
Mixed-Initiative Planning for Space Exploration Missions

Tatiana Kichkaylo,† Chris vanBuskirk,‡ Sameer Singh,‡

Himanshu Neema,‡ Michael Orosz,† and Robert Neches†

†USC Information Sciences Institute, Marina del Rey, CA 90292, USA
‡Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN 37203, USA
{tatiana,mdorosz,rneches}@isi.edu, {Chris.vanBuskirk,Sameer.Singh,himanshu}@vanderbilt.edu

Abstract

Modern planning and scheduling systems are capable of
dealing with the size and complexity of many real world
problems. However, mission critical planning is still
often done by humans. Even if only a couple of plans
are produced (“Master Plan” and “Plan B”), human
experts evaluate multiple alternatives, think of con-
tingencies, consider the likelihood of failure of various
steps, and account for schedule slack and plan flexibil-
ity. Computers can evaluate thousands of alternative
scenarios, but the solutions they ultimately produce are
often not convincing enough for expert decision makers
to trust human lives or mission critical operations to
computer decisions. Further, automated systems often
require significant changes in the way people operate,
which in high-stakes high-pressure environments leads
to rejection of the system by the users.

In this paper we describe the decision support func-
tionality of the Coordinated Multi-source Maintenance
on Demand (CMMD) system. CMMD is designed to
support the complete life cycle of mission plans for hu-
man space exploration, starting with initial long-term
planning and ending with day-by-day execution of a
detailed schedule. The goal of CMMD is not to re-
place human experts, but to assist them. To do so,
CMMD explains reasons for commitments it makes, al-
lows the user to interactively explore alternatives, guide
the search toward more desirable solutions, and to run
various queries (e.g., what courses of action have not
yet been explored with respect to some goal?). We
claim that giving users insight into workings of the
system and gradually enhancing existing processes is
crucial for gaining user confidence in produced plans
and ultimately for adoption of the system.

Introduction
Modern automated planning and scheduling algorithms
can support very expressive domain models, and of-
ten scale sufficiently for real-world applications. Most
such algorithms target automated systems, such as au-
tonomous vehicles and other equipment. However, pro-
ducing a good plan is not enough for humans to be able
to approve the plan. Users must be able to see that a
plan is valid and reasonably efficient. Even providing
post hoc explanations after the plan is produced is not
helpful because the plan is too complex to understand,

and any human concerns are too late to be addressed.
It is also hard to formalize human intuition that might
be necessary to produce better plans. What is needed is
simple, interactive understanding and control. Humans
must be able to explore alternatives within the plan
expansion process itself, assess them, run various diag-
nostic queries, and guide the system to more desirable
solutions without necessarily codifying plan evaluation
functions.

This paper describes our implementation of those ca-
pabilities in the Coordinated Multi-source Maintenance
of Demand (CMMD) system – a multi-agent decision
support tool for planning and execution of missions for
human space exploration, such as Shuttle flights, In-
ternational Space Station (ISS) increments, and future
lunar missions. Instead of replacing human planners,
CMMD assists them by (i) enforcing previously speci-
fied safety rules and standard procedures, (ii) showing
alternative actions, resource choices, and scheduling op-
tions, and (iii) allowing various diagnostic queries on
the schedule. The system can be tasked to compute a
solution automatically, but the user can intervene at
any point to request alternative solutions and/or to
guide the search process herself. Thus the user can
decide how much control of the planning process she
needs and how much she is willing to trust the auto-
mated system.

The rest of the paper is organized as follows. We first
describe the application domain to motivate examples,
followed by a description of the CMMD system archi-
tecture and its unique decision support capabilities. We
close by discussing related research and future work.

Human space exploration
The application domain of the CMMD effort is centered
around NASA’s manned space operations led by the
Johnson Space Center (JSC) in Houston, Texas. The
Center is responsible for planning and day-to-day exe-
cution of the Space Shuttle and the ISS programs. As
the ISS’ construction nears completion, JSC’s manned
spacecraft center will evolve to play a major role in the
follow-on Exploration Systems program, now in its for-
mulative stages, which has the mission of constructing
a lunar outpost and ultimately establishing a human



presence on Mars, and beyond.
Manned space operations build upon established and

tested rules and procedures. However, the problem
is extremely dynamic compared to many planning do-
mains due to the frequent need to accommodate new
equipment and one-of-a-kind activities, and addition of
new procedures. Sometimes, after careful consideration
of alternatives, certain existing rules and constraints
may be waved.

