
A Concurrency Abstraction for Reliable Sensor
Network Applications

János Sallai1, Miklós Maróti2, and Ákos Lédeczi1

1 Institute for Software Integrated Systems, Vanderbilt University,
2015 Terrace Place, Nashville, TN 37203, USA

{sallai,akos}@isis.vanderbilt.edu
2 Bolyai Institute, University of Szeged, Szeged, Hungary

mmaroti@math.u-szeged.hu

Abstract. The prevailing paradigm in the regime of resource-constrained
embedded devices is event-driven programming. It offers a lightweight yet
powerful concurrency model without multiple stacks resulting in reduced
memory usage compared to multi-threading. However, event-driven pro-
grams need to be implemented as explicit state machines, often with no
or limited support from the development tools, resulting in ad-hoc and
unstructured code that is error-prone and hard to debug. This paper
presents TinyVT, an extension of the nesC language that provides a vir-
tual threading abstraction on top of the event-driven execution model
of TinyOS with minimal penalty in memory usage. TinyVT employs
a simple continuation mechanism to permit blocking wait, thus allow-
ing split-phase operations within C control structures without relying on
multiple stacks. Furthermore, it provides fine-grained scoping of variables
shared between event handlers resulting in safer code and allowing for
optimizations in compile-time memory allocation. TinyVT source code
is mapped to nesC with a source-to-source translator, using synchronous
communicating state machines as an intermediate representation.

1 Introduction

Most programming environments for wireless sensor nodes are based on one of
the two dominating programming abstractions for networked embedded systems:
event-driven or multi-threaded programming. In the event-driven paradigm, pro-
grams consist of a set of actions that are triggered by events from the environ-
ment or from other software components. Actions are implemented as event
handlers: functions that perform a computation and then return to the caller.
Event handlers run to completion without blocking, hence, they are never in-
terrupted by other event handlers. This eliminates the need for locking, since
event handlers are atomic with respect to each other. Furthermore, because of
run-to-completion semantics, all event handlers can use a single shared stack.

In the multithreaded approach, execution units are separate threads with
independent, linear control flow. Threads can block, yielding control to other
threads that execute concurrently. Since the execution of threads is interleaved,

F. Kordon and J. Sztipanovits (Eds.): Monterey Workshop 2005, LNCS 4322, pp. 143–160, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



144 J. Sallai, M. Maróti, and Á. Lédeczi

data structures that are accessed by multiple threads may need locking. Each
thread has its own stack and administrative data structures (thread state, stack
pointer, etc.) resulting in memory usage overhead which may become prohibitive
in resource-constrained systems.

Although the two abstractions were shown to be duals [1], there has been
a lot of discussion about the advantages and drawbacks of both approaches in
the literature [2][3][4]. Multithreading, especially preemptive multithreading, is
commonly criticized for the nondeterministic interleaved execution of concep-
tually concurrent threads [5]. Various locking techniques are used to reduce (or
eliminate) nondeterminism from multithreaded programs. Unfortunately, identi-
fying critical sections, as well as choosing the appropriate lock implementations
for the critical sections are error prone tasks. Suboptimal locking may lead to
performance degradation, while omitting locks or using the wrong kind of locks
result in bugs that are notoriously hard to find.

The most compelling advantage of multithreading is that the thread ab-
straction offers a natural way to express sequential program execution. Since
threads can be suspended and resumed, blocking calls are supported: when a
long-running operation is invoked, the thread is suspended until the operation
completes and the results are available. The event-driven approach, in contrast,
does not have this feature. Consequently, sequential execution involving multi-
ple event handler invocation contexts is hard to express, and the corresponding
event-driven code is hard to read.

The sensor network community is slightly biased toward the event-driven
paradigm. The reason behind this tendency is twofold. First, the event-driven
model reflects intrinsic properties of the domain: sensor nodes are driven by in-
teraction with the environment in the sense that they react to changes in the
environment, rather than being interactive or batch oriented. Second, the limited
physical memory inhibits the use of per thread stacks, thus limiting the applica-
bility of the multi-threaded approach. It is important to note here that Moore’s
law has an unorthodox interpretation here: it is applied toward reduced size
and cost, rather than increase in capability, therefore, the amount of available
physical resources is not expected to change as the technology advances.

The event-driven paradigm, nevertheless, has its caveats [2]. Real-time re-
sponse to interrupts is not possible in traditional event-driven systems, since
events cannot be preempted, thus interrupts must be stored and executed later.
Relaxing this requirement would violate the atomicity of events, and could in-
troduce race conditions necessitating locking. Events are required to complete
quickly, because long-running computations can deteriorate the responsiveness
of the system. To avoid this, complex CPU-intensive operations have to be split
up into multiple event handlers. This constraint, however, hinders the portability
of code that is not written in this event-aware style.

We have identified three issues that can have significant implications on the
reliability and maintainability of event-driven code. First of all, unlike the thread
abstraction, the event-driven paradigm does not offer linear control flow. The
program execution is split up into actions that are executed in response to events.



A Concurrency Abstraction for Reliable Sensor Network Applications 145

It is often required, however, that an event triggers different actions depending
on the program state. Traditional programming languages do not support dis-
patching different actions depending on both event type and program state. To
tackle this issue, programs have to be implemented as state machines. Without
explicit language support, these state machines are implemented in an unstruc-
tured, ad-hoc manner. As a result, the program code is often incomprehensible,
error-prone and hard to debug. Second, sharing information between actions also
lacks language support, and hence, programmers tend to use global variables,
which is also error-prone and often suboptimal with respect to static memory
usage. Third, since the event-driven paradigm does not allow blocking wait, com-
plex operations must be implemented in a split-phase style: an operation request
is a function that typically returns immediately, and the completion is signaled
via a callback. This separation of request and completion, however, renders the
use of split-phase operations impossible from within C control structures (such
as if, while, etc.).

