.mathworks.com
8. Ohlin, M., Henriksson, D., Cervin, A.: TrueTime 1.5 Reference Man-

ual. Dept. of Automatic Control, Lund University, Sweden. (January 2007)
http://www.control.lth.se/truetime/.

9. Kottenstette, N., Antsaklis, P.J.: Stable digital control networks for continuous
passive plants subject to delays and data dropouts. In: Proceedings of the 46th
IEEE Conference on Decision and Control. (2007) 4433 – 4440

10. Fettweis, A.: Wave digital filters: theory and practice. Proceedings of the IEEE
74(2) (1986) 270 – 327

11. Secchi, C., Stramigioli, S., Fantuzzi, C.: Digital passive geometric telemanipulation.
In: IEEE Intl. Conference on Robotics and Automation. (2003) 3290 – 3295

12. Berestesky, P., Chopra, N., Spong, M.W.: Discrete time passivity in bilateral
teleoperation over the internet. In: IEEE International Conference on Robotics
and Automation. (2004) 4557 – 4564

13. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., IV, C.T., Nordstrom,
G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. Workshop on
Intelligent Signal Processing (May 2001)

14. Grant, M., Boyd, S.: Cvx: Matlab software for disciplined convex programming.
http://stanford.edu/ boyd/cvx (February 2009)

15. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs.
Recent Advances in Learning and Control (a tribute to M. Vidyasagar), Springer
Lecture Notes in Control and Information Sciences (2008) 95–110

16. Kottenstette, N., Antsaklis, P.J.: Time domain and frequency domain conditions
for passivity. Technical Report ISIS-2008-002, Institute for Software Integrated
Systems, Vanderbilt University and University of Notre Dame (November 2008)

17. Kottenstette, N., Koutsoukos, X., Hall, J., Antsaklis, P.J., Sztipanovits, J.:
Passivity-based design of wireless networked control systems for robustness to time-
varying delays. RTSS (December 2008) 15–24