In planning ISS operations, the largest unit of time
ordinarily dealt with is an increment, which is the time
period that a specific crew lives aboard the station (cur-
rently about 6 months). Increment planning begins
12 to 18 months before launch, initially documenting
high-level issues such as crew rotation and training, sta-
tion construction phases, and required logistics supply
flights. Over time, at prescribed intervals, the plan is
methodically refined with more detailed tactical ver-
sions, each defined over increasingly shorter planning
horizons, finally resulting in daily, executable schedules
specified to the level of individual actions, such as meals
for astronauts. The refinement process is not strictly
top down, as high level goals may be added, dropped,
or modified as more detailed plans show what is feasi-
ble.

A team of experts, called a discipline, coordinates
each aspect of the increment – from equipment to med-
ical science. Each discipline has its own set of ground
rules and constraints describing standard procedures
and safety restrictions, plus resource requirements that
may conflict with other disciplines (e.g., on astronaut’s
time). The Lead Operations Planner/Flight Director
has final authority for resolving any conflicts for the
good of the mission, thus requiring disciplines to have a
firm grasp on available options and their implications.

This concept of operations has a proven track record,
and with JSC’s successful legacy, it will likely be
adapted incrementally in future Explorations Systems.
Thus any new planning technology must be able to inte-
grate with the existing tools and organizational struc-
tures. Due to the dynamic nature of the domain, it
is very unlikely that an automated system will replace
human experts. Rather, what’s needed is an interac-
tive planning tool that can switch between manual and
automated modes and assist human users by (i) offload-
ing computation intensive tasks, (ii) allowing diagnos-
tic queries to reveal relevant information, (iii) providing
intelligent rationale behind commitments, and (iv) fa-
cilitating exploration of alternatives.

The system presently used for planning of ISS mis-
sions, CPS (Saint 2002), provides a scheduler and al-
lows multiple users to submit specific plan modification
requests. However, it does not allow users to actively
participate in the planning process. The CMMD sys-
tem was designed to address these requirements.

CMMD architecture
To enable future space exploration operations, any
planning and execution system should support:

Figure 1: Architecture of CMMD Agent

• An extensible encoding of domain knowledge,
• Multiple time granularities and concern windows

(e.g., detailed weekly plan and high-level plan for the
next month in the same system),

• Multiple disciplines/roles,
• Distributed, asynchronous operations (consider com-

munications delays to Mars),
• A user-centric approach to the planning process,
• A means of performing diagnostic queries, and
• Multiple ongoing what-iffing sessions.

To satisfy these requirements, the CMMD system is
designed as a collection of agents communicating via a
virtually centralized Backbone. The agents can be used
by various disciplines (human users) or as bridges to ex-
ternal data sources, such as equipment health monitors.
The Backbone is responsible for propagating informa-
tion between the agents, for enforcing visibility restric-
tions and preferences, and for the transaction-safe per-
sistence of data. In this paper we will focus on the user
interactions with a single agent and will not discuss the
distributed aspects of the CMMD system.

Agent modules
The architecture of a CMMD agent is shown in Fig-
ure 1. The Knowledge Base (KB) contains a working
copy of the plan and performs constraint propagation.
The data representation for plans is described in the
subsequent section. Other modules of the agent can
read and modify the data in the KB. The Backbone
Stub (BBS) is responsible for communication with the
Backbone, including propagation of data updates to
and from the agent. The Rules Engine (RE) enforces
applicable rules, the Query Engine (QE) locates user-
specified subsets of a potentially overwhelming solution
space, and the User Interface (UI) module is responsible
for communication with the user.

As a plan evolves, changes can come from 3 sources:

1. New information can be added by the local user (via
the UI module) or by external users or data sources
(as propagated via the Backbone and BBS),

2. Implied changes can be enforced on already available
data. This includes constraint propagation and rule
application, and



3. The Solver module can perform search for a solution
in the space defined by rules and constraints.

These modifications are applicable to a single plan
instance. In order to enable exploration of alternative
scenarios, CMMD supports simultaneous existence of
multiple contexts (described later). The Context Man-
ager (CM) manages the life cycle of these contexts as
well as their communication with the Solver, RE, and
KB. In addition to decisions made by CM, the user can
explicitly initiate context operations for what-iffing.