To address the above limitations, this paper introduces TinyVT, an extension
of the nesC [6] language that provides a thread-like programming abstraction
on top of the execution model of TinyOS [7]. The novelty of this approach
is that threading is ”compiled away:” programs that are expressed in a linear,
thread-like fashion are compiled into event-driven nesC code. TinyVT has several
important features that increase the expressiveness of the code and help improve
the reliability of TinyOS components and applications:
Threads. The thread abstraction allows programs to be written in a linear
fashion without sequencing event handler executions via explicit state machines.
TinyVT threads are static in the sense that they are defined compile-time and
they cannot be dynamically spawned. TinyVT threads are non-reentrant and
stackless, thus very lightweight: only one byte is required to store the current
state of the thread.
Blocking Wait. TinyVT employs a simple continuation mechanism, allowing
threads to block on events. Blocking is also allowed within C control structures.
Blocking on an event yields control to other threads or to the TinyOS scheduler,
therefore, the execution of multiple concurrent threads is interleaved. Note that
TinyVT does not require any scheduler other than the standard one provided
by TinyOS.
Automatic Variable Allocation. TinyVT offers C-style scoping and auto-
matic allocation of variables local to a thread, eliminating the need for global
variables for information sharing between related actions. TinyVT does not re-
quire per thread stacks: local variables within a scope that includes at least
one yield point (i.e. blocking wait) are statically allocated, while automatic local
variables that are not shared between event handlers are allocated on the (single,
shared) stack. To optimize memory usage, statically allocated shared variables
use the same memory area if their lifetimes do not overlap.
Synergy with NesC. Since TinyVT is an extension of the nesC language,
mixing nesC code and threading code is allowed. The TinyVT compiler, a



146 J. Sallai, M. Maróti, and Á. Lédeczi

source-to-source translator that maps TinyVT code to the nesC language, only
processes the threading code within the modules, leaving any event-based nesC
code unmodified. The generated code is subject to static analysis (data-race
detection) and optimization by the nesC compiler.
Static Program Analysis. TinyVT code, due to the static nature of the lan-
guage, lends itself to program analysis. The TinyVT compiler decomposes the
threading code into communicating finite state machines. This FSM-style decom-
position allows for static checking of safety properties, such as deadlock-freeness.
Run-Time Safety. Depending on the program state, some input events may
not always be enabled. While nesC does not explicitly offer language support to
manage component state, TinyVT does address this issue: the TinyVT compiler
knows which events are enabled at a given point of program execution. If an
unexpected event occurs, an exception handler is invoked. If no exception handler
is specified, the execution of the program is halted to avoid nondeterministic
behavior.

The rest of the paper is structured as follows. Section 2 provides a brief
overview of TinyOS and nesC, introducing the terminology used in subsequent
sections and setting the context for the rest of the paper. Then, we present the
motivation of our work showing that the inherent complexity of event-driven
software is difficult to manage. In section 4 we introduce the syntax of TinyVT
and demonstrate the expressiveness of the threading abstraction through an
example. Section 5 discusses how threading code is mapped to the event-based
execution model of TinyOS. Since there is a large semantic gap between the
levels of abstraction, the mapping is implemented in two phases. We describe
an intermediate representation of component-based event-driven programs using
synchronous communicating state machines as a vehicle, and explain how it maps
to nesC. Then, we describe the challenges of translating threading code to the
intermediate representation. Finally, we discuss the advantages, as well as the
limitations of our approach, comparing it to related work in the field of sensor
network operating systems.

2 TinyOS and the NesC Language

This section describes TinyOS [7], a representative event-driven operating sys-
tem for networked embedded systems, and its implementation language, nesC
[6]. NesC and TinyOS have been adopted by many research groups worldwide.
TinyOS has been ported to a dozen hardware platforms, and a rich collection
of software components is available. TinyOS and nesC provide low-level access
to hardware, a flexible, event-based concurrency model, and a component-based
architecture promoting modularization and reuse.

2.1 Concurrency Model

Though TinyOS is and event-based operating system, its concurrency model dif-
fers from that of the traditional event-driven paradigm. Based on the observation



A Concurrency Abstraction for Reliable Sensor Network Applications 147

that data processing and event arrival from the environment are intrinsically
concurrent activities in sensor nodes, TinyOS models concurrency with tasks
and events. A task represents deferred computation that runs to completion
without being interrupted by other tasks. Events represent interrupt contexts:
they can preempt tasks as well as other events. Tasks are scheduled by a FIFO
scheduler. Posting tasks is allowed from both task and event contexts.

Obviously, the two levels of parallelism in TinyOS may result in race con-
ditions, and thus, variables that are accessed from interrupt context may need
locking. However, the static nature of the nesC language (i.e. no function point-
ers or dynamic memory allocation is allowed) allows for compile-time data-race
detection providing an adequate solution to this issue.

2.2 Component-Oriented Architecture

TinyOS provides a set of reusable system components, with well-defined, bidi-
rectional interfaces. Common OS services are factored out into software compo-
nents, which allows applications to include only those services that are needed
In fact, the core OS requires just a few hundred bytes of RAM. There are two
kinds of components in nesC: modules and configurations. Modules contain exe-
cutable code, while configurations define composition by specifying encapsulated
components and static bindings between them. A nesC application is defined as
a top-level configuration.

Bidirectional interfaces provide a means to define a set of related (possi-
bly split-phase) operations. Interfaces declare commands and events, both of
which are essentially function declarations. A component providing an interface
must provide the implementations of the interface’s commands, and may signal
events through the interface. A component that uses an interface can call the
commands, and must implement callback functions for the events.

3 Managing the Complexity in Event-Driven Software
Development

To demonstrate the inherent complexity of event-oriented programming, we
present two examples. The first example, a packet-level I2C driver, shows that
managing control flow manually can be challenging, even in simple applications.
The second example, a matrix multiplication, suggests that it is nontrivial to
port code that implements a long-running computation, such as encryption key
generation or data compression, to an event-driven platform.

3.1 Example: I2C Packet Level Interface

Let us consider the implementation of a packet-level interface for the I2C bus that
operates above the byte-oriented hardware interface. The corresponding module
should provide split-phase operations to write a packet to, and to read a packet
from the bus. We only present packet sending; reading a packet works analogously.



148 J. Sallai, M. Maróti, and Á. Lédeczi

The hardware interface provides the following operations. Starting of the send
operation is requested with the sendStart command, to which the hardware
responds with a sendStartDone event. Sending a byte is also implemented in a
split-phase style: the hardware signals the completion of the write command with
a writeDone event. After all the bytes are written, the bus has to be relinquished
with a sendEnd command, the completion of which is acknowledged with the
sendEndDone event.

The following pseudocode describes the procedure that writes a variable-
length packet to the bus, using the byte-oriented hardware interface:

Algorithm 1. Pseudocode of the writePacket command in a packet-level I2C
interface
1: procedure I2CPacket.writePacket(length, data)
2: call I2C.sendStart
3: wait for I2C.sendStartDone
4: for index = 0 to length do
5: call I2C.write(data[index])
6: wait for I2C.writeDone
7: index = index + 1
8: end for
9: call I2C.sendEnd

10: wait for I2C.sendEndDone
11: signal writePacketDone
12: end procedure

Expressing this behavior in a linear fashion, however, is not possible in an
event-driven system. The code must be broken up into a writePacket command
and three event handlers, and the control flow must be managed manually. Vari-
ables that are accessed from more than one event handlers (length, data, and
index) must be global and statically allocated. Typically, manual control flow
is implemented with a state machine: a global static variable stores the compo-
nent state, while the transitions of the state machine are coded into the event
handlers. Commonly, only a restricted subset of input events is allowed at a
given point of execution. Because of this, actions in the event handlers must be
protected against improper invocation patterns (e.g. writePacket can only be
called again after the previous packet sending is finished).

Manual management of control flow can become particularly tedious and
error-prone as the complexity of the task increases. Breaking up the code into
event handlers inhibit the use of loops and conditionals with blocking wait. As
a result, even a simple control flow that can be expressed linearly with a few
nested loops, may result in very complex state machines. Moreover, the resulting
event-driven code will most probably be suboptimal, unclear, hard to debug, and
often incorrect.

Efficient allocation of variables that are shared between multiple event han-
dlers is also a challenging task in the presence of resource constraints. Notice that
variables associated with sending a packet, and variables used when reading a



A Concurrency Abstraction for Reliable Sensor Network Applications 149

packet might never be used at the same time. In a thread-oriented programming
model, such variables are created on the local stack, and destroyed when they
go out of scope. A similar, manual stack management approach appears in some
event-driven components: variables with non-overlapping lifetime can be placed
into a union allocated in static memory, thus the component consumes no more
static memory than the memory required by the maximal set of concurrently
used variables. However, such optimizations can be extremely tedious when the
component logic is complex.

3.2 Example: Matrix Multiplication

Long-running computations may deteriorate the responsiveness of event-driven
systems, since events are atomic with respect to each other and cannot be
preempted.

This problem also manifests itself in cooperative multi-threading, however,
such systems commonly provide a yield operation, by which the running com-
putation may relinquish control and let other threads execute. This, however, is
not possible in an event-driven programming paradigm.

Consider the multiplication of two fairly large matrices, a computation that
is prohibitive in an event-driven system that has to handle various other events
(e.g. message routing) concurrently. The most straightforward solution to this
problem is to break up the outermost loop of the matrix multiplication algorithm,
and to manage the control flow with a state machine emulating the loop.

This workaround, although typically tedious, will always work. However, this
has serious implications: since it is cumbersome to emulate yield in event-driven
systems, existing code which is not structured in an event-aware fashion can be
extremely complex to port. This applies to computationally intensive algorithms,
such as encryption key generation or data compression.

4 The TinyVT Language

In this section we overview the syntax and operational semantics of TinyVT,
and through an example, we illustrate how TinyVT simplifies the development
of event-driven applications.

4.1 Language Constructs

TinyVT extends the nesC language with two basic construct: threads and
blocking await statements. Threads describe sequential blocks of computation
with independent, linear control flow. The execution of concurrent threads is in-
terleaved. A thread may pass control to another thread by signaling an event on
which the other thread blocks, or, in TinyVT terminology, upon which the other
thread awaits. Blocking wait can be expressed with the await statement. The
await statement specifies one or more events, with the corresponding event han-
dling code inlined, on which the thread blocks. Await has OR semantics: if the



150 J. Sallai, M. Maróti, and Á. Lédeczi

thread blocks on multiple events, the occurrence of any one of them resumes the
execution of the thread. Thread execution continues with the execution of the
body of the event handler of the triggering event, and the thread keeps running
the code following the event handler till the next blocking statement is reached.