Data model
The CMMD data model includes several first class en-
tities: variables, constraints, conditions, resources, to-
kens, rules, options, and contexts. Resources and to-
kens also have types. Variables and constraints in
CMMD form a constraint network. Both real-valued
variables (intervals) and discrete variables (sets) are al-
lowed. Conditions are similar to constraints, but condi-
tion propagation affects only the value of the condition
flag and does not change domains of arguments.

Tokens are used to represent activities in the plan, as
well as certain states of resources as a function of time
(e.g. see the later CMG functioning scenario). Where
it aids clarity, we differentiate between tasks, which are
tokens denoting a collection of sub-activities, actions
or primitive activities executed by individual resources,
and state tokens over resource timelines. In addition to
the usual start, end, duration, and resource variables,
CMMD tokens may also have one achievement and zero
or more safety variables associated with them. These
variables take discrete option values, where each option
represents a possible course of action for achieving a
goal or for satisfying a safety constraint. Individual
options are created and initialized by the Rule Engine
as described below.

Suppose, an EVA task (extra-vehicular activity, or
space walk) has just been added to the plan. This task
is represented in the plan by a token. Initially, the do-
mains of the start and end variables of this token are
set to a wide window during which the activity should
occur (e.g., a week). The initial domain of the resource
variable for the EVA token will contain resource time-
lines corresponding to all astronauts present on the sta-
tion and capable of performing the EVA. Suppose the
standard operating procedures contain a safety rule re-
quiring that the airlock be checked at most one day
before the EVA. A safety variable will be created by
the RE and attached to the EVA token to enforce this
requirement. There is also a standard procedure defin-
ing that an EVA comprises the following sequence of
actions: don suit, egress, work, ingress, doff suit. For
simplicity, we omit resource constraints and some of the
activities here and drop conditions. In this example, an
option representing the proper sequence of these sub-
activities will be bound to the EVA token’s achievement
variable. In some cases, there may be multiple legal
procedures for the same high-level activity. In such sit-

safety rule id:"10001" {
metadata(key:"Name", "No exercise after a meal)

// Bindings and pre-conditions

trigger: meal Meal @ Person

pattern:

ex Exercise @ Person {
should Greater(ex.start, meal.start),

could Greater(meal.end, ex.start, -3h),

should SetInclusion(meal.timeline, ex.timeline)

}
conditions: = {should True()} // Always applies where binds

// Effects

tokens: {} // no new tokens added

constraints: {TemporalArc(ex.start, meal.end, [90min, inf])}
}

Figure 2: Example rule

uations, the initial domain of the achievement variable
may contain several, alternative options.

The plan domain representation in CMMD is rule
based and similar to the concept of hierarchical task
networks (HTN) (Erol, Hendler, & Nau 1994). CMMD
rules come in two flavors: achievement and safety.
Achievement rules correspond to traditional HTN de-
compositions and specify a possible way to achieve a
goal. Safety rules prescribe additional, necessary con-
ditions. In NASA terms, achievement rules correspond
to standard procedures and safety rules to safety con-
straints or flight rules.1 Each rule has a trigger token, a
pattern possibly binding more tokens, a set of applica-
bility conditions, and a partial network of newly created
and/or reused tokens and constraints constituting a re-
finement to the constraint store. Figure 2 illustrates an
example rule that declares one must wait at least 90
minutes after a meal before exercising. The trigger of
this rule says the rule needs to be applied to every token
of type Meal. The pattern says that all exercise tokens
that can start within 3 hours after the meal need to
be checked. There are no further conditions. For each
such exercise token, a constraint is added forcing the
minimum gap between the meal and the exercise. By
adding the window condition in the specification of the
pattern, the rule prevents creating constraints between
every pair of meal and exercise tokens.

The Rule Engine expands applicable rules into indi-
vidual options, which constitute the domains of safety
and achievement variables of appropriate tokens. All
possible ways to perform a given task are captured as
options in the achievement variable of the correspond-
ing token. Each applicable safety restriction is captured
as a separate safety variable of the trigger token, and
all ways to satisfy this restriction are collected as op-
tions in the domain of this variable. Safety variables
also have conditions. For example, if in our above ex-
ample the exercise token is pushed more than 3 hours
away from the meal, the corresponding safety variable
becomes disabled.