Event handlers cannot contain blocking code. The body of the event handler
must be a valid nesC compound statement (i.e. function body), with the ex-
ception that either dreturn or ireturn should be used instead of the standard
C return statement. Deferred return, or dreturn, means that after the execu-
tion of the event handler finishes, the control is not passed immediately back to
the caller, instead, the thread continues running until the next blocking state-
ment. In contrast, immediate return, or ireturn, returns to the caller ”almost
immediately”: before actually returning, it posts a task which when scheduled,
resumes the execution of the thread with the code following the await state-
ment in which the event handler resides. Hence, ireturn defines an implicit yield
point after the await statement. Using both deferred and immediate return is
allowed within the same event handler. For clarity, it is required that functions
with no return value should explicitly specify their return style with deferred or
immediate return statement(s).

Threads may contain yield statements that explicitly transfer the control back
to the caller of the event that invoked the currently running computation. Yield
is syntactic sugar: it is essentially equivalent to posting a task and then blocking
on it.

Threads react to events from the environment by executing a series of actions
until the execution reaches a yield point (await, yield or ireturn statement). With
each accepted event, the execution of the thread progresses. In fact, TinyVT
threads can be thought of as state machines that are described in a linear, thread-
like fashion, where the states are associated with yield points, and actions are
associated with the code between them.

Since actions run in the execution contexts of the triggering events, there
is no dedicated execution context associated with a TinyVT thread. In tradi-
tional multi-threading, there is a stack associated with each thread. In contrast,
TinyVT threads use a common, shared stack, which is unrolled every time the
thread blocks. Because of this, variables with lifetime spanning multiple ac-
tions must be statically allocated. TinyVT shields this from the programmer:
automatic variables are allowed within threads and allocated in static memory.
Because of the static nature of the language, call graphs are known compile
time, thus further optimizations are possible: automatic variables that cannot
be active concurrently are allocated at the same memory area.

TinyVT threads are not reentrant. A thread reacts an event only if it explicitly
blocks on it. If an event is received when the thread is executing an action, or,
if the thread is blocked, but the input event is not among the ones the thread is
awaiting, an exception occurs. The default behavior on an exception is to halt
the execution of the program, in order to prevent nondeterministic behavior.
However, the programmer can implement a custom exception handler per event
type, and may choose to recover from the error. This behavior may seem as a



A Concurrency Abstraction for Reliable Sensor Network Applications 151

restriction, but it is in face equivalent to the behavior of event-driven systems:
without extra logic, a program cannot handle a new message, for example, while
the previous one is still being processed.

Structurally, threads reside within nesC modules. One module may contain
multiple threads. Threads can access the local state of the module (i.e. global
variables), can invoke functions at the module scope as well as through the
module’s interfaces (in nesC terminology: call commands and signal events),
and can react to function calls through the interfaces. Threads are static in
the sense that they are known at compile time, and cannot be dynamically
spawned. Hence, threads are statically instantiated when the application starts.
Instead of transferring control to the threads immediately after the application
is bootstrapped, we require that the first statement in a thread be an await
statement. This way, modules containing threading code are not bound to us-
ing a TinyVT specific interface. As a result, the fact that a module contains
threading code is not visible from outside: they can be used in component
specifications equivalently to standard nesC modules. This limitation reflects
the event driven programming practice that components do not start execut-
ing immediately at boot-up time, instead, they initialize in response to an init
command.

4.2 Example

We illustrate the expressiveness of TinyVT by rewriting the I2C packet-level
interface example using the thread abstraction.

In the idle state, i.e. when no client request is being processed, the thread
blocks on the writePacket command. If a client request comes in, the inlined
implementation of the command is executed, requesting access to the bus by call-
ing the sendStart command. The thread blocks as the next await statement is
reached. The occurrence of the sendStartDone event, signaled by the byte-level
hardware interface, resumes the thread execution. Since the corresponding event
handler returns with a deferred return statement, the return value will be saved
in an automatic temporary variable, and the same event context will continue
running the code up to the next blocking statement. That is, the initialization
of the index variable, the evaluation of the loop condition, as well as writing the
first byte to the I2C bus will take place before the thread blocks again.

Notice that the execution of the thread is driven by the incoming events.
TinyVT generalizes the concept of events to nesC commands, TinyOS tasks, as
well as to local functions: a thread can block on any of these. Mixing multiple
event types in one await statement is also allowed.

TinyVT supports run-time safety checking through exception handlers. For
example, if a writePacket call comes in from the client while there is another
packet being processed, the control is passed to an exception handler. The default
behavior of the exception handler is to halt the execution of the application.
However, the programmer may define custom exception handling code. In this
example, we can assume that the hardware adheres to the contract defined by
the I2C interface, but we need to prepare for handling client calls at any time.



152 J. Sallai, M. Maróti, and Á. Lédeczi

uint8_t *packet_data; uint8_t packet_length; uint8_t index;
await result_t command I2CPacket.writePacket(

uint8_t length, uint8_t* data)
{

packet_data = data;
packet_length = length;
call I2C.sendStart();
dreturn SUCCESS;

}
await result_t event I2CP.sendStartDone() {

dreturn SUCCESS;
}
for(index=0; index<packet_length; ++index) {

call I2C.write(packet_data[index]);
await result_t event I2C.writeDone()
{

dreturn SUCCESS;
}

}
call I2C.sendEnd();
await result_t event I2C.sendEndDone() {

dreturn SUCCESS;
}
signal I2CPacket.writePacketDone(SUCCESS);

Fig. 1. Excerpt from the packet-level I2C interface module implemented with TinyVT
threads. Notice how this code resembles the pseudocode presented in Alg. 1.