Figure 3 shows the graphic conventions we use in this
paper. The placement of the variable circle on the token
rectangle graphically distinguishes between different to-

1Domain description in CMMD is intentionally kept close
to existing nomenclature in order to facilitate adoption.



ken variables (start, end, achievement, etc). The set of
safety variables created for a given token is shown in a
dashed box connected to the token.

Figure 3: Graphic conventions used in this paper

Maintaining safety and achievement variables in the
same way as temporal and resource variables levels the
playing field for search algorithms: the solver is free
to make decisions in any order, thus fully interleaving
action choice (planning) and resource/time assignment
(scheduling). When the domain of an achievement or
safety variable becomes empty (meaning there is no
way to achieve the goal or satisfy the safety require-
ments given other constraints), the constraint network
becomes infeasible, thus inducing backtracking.

The last major concept of the CMMD data model is
the context. CMMD contexts provide an abstraction for
encapsulating speculative computations during search.
Our implementation of contexts is functionally equiva-
lent to that of O-Plan (Tate & Dalton 2003). The sys-
tem actively maintains multiple contexts and exposes
them to the end user, thus providing a mixed-initiative
what-iffing capability. Due to the focus on explanations
and what-iffing, the CMMD agent also maintains rea-
sons to exist for various entities. Note that, since tokens
may be reused by multiple rules, reasons to exist are not
always unique. For example, a check airlock task may
be required both to satisfy EVA safety requirements
and as part of scheduled maintenance. Removing ei-
ther reason for the task will not lead to removal of the
check airlock task from the plan.

Suppose, ContextA is the current context. A new
EVA task is added in ContextA and applicable rules are
evaluated. Now suppose in ContextA there already ex-
ists a token of type check airlock that may be sched-
uled close enough to the EVA to be reused. Alterna-
tively, a new check airlock action may be created.
Given the available information, no decision whether to
reuse the existing check airlock token can be made,
so the Rule Engine creates two options (see Figure 4).
Only one standard procedure exists for EVAs, produc-
ing one option for the achievement variable.

Figure 4: Options created for eva 1

Upon a user request, or due to a decision made by
the search algorithm, a new context is derived from

ContextA. In this new context, ContextB, the domain
of the safety variable for token eva 1 is reduced to
a singleton value Option1. Propagation of this deci-
sion causes activation of the option, which in turn re-
sults in creation of a new temporal constraint between
check airlock 1 and eva 1 (Figure 5). The dashed
line in the figure shows the reason to exist.

Figure 5: Reuse of existing check airlock 1 token

Figure 6: Creation of new check airlock token

To explore the other alternative, ContextC is derived
from ContextA. Thus, ContextB and ContextC are sib-
ling alternatives. In ContextC, the value of the safety
variable for token eva 1 is set to Option2. As the
result, a new token check airlock 2 is created and
constrained to precede eva 1. Note that in this con-
text check airlock 1 has no ordering constraints with
eva 1 (Figure 6).

Token check airlock 1 was most probably added to
the plan to satisfy a safety constraint of some other
activity, such as docking of a transport spacecraft or
scheduled maintenance, and therefore has temporal and
resource constraints to some other tokens in the plan.
Although ContextB, which reuses this token, has fewer
actions, it has less flexibility, because it indirectly forces
constraints between the EVA task and the original task
related to the check airlock 1 token. One or both of
ContextB and ContextC may turn out to be infeasible
due to temporal or resource constraints. Even if both
are feasible, however, they likely have different down-
stream effects on the plan at large. Thus, it may be
beneficial to explore the consequences of both courses
of action.

Decision support functionality

Context operations
The typical user interaction with a single CMMD agent
proceeds as follows. The user loads an existing plan or
creates a new, empty plan. This plan forms the root
context, which defines available resources and high-level
goals. The user can then perform operations on the
context tree or within any leaf-level context.



Figure 7: Part of an astronaut timeline in the 5-week plan after rules are enforced. The popup shows a resistive
exercise device (RED) action. The action has been added to the schedule as part of the normal daily wake-time
activities (achievement rule a1004) for every astronaut on board (safety rule s1001). The exercise task also triggered
a safety rule s1020, which caused reservation of the RED machine for the duration of the exercise.

As mentioned earlier, contexts represent alternative
solution paths (either partial plans or point solutions).
A context can be branched (spawn a child) or deleted.
Changes from a child context can be promoted to its
parent, thus replacing the contents of the parent.

At any time there is a single context chosen as the
current context. The user can modify the state of the
current context by adding tokens and constraints and
by manually reducing domains of variables. The user
can also invoke various algorithms on the current con-
text, e.g. request the system to automatically prune
the domains of variables through propagation, to en-
force rules or to search for a solution. Alternatively, the
user can ask the Context Manager (CM) to automat-
ically derive a solution by interleaving rule firing and
search. This operation produces a context tree, which
includes a solution compliant with all known rules and
constraints, plus a tree of unexplored alternatives. The
CM loop enforces that generated sibling contexts are
unique by adding special no-good constraints.

Explanations and what-iffing

Consider the following scenario. JSC wants to plan for
a 5-week period on the ISS involving two unmanned
cargo shipments, a Shuttle mission, repair of two major
sub-systems on the exterior of the station, and a solar
experiment that must take place at a specified date and
time. The initial plan contains only the high-level tasks,
such as dock shuttle and run solar experiment.

The user can let the system run the CM loop until
a solution is found. Alternatively, she may decide to
take a more active part in the search and exploration

of alternatives. In this latter case, the next logical step
is to instruct the system to apply all relevant rules. As
the result, required actions, such as sleep and meals for
the crew and airlock operations required for docking,
are enforced and all viable ways to perform tasks are
collected (Figure 7).

At this stage, the user can use CMMD’s interactive
features to explore the set of enforced safety constraints
(and their effect on temporal windows and possible re-
source assignments) and applicable procedures. In sit-
uations where there is only one way to achieve a goal
or satisfy a safety constraint, it will be enforced im-
mediately, and required actions and constraints will be
added to the plan. However, the Rule Engine does not
make a choice when multiple options are available.

Suppose, a safety rule for solar experiments requires
the station to be properly positioned before the exper-
iment starts. This safety rule fires immediately, and
a turn task is added to the plan. This is an abstract
task, hence it cannot be directly performed. Instead,
some procedure should be followed to achieve the de-
sired outcome. Until a particular procedure is chosen,
it is impossible to say how long turning will take or
when it should start. All that is known is the turn goal
should be satisfied before the solar experiment starts.
There are two possible ways to turn the station: using
Control Moment Gyroscope (CMG) or using thrusters.
If both options seem viable, the Rule Engine does not
make a choice about which option to use – this is the
job of the search algorithm or the user.

If we let the search algorithm make the choice, it will
go with the first viable alternative – use the working



CMG to turn the station. This option would succeed if
the CMG is functioning at the time of the turn, which
depends on the CMG being repaired before, which in
turn depends on the robotic arm being repaired, which
depends on the Shuttle arriving in time with the spare
parts. The user can obtain all these causal dependencies
using the CMMD user interface.

Suppose the user wants to explore the situation when
the CMG repairs are unsuccessful. One way to model
this is to declare that the CMG is not functioning. The
user creates a branch of the current context and by
adding a new constraint, limits the duration of the state
token functioning on the CMG resource timeline.

This modification, when propagated, renders the use
of CMG for turning the station infeasible. Only one
option is left – to use the thrusters – and the next time
rules are enforced necessary tasks and constraints be-
tween them are added to the system. The user can then
compare this new plan with the plan that relied on hav-
ing a functioning CMG and decide whether committing
to the more conservative solution is a good idea.

Exploring alternatives
In the earlier example, the user created new contexts to
explore alternative ways to turn the station. When the
Context Manager runs in autonomous mode, interleav-
ing rule enforcement and making choices, it also creates
multiple context branches. In particular, the CM pe-
riodically creates checkpoints by adding two branches
of the current context: the working branch where the
choices are made and an alternative branch where the
same choices form a nogood. During an automated
search, the CM can use the alternative branches for
backtracking. Even if the autonomous loop finds a solu-
tion, the user can use the preserved alternative branches
of the context tree to explore other alternatives.

For example, suppose instead of manually exploring
scenarios with a working or broken CMG the user in-
structs the CMMD agent to find a point solution, i.e. a
total assignment for all discrete and numeric variables.
If the solver selects using the CMG for turning the sta-
tion, this would lead it to a valid solution, so the solver
will not automatically explore other alternatives. How-
ever, after the search finishes, the context tree contains
an unexplored context with “use CMG to turn the sta-
tion” listed as a no-good. The user can then instruct
the CMMD agent to find a solution for this context.