Therefore, the thread has to be protected with an exception handler, which is a
nesC function definition with the unexpected qualifier:

unexpected result_t command I2CPacket.writePacket(
uint8_t length, uint8_t* data)

{
return FAIL;

}

Fig. 2. Exception handler in TinyVT

5 Mapping of the Threading Abstraction to Event-Driven
Code

Although TinyVT offers a thread-like programming abstraction capable of
expressing linear control flow, it is important to note that TinyVT threads are
very much unlike threads in the traditional sense: there is no explicit execu-
tion context associated with a thread. Furthermore, the resulting event-driven
code requires no multi-threading OS support nor does it introduce dependence



A Concurrency Abstraction for Reliable Sensor Network Applications 153

upon a threading library. TinyVT threads are virtual in the sense that they only
exist as an abstraction to express event-driven computation in a sequential fash-
ion, and are transformed into (non-sequential) event-driven code by the TinyVT
compiler.

While in traditional threading, context management and continuation sup-
port comes from the operating system or from the hardware essentially for free,
TinyVT has to address these issues at the compiler level. Since there is a sig-
nificant semantic gap between the thread abstraction and event driven-code, we
introduce an intermediate representation, based on synchronous communicating
state machines, that establishes an execution model on top of an event-driven
system, and serves as a compilation target for the TinyVT compiler.

5.1 Operational Semantics of the Intermediate Representation

The execution model of TinyVT is based on tightly coupled, synchronous com-
municating state machines (SCSM), providing an expressive vehicle to capture
the structure, the control flow, the state, and the communication patterns of
event-driven software components. Although the SCSM representation is influ-
enced by communicating finite state machines [8], instead of being a modeling
language with well-defined denotational semantics, it primarily focuses on exe-
cutability of the model rather than providing a mathematically sound foundation
for creating correct-by-construction systems. As SCSMs are used exclusively as
an intermediate representation, we do not define a concrete syntax for the lan-
guage here.

An SCSM is defined by a finite set of states, input events, and transitions that
map states and events to other states. Transitions are associated with actions,
which are units of computation defined in the host language. To reduce state
space, SCSM allows for the definition of state variables, which, depending on
their scope, may be accessed from multiple actions. Actions typically read and
update shared state variables, and generate output events.

It is valid to omit the triggering event from the definition of a transition. If
the event is omitted, the transition fires immediately after the source state of
the transition is entered. Transitions without events are allowed to have guard
conditions, which are predicates over the state variables and are evaluated when
the source state of the transition is reached. A transition can fire only if the
predicate holds. SCSM does not allow specifying both a guard and a triggering
event for a transition. Furthermore, mixing event-triggered and guarded output
transitions from the same state is also not allowed: for any given state in a
well-formed SCSM, either all or none of the output transitions are defined with
events. These limitations partition the states into two sets: blocking states, in
which the state machine is waiting for an external event, and transitory states,
that are immediately exited after being entered.

SCSMs are deterministic: if a state has multiple out-transitions the same
event cannot be assigned to more than one transition. Alternatively, for tran-
sitory states, the guards corresponding to the transition must be mutually
exclusive.



154 J. Sallai, M. Maróti, and Á. Lédeczi

Unlike traditional FSM models, SCSM does not assume that transitions are
instantaneous. Therefore, input events are disabled during the execution of
actions, and are re-enabled only after the action completes and the target state
is reached. If an input event occurs when the state machine cannot handle it
(referred to as an exception), the state machine immediately transitions to a
(terminal) error state.

SCSMs communicate with their environment through input and output events.
Communication between state machines is synchronous: if an action in machine A
generates an output eventwhich is accepted by machineB, B starts executing, and
the action in A that generated the event blocks until B relinquishes control. That
is, control flow is synchronously passed between communicating state machines.
Multiple state machines may react to the same event. The execution of the corre-
sponding event handlers is serialized, but their execution sequence is undefined.

The SCSM language supports hierarchical composition. The composition of
state machines A and B is defined as a SCSM, such that the state set of the
composite state machine is the Cartesian product of the states of A and B, and
the input and output events of the constituent state machines are matched by
name. Composition allows for event renaming, thus supporting arbitrary associ-
ations of input and output events, including fan-in and fan-out. Furthermore, it
allows for event hiding, forbidding the propagation of the hidden input or output
events over the composite state machine’s boundary.

5.2 Mapping the State Machine Model to Event-Driven Code

The SCSM representation is conceptually an extension of the event-driven ex-
ecution model of TinyOS, with a structure that resembles that of component-
oriented nesC programs.

The nave way of implementing an SCSM in nesC is as follows. The state is
stored in a global integer variable. Actions are implemented as functions at the
nesC module scope. The transition system, i.e. the control logic that maps events
and state to actions, is factored out to a scheduler function. When an input
event occurs, to which the state machine reacts, it is handled by a generated
event handler that calls the scheduler with the event type as a parameter. The
scheduler decides which action to call depending on the event type and the
current state. After the event handler completes, the scheduler updates the state.
If the new state is a transitory state, the scheduler evaluates the guard conditions
and invokes an action accordingly, again, updating the state when the action
completes. This is iterated until a blocking state is reached. After entering a
blocking state, the scheduler returns control to the generated event handler,
which then returns to its caller.