The CM implements several strategies for branching
and interleaving calls to the Solver and the RE. In addi-
tion, the user can explicitly create CM scripts by spec-
ifying the number of steps or termination conditions
for each invocation of the modules. For example, such
a script can specify that the Solver should first assign
singleton values to all achievement and safety variables
one variable at a time, and the RE should apply all
relevant rules after each such assignment. After that,
the Solver should make decisions about 10 variables at
a time. Note that scheduling decisions can make new
safety rules applicable.

The number of contexts produced by autonomous
CM mode can be very large. The scripting feature can
also be used for navigating the context tree. For ex-
ample, the user can search for all contexts where the
achievement variable of the turn task is first bound to
a singleton, or for contexts where the use of CMG is
removed from the list of options for this variable, or for
contexts where the arrival time of a cargo ship is limited
to a window of at most 5 days. The user might then
desire to inspect said contexts separately or to display
them side by side for comparison.

Related work
In this paper we discussed interactive features of
CMMD: providing explanations, exploring alternatives,
and controlling the search process. We review related
work with respect to these features.

The ability to discover reasons behind system’s
choices can be used to debug constraint based reason-
ing engines (Daley et al. 2005). Beyond debugging,
our focus is the integration of a planning tool into ex-
isting human processes. We seek to address the adop-
tion hurdle problem, by a) slowly gaining users’ trust
via on-demand decision rationales and b) allowing end-
users to refine the correct behavior of the system by
incrementally building up and maintaining the declara-
tive, corporate knowledge base that drives the decision
support process itself.

(Smith et al. 2004) generate explanations for incon-
sistencies in simple temporal networks (STN) that sug-
gest a possible relaxation of constraints, which make the
STN feasible. In (Bresina & Morris 2006), explanations
pinpoint inconsistent constraints added automatically
by the search engine to encode arbitrary ordering deci-
sions in the STN for any activities that are defined as
disjoint. CMMD’s solver component has a similar abil-
ity to discover conflict sets in inconsistent constraint
networks; we call these violations. By contrast, our ex-
planations describe why the problem was formulated as
it is and why decisions were made.

The second discussed feature is the ability to explore
alternatives. The Barrel Allocator system described in
(Kramer & Smith 2002; Becker & Smith 2000) provides
mixed-initiative “what-if” capabilities for exploring so-
lution spaces in the domain of airlift transport oper-
ations. The planning aspects of this work, however,
are limited to potential optimizations of resource us-
age by combining unrelated transport missions that are
nearby in space and time.2 In contrast, since CMMD
allows end-users to think in terms of high-level goals,
and there are frequently multiple, functionally equiva-
lent operational plans that will accomplish individual
goals, CMMD handles a great deal of reasoning about
the planning aspects of scheduling problems. Finally,
their system implements what-if exploration via lin-

2The challenge here is similar to the inefficiencies of re-
turning to one’s home base with an empty trailer in the
over-the-road trucking domain.



ear undo/redo operations, rather than the more general
branching mechanism of our contexts.

Another mixed-initiative, constraint-based schedul-
ing application is NASA’s MAPGEN, which derives
daily activity plans for the Mars Exploration Rovers.
This system does interleave planning operators into
its scheduling process to some extent, but according
to (Bresina et al. 2005) abstract tasks generally have
static expansions. Context-dependent alternatives over
suitable planning operators were rare and typically
added manually. Nor does MAPGEN appear to sup-
port multiple, simultaneous what-if branches.

We discuss search control in the next section.

Discussion and future work

Real-world deployment of planning/scheduling systems
requires gaining user trust and integrating new systems
with existing processes. The user should be able to
switch from the preexisting approach (manual or based
on another product) gradually, at her own pace.

The CMMD project aims to create a plan-
ner/scheduler to assist a human expert in dynamic,
mission critical domains such as space exploration. To
achieve this goal, CMMD provides user interface func-
tions for obtaining reasons for the system’s decisions
and allows the user to interactively explore alternative
options and to guide the system toward a more desir-
able solution. In CMMD, we don’t seek to build an
automated system that necessarily knows more about
the problem domain than an expert. Rather, we expect
it to primarily assist its human masters, who will “only
truly know what they want, when they can see what
they could get”.