The mapping of SCSM to nesC, as described above, is simple, it has limi-
tations. Events commonly have formal parameters, as well as a return value.
Passing parameters and return values between the generated event handlers and
the actions is cumbersome, because every call has to go through the scheduler
function, which has a fixed signature. Instead of trying to find a workaround
for this issue (e.g. packing parameters into a variable length untyped array), we



A Concurrency Abstraction for Reliable Sensor Network Applications 155

factored out the scheduler functionality into the generated event handlers and
into the actions.

The generated event handler does the dispatching depending on the value of
the state variable. Since the signature of the generated event handler and the
corresponding actions are identical, the issue of parameter passing is eliminated.
After the action returns, the generated event handler saves the returned value
into a temporary local variable, and updates the state. If the resulting state is
transitory, the actions and the state updates are executed iteratively, until a
blocking state is reached. Then the generated event handler returns with the
return value that was saved in the temporary variable.

5.3 Transforming Threading Code to the Intermediate
Representation

TinyVT threads that do not declare automatic variables nor use branching or
loops (i.e. C control constructs such as if, while, etc.) can easily be translated
into SCSM. Await statements mark blocking states, the inlined event handlers
are the corresponding actions. Immediate return statements in the event handlers
are translated into three statements: setting a global thread-specific return type
flag to IRETURN, posting the thread-specific continuation task, and a standard
C return statement with the given return value. In the case of deferred returns,
the return type flag is set to DRETURN, no continuation task is posted, and the
standard C return statement is generated. The next state for all event handlers
is a transitional state with two output transitions guarded by the return type
flag: on IRETURN, the next state is a blocking state, awaiting the thread specific
continuation task, which when executed, transitions the state machine into a
transient join state. On DRETURN, the next state is the join state. Code following
the await statement but before the next blocking statement is wrapped into an
action, which is assigned to a transition from the join state to the blocking state
marked by the next blocking statement.

C control structures that contain blocking statements are implemented with
transient states branching based on the evaluated condition expression. We ex-
plain the translation of the while statement; other control structures (for, if,
etc.) are implemented similarly. The while statement is translated to a transi-
tory initial state that unconditionally transitions to a branching state, executing
an action that evaluates the loop condition. The branching state is a transitory
state that transitions to the transitory join state with an empty action if the
loop condition evaluated to FALSE. On TRUE, the next state is the initial state of
the state machine that corresponds to the body of the while loop. The final state
of the enclosed state machine is linked to the initial state of the while statement
with an empty action. The body of the while loop is processed recursively: the
corresponding SCSM is built similarly as described a paragraph earlier, resolving
C control structures if needed.

It is important to note that not all C control structures need to be converted
to SCSM representation. If a control structure does not include any blocking
code, it can be treated as a primitive statement, which is allowed within actions.



156 J. Sallai, M. Maróti, and Á. Lédeczi

The compiler can decide if a control structure has blocking code by post-order
traversing the abstract syntax tree and marking the nodes of statements with
blocking descendants.

Automatic local variables declared within primitives can be allocated on the
shared stack, since their lifetime is limited to a compound statement that will
execute within one event context. However, if the scope of the variable is a
compound statement that contains blocking code, the variable has to be allo-
cated in static memory, since the shared stack is unrolled every time the thread
blocks.

It is easy to see that compiler-managed variables with non-overlapping scopes
can be allocated at the same static memory address. The compiler solves this
by creating a struct for each compound statement, which contains the local
variables, and a union containing the struct-s of non-overlapping child scopes,
recursively.

6 Discussion and Future Work

We believe that the execution model of TinyOS coupled with the nesC
programming model is a good level of abstraction for developing sensor node
applications. In the presence of severe resource constraints, language support for
low-level interfacing with the hardware is imperative. Although nesC provides
a sophisticated component-oriented programming model that helps manage the
structural complexity of sensor node applications, the inherent complexity of
event-driven control flow may persist at the module level.

The virtual threading that TinyVT provides helps mitigate this complexity.
It must be emphasized, however, that the goal of TinyVT is not to provide an
abstraction that shields the event-driven nature of the OS from the programmer.
Instead, it serves as a tool that improves code readability, reduces development
time, yet retains the low-level hardware access and flexible control of resources
provided by the host language. Indeed, it is imperative that the programmer be
aware that a TinyVT thread is just a virtual thread, and have an understanding
of the compilation process.

TinyVT is not a silver bullet. It is widely known that not all patterns of
sequential control flow can be expressed in a thread-like fashion. Analogously,
the behavior of some nesC modules is cumbersome, if not impossible, to ex-
press in TinyVT. This particularly holds for components operating on top of
a hardware presentation layer with nested interrupts. Since TinyVT threads
are not reentrant, the programmer has to assure that asynchronous events are
handled in a timely manner, alternately, unexpected events have to be handled
adequately. Nevertheless, the programmer can always fall back to using plain
event-driven nesC code in such cases, and write TinyVT modules only when it
is convenient.

Our compiler prototype, though it processes the whole application to resolve
symbols and wirings, considers only the scope of the shared variables when opti-
mizing memory allocation, and does not detect if variables in different threads (or



A Concurrency Abstraction for Reliable Sensor Network Applications 157

modules) can be allocated to the same memory address. That is, the optimization
is local to a thread. Extending this functionality with whole-program analysis
to facilitate global optimization is subject of further research.

Currently, we do not support all nesC features in TinyVT threads. For ex-
ample, goto is not allowed, and switch statements containing blocking code
are also not handled. It is primarily because the C standard is very permissive
regarding labels, and the compilation of such code can be complicated. We con-
sider eliminating these limitations in the future only if there is a demand for the
currently unsupported language features.

Another exciting future direction is extending the compiler with a more thor-
ough interface compatibility checking, based on the communication patterns
exhibited/supported by the components through their interfaces. Since TinyVT
threads express computation in a linear fashion, the communication patterns of
modules are encoded in the control flow. Though TinyVT actions allow for data-
dependent behavior, we suspect that some errors, such as violations initialize-
before-use constraints, might be able to be detected via static analysis.

7 Related Work

Contiki [9] is a multitasking operating system for memory-constrained devices
built around a small event-driven kernel. Unlike traditional operating systems,
the Contiki kernel does not provide explicit support for multithreading. Instead,
multithreading is implemented as an external library, which is linked into the
application only if explicitly needed. Since each thread requires its own stack,
traditional multithreading is expensive on memory-constrained platforms. As an
alternative, Contiki promotes the use of protothreads [10]. Protothreads achieve
threading without per thread stacks using a lightweight continuation mechanism,
called local continuations, implemented as a set of C macros. The use of contin-
uations is limited to a C function block, consequently, protothreads cannot span
multiple functions. Protothreads in Contiki are similar to threads in TinyVT
in that both approaches provide a threading context on top of an event-driven
execution model. Protothreads take an opportunistic approach by exploiting eso-
teric or non-standard features of the C language, while in the TinyVT language
a thread is a first class object with explicit compiler support. In contrast to
TinyVT, automatic local variables in a protothread are not preserved when the
protothread blocks, which can result in potentially unsafe code.

MANTIS [11] is a multithreaded operating system for wireless sensors built
around classical concepts, such as preemptive scheduling with time slicing,
kernel-level support for synchronization, etc. MANTIS provides a familiar API
which is easy to use, making it particularly suitable for experimentation with
new algorithms or rapid prototyping of sensor network applications. However,
because of the need for per thread stacks, traditional multithreading is costly:
MANTIS trades RAM usage for flexibility and ease of use.

TinyOS [7] is probably the most popular operating system in the wireless
sensor networks domain. In TinyOS, the event-driven model was chosen over



158 J. Sallai, M. Maróti, and Á. Lédeczi

the multithreaded approach due to the memory overhead of the threads. TinyOS
defines two kinds of execution contexts: tasks and events. Tasks are scheduled
by a FIFO scheduler, have run-to-completion semantics, and are atomic with
respect to other tasks. TinyOS models interrupt service requests as asynchronous
events: events can interrupt tasks, as well as other asynchronous computations.
This duality provides a flexible concurrency model, and easy interfacing with the
hardware, however, it can introduce race conditions and may necessitate locking.

nesC [6], the implementation language of TinyOS addresses this issue by pro-
viding language support for atomic sections and by limiting the use of potentially
”harmful” C language features, such as function pointers and dynamic memory
allocation. nesC is a ”static” language in the sense that program structure, in-
cluding the static call graph and statically allocated variables, are known compile
time, allowing for whole-program analysis and compile-time data-race detection.
TinyVT inherits these features from nesC, while extending the language with
support for threading and blocking wait. TinyVT overcomes the problem that
complex operations have to be implemented using explicit state machines in
nesC, hence, improving code maintainability and safety. nesC has a component
oriented design that allows partitioning the applications, which is largely orthog-
onal to the execution model of TinyOS. This gives flexibility to the programmer
and promotes reuse.

TinyGALS [12] defines a globally asynchronous and locally synchronous a pro-
gramming model for event-driven systems. Software components are composed
locally through synchronous method calls to form modules, modules communi-
cate through asynchronous message passing. Local synchrony within a module
refers to the flow of control being instantaneously transferred from caller to
callee, while asynchrony means that the control flow between modules is serial-
ized through the use of FIFO queues. However, if modules are decoupled through
message passing, sharing global state asynchronously would incur performance
penalties. To tackle this, the TinyGALS programming model defines guarded
synchronous variables that are read synchronously and updated asynchronously.

The galsC [13] language, an extension of nesC, provides high-level construct,
such as ports and message queues, to express TinyGALS concepts. TinyGALS/
galsC and our approach attack the same substantial problem, namely that man-
aging concurrency with the event-driven paradigm lacks explicit language sup-
port. TinyGALS ensures safety through model semantics. In contrast, TinyVT
promotes static analysis and runtime safety checking instead. While in Tiny-
GALS modules are decoupled through message passing, and synchronous con-
trol flow is limited to the module scope, TinyVT does not impose limitations on
the allowable communication styles. We believe that our approach gives more
flexibility to the programmer with respect to choosing the right structural decom-
position for a problem, whereas galsC could impose limitations on the program
structure. For example, control flow from an interrupt context cannot propagate
outside the module: hence, all tasks that are timing critical must be implemented
within the module.



A Concurrency Abstraction for Reliable Sensor Network Applications 159

SOS [14] is a general-purpose operating system for sensor nodes with an event-
driven kernel and dynamically loadable modules. SOS strictly adheres to the
event-driven paradigm: events are atomic with respect to each other. To handle
interrupts in a timely manner without operating in an interrupt context, the
SOS kernel uses priority queues to schedule the serialized execution of events.
Since interrupt contexts do not propagate into application code, applications
can fully leverage the benefits of the atomicity assumption. SOS, similarly to
TinyOS, would be an ideal compilation target for TinyVT.