Complex domains such as space exploration are sim-
ply too rich to be correctly and completely modeled.
Active involvement and frequent feedback from expert
users offer the only workable solution for addressing this
formidable issue. To achieve the necessary flexibility,
CMMD relies on extensible libraries of domain rules
and procedures layered upon efficient, domain-agnostic,
deductive inference procedures. The initial implemen-
tation of our rulebase language is arguably too unwieldy
for average subject matter experts. In follow-on efforts,
we expect to refine the syntax and semantics of the
language. Additionally, it is likely that providing sim-
plified wrappers (at the expense of expressivity) and/or
graphical languages for the generalized rules facility is
beneficial for common use cases.

To facilitate adoption, an intelligent system should
provide continuous spectrum of control, from almost
fully manual to fully autonomous. Even when oper-
ating in fully autonomous mode, the system’s ability
to elucidate reasons for its commitments (or backtrack-
inducing failures) is important for gaining user accep-
tance (in the case of correct answers) and for identifying
limitations in the system’s knowledge of the problem
domain (for incorrect and sub-optimal answers, in the
face of a previously unseen situation). Integration with

a simulation environment for evaluation of plan sensi-
tivity could also help further increase user confidence.

In domains where multiple solutions are possible, it
is useful to give the user interactive control over the
search process. The interactive nature of CMMD al-
lows incremental exploration and the opportunity to
redefine preferences on the fly. We believe that any
planner, which must cope with evolving problem do-
mains, should also support run-time configurable meta-
reasoning heuristics. The CM scripting feature already
allows control over such heuristics, but there is room
for extensions. (Myers & Morley 2003) offer some re-
lated perspectives on how quite powerful facilities for
user-defined guidance might be implemented. Effective
libraries of such meta-control rules would also facilitate
the inter-agent negotiations of a distributed problem
solving system such as CMMD.

CMMD’s interactive explanation, exploration, and
control features aim to increase user confidence in pro-
duced plans and thus to facilitate the system’s adop-
tion. CMMD’s architecture provides a good base for
the extensions outlined above.

Acknowledgments

This work was performed under NASA Contract
NNA05CS29A, and ONR Contract N00014-03-0222.
The opinions expressed are those of the authors alone.

We thank Johnson Space Center, NASA Ames Research
Center and Hamilton Sundstrand Corporation for subject
matter support.

References

Becker, M., and Smith, S. 2000. Mixed-initiative re-
source management: The AMC Barrel Allocator. In
Proc. of International Conference on Automated Plan-
ning and Scheduling (ICAPS).
Bresina, J. L., and Morris, P. H. 2006. Explanations
and recommendations for temporal inconsistencies. In
5th International Workshop on Planning and Schedul-
ing for Space.
Bresina, J. L.; Jónsson, A. K.; Morris, P. H.; and Ra-
jan, K. 2005. Activity planning for the Mars explo-
ration rovers. In Proc. of International Conference on
Automated Planning and Scheduling (ICAPS).
Daley, P.; Frank, J.; Iatauro, M.; McGann, C.; and
Taylor, W. 2005. PlanWorks: A debugging environ-
ment for constraint-based planning systems. In 1st
International Knowledge Engineering Competition.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. Seman-
tics for hierarchical task-network planning. Technical
Report CS-TR-3239, University of Maryland.
Kramer, L., and Smith, S. 2002. Optimizing for
change: Mixed-initiative resource allocation with the
AMC Barrel Allocator. In Proc. of the 3rd Interna-
tional NASA Workshop on Planning and Scheduling
for Space.



Myers, K. L., and Morley, D. N. 2003. Policy-based
agent directability. In Hexmoor, H.; Falcone, R.; and
Castelfranchi, C., eds., Agent Autonomy. Kluwer Aca-
demic Publishers.
Saint, R. 2002. Lessons learned in developing an
international planning software system. In Proc. of
SpaceOps 2002.
Smith, S.; Cortellessa, G.; Hildum, D.; and Ohler, C.
2004. Using a scheduling domain ontology to compute
user-oriented explanations. In Planning, Scheduling,
and Constraint Satisfaction: From Theory to Practice.
IOS Press.
Tate, A., and Dalton, J. 2003. O-Plan: a Common
Lisp planning web service. In Proc. of the Interna-
tional Lisp Conference.