The Object State Model (OSM) [15] employs attributed state machines to
express event-based program behavior. The application of FSM concepts is a
natural choice for the domain: actions are executed depending on the input
event and the actual state, whereas imperative languages, such as C, lack ex-
plicit support to associate actions with both events and program state. OSM
specification is translated to Esterel [16], a synchronous language, which then
can be compiled into efficient C code by the Esterel compiler. The most signifi-
cant contribution of OSM, however, is that it offers efficient allocation of shared
variables based on their lifetime making this approach particularly suitable for
programming resource-constrained devices. TinyVT employs a similar approach
to allocate automatic local variables. An important difference is that our lan-
guage constructs do not allow explicit association of shared variables with states
(since the state machine model is used only as an intermediate representation,
and the concrete syntax is less expressive), hence OSM can achieve slightly bet-
ter memory usage. However, our approach offers excellent code readability, while
OSM should rather be used as a target for automatic code generation.

8 Conclusion

The novelty of this work is that it provides language support to describe event-
based computation in a well structured, linear fashion without compromising
the expressiveness of the implementation language. The event-driven execution
model of TinyOS remains exposed to the TinyVT programmer, along with all the
features of the nesC language from supporting component-oriented programming
to compile time data-race detection.

The ”virtual thread” that TinyVT introduces is a simple language extension
that provides a means to express linear control flow and blocking operations.
Yet, these threads do not suffer from the problem of nondeterminacy which
multithreading is commonly criticized for. First, TinyVT implements a variant
of non-preemptive multithreading by sequencing the execution of atomic event
handlers. Non-preemptive multithreading offers significantly more determinism
and better analyzability than its preemptive counterpart. Second, the syntax
of TinyVT ensures that the programmer is aware of the control flow between
conceptually concurrent threads. Calls to split phase operations explicitly state
which thread the control is passed to; similarly, the await statement explicitly
specifies the thread which the control is received from. This stands in contrast to
the approach of general-purpose multithreading, where control flow is governed



160 J. Sallai, M. Maróti, and Á. Lédeczi

by the scheduling policies of the operating system or a user-space threading
library, and the programmer has no insight into inter-thread control flow (except
for locking decisions).

The TinyVT compiler automates the tasks that programmers traditionally
do manually. As the complexity of applications keeps growing even in the sensor
network domain, such tasks are becoming hard to manage. However, the TinyVT
compiler can easily cope with this complexity, and thus, produce better quality
and more reliable code than an average programmer.

References

1. Laurer, H.C., Needham, R.M.: On the duality of operating system structures.
SIGOPS Operating Systems Review 13 (1979) 3–19

2. v. Behren, R., Condit, J., Brewer, E.: Why events are a bad idea (for high-
concurrency servers). HotOS IX (2003)

3. Lee, E.: What’s ahead for embedded software? IEEE Computer (2000) 16–26
4. Adya, A., Howell, J., Theimer, M., Bolosky, W.J., , Douceur, J.R.: Cooperative

task management without manual stack management. Proceedings of the USENIX
Annual Technical Conference (2002) 289–302

5. Lee, E.: The problem with threads. IEEE Computer (2006) 33–42
6. Gay, D., Levis, P., v. Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesc

language: A holistic approach to networked embedded systems. SIGPLAN (2003)
7. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., , Pister, K.: System ar-

chitecture directions for network sensors. Proc. of the 9th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IX) (2000)

8. Brand, D., Zafiropulo, P.: On communicating finite state machines. Journal of the
ACM 30 (1983) 323–242

9. Dunkels, A., Grnvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. EmNetSI (2004)

10. Dunkels, A., Schmidt, O., Voigt, T.: Using protothreads for sensor node program-
ming. The Workshop on Real-World Wireless Sensor Networks (2005)

11. et al, H.A.: Mantis: system support for multimodal networks of in-situ sensors.
WSNA (2003) 50–59

12. Cheong, E., Liebman, J., Liu, J., , Zhao, F.: Tinygals: A programming model for
event-driven embedded systems. Proceedings of the 18th Annual ACM Symposium
on Applied Computing (SAC’03) (2003)

13. Cheong, E., Liu, J.: galsc: a language for event-driven embedded systems. Pro-
ceedigs of Design, Automation and Test in Europe 2 (2005) 1050–1055

14. Han, C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating
system for sensor nodes. In Proceedings of the 3rd international Conference on
Mobile Systems, Applications, and Services (2005) 163–176

15. Kasten, O., Rmer, K.: Beyond event handlers: Programming wireless sensors with
attributed state machines. The Fourth International Conference on Information
Processing in Sensor Networks (IPSN) (2005)

16. Berry, G., Gonthier, G.: The esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming 19 (1992) 87–152


	Introduction
	TinyOS and the NesC Language
	Concurrency Model
	Component-Oriented Architecture

	Managing the Complexity in Event-Driven Software Development
	Example: I2C Packet Level Interface
	Example: Matrix Multiplication

	The TinyVT Language
	Language Constructs
	Example

	Mapping of the Threading Abstraction to Event-Driven Code
	Operational Semantics of the Intermediate Representation
	Mapping the State Machine Model to Event-Driven Code
	Transforming Threading Code to the Intermediate Representation

	Discussion and Future Work
	Related Work
	Conclusion

