
Dynamic Workflow Management and Monitoring Using DDS

Pan Pan* Abhishek Dubey* Luciano Piccoli†

*Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN
†Fermi National Accelerator Laboratory, Batavia, IL, USA 60510

Abstract

Large scientific computing data-centers require a dis-
tributed dependability subsystem that can provide fault iso-
lation and recovery and is capable of learning and predict-
ing failures to improve the reliability of scientific workflows.
This paper extends our previous work on the autonomic sci-
entific workflow management systems by presenting a hier-
archical dynamic workflow management system that tracks
the state of job execution using timed state machines. Work-
flow monitoring is achieved using a reliable distributed mon-
itoring framework, which employs publish-subscribe middle-
ware built upon OMG Data Distribution Service standard1.
Failure recovery is achieved by stopping and restarting the
failed portions of workflow directed acyclic graph.

1. Introduction

Advances in super computers and storage technology cou-
pled with the advent of commodity cluster computing and
grid computing has enabled scientific research in areas such
as biology, disaster simulation, and physics among others to
become more accessible to researchers. While use of mul-
tiple computation nodes enables more complex problems to
be solved, it also increases the administrative burden. This
paper details our continuing efforts to build a distributed,
yet autonomic workflow management system that can pro-
vide reliability, availability and performability. Reliability is
the property that measures the statistical ratio of number of
jobs that finished correctly. Availability is the statistical mea-
sure that informs if the resources required to meet the current
workload were present or not. Performability measures the
number of jobs that finished within the specified Quality of
Service parameters (QoS) such as response time.

In a typical use case, workflow management systems are
required to convert the abstract specification provided by the
scientists (it is abstract because it does not include details
of the resource allocation) to an executable specification. It
then executes the parallel sub-steps, also referred to as partic-
ipants [of the workflow] that are part of the workflow. Dur-
ing the execution, it must monitor the progress of partici-
pants and monitor the hardware health. It is also required to

1http://www.omg.org/technology/documents/dds spec catalog.htm

provide data-provenance to enable retrieval of intermediate
results and failure-recovery (an important property for a self-
managing and self-protecting system). Many existing scien-
tific workflow management frameworks either do not provide
workflow monitoring, or they provide workflow monitoring
as an adjunct service. It is hard to maintain quality of service
without considering monitoring as an integrated component
of the workflow system.

The challenge in building such an integrated framework is
to balance performance with fault-tolerance. We can achieve
fault-tolerance with large-scale intensive monitoring, how-
ever, that affects the performance of the participants. More-
over, we need to avoid single point of failures, which are
present in a centrally managed system. Such bottlenecks are
also present in a hierarchical system with a single predefined
root. To mitigate these challenges we use Data-Distribution
Service for Real-Time Systems(DDS) [16]. Locally, all com-
ponents of our framework are created and scheduled using a
new hard real-time component framework built over a Linux
implementation of ARINC 653 [7]. Description of the com-
ponent framework is out of scope of this paper. But interested
readers are encouraged to read [3].

The outline of this paper is as follows: We start with a
discussion of our previous work and specific contributions
of this paper. Then, we discuss related work. Section 3 de-
scribes the workflow management system in detail. In sec-
tion 4, we describe reliable distributed monitoring, which
involves DDS. In section 4.1, we show how workflow spe-
cific monitoring is performed. We then discuss the integra-
tion of managing framework and monitoring framework with
the use of an example. In conclusion, we present an online
web monitoring application as an extension to the monitoring
framework.

1.1. Previous Work

In [13], an early design and implementation of a scientific
workflow execution framework that integrates run-time veri-
fication and monitoring was proposed. It included provisions
for data provenance, fault tolerance and pre-configured hier-
archical online monitoring. The previous version of our mon-
itoring framework was discussed in [4]. It was a statically
configured (i.e. hard wired by design based on the computing
cluster racks) hierarchical framework that provided periodic
monitoring of vital health parameters and autonomic fault



mitigation.

1.2. Contributions of this Paper

In this paper, we extend our hierarchical framework for
managing scientific workflows, and integrate it with a re-
liable and reconfigurable monitoring framework based on
DDS. The advantages of this choice will be discussed later
in the paper. We also formalize and extend the workflow
management system as a dynamic collaboration of several
actors, workflow manager, workflow instance manager and
participant managers that tracks the state of job execution
using timed state machines. These observers are instances
of reflex engines, which map incoming events to pre-defined
responses [13].

We will later describe that all three components share sim-
ilar abstract behavior and differ only in the way they imple-
ment the running state. We believe that the usage of formal
semantics will allow us to formally verify the system design
in future.

2. Related Work

Autonomic Computing: The last decade since 2001 has
seen a great deal of research activity in the field of autonomic
computing. Autonomic computing [10, 15] is inspired from
the idea of self-management in autonomous nervous system
of biological systems that governs heart rate and body tem-
perature involuntarily, freeing the brain to make other high-
level decisions. According to the autonomic computing vi-
sion, computing systems should manage themselves based
on high-level objectives set by administrators. An autonomic
computing system usually consists of several autonomic ele-
ments. Each of them possess the capability to monitor their
own managed components using sensors, and then use the
historical knowledge to analyze the current and future course
of actions, which can involve analysis and planning stages.

Understandably, autonomic computing, by the virtue of
automating the decision procedure, requires learning and de-
pends on historical information. For this purpose, it in-
volves research in prediction algorithms, machine learning
and feedback control. Our current work is built upon the
foundation of autonomic computing research.

Workflow Management Systems: Early workflow man-
agement comes from business enterprises for partially or to-
tally replacing human work in manufacturing and the office.
In [5], original work in business workflow management is
described, including workflow related concepts, modeling,
implementation and automation.

Scientific workflows are specially designed for complex
scientific computation, which has requirements such as pro-
cess reproducibility, provenance tracking, workflow descrip-
tion and system level workflow management [6]. Pegasus [1]
and Kepler [11] are two well-known workflow systems. Ke-
pler provides graphical user interface (GUI) which enables
scientists to visually design and execute scientific workflows.

It uses an actor-oriented model as the workflow engine where
common tasks can be encapsulated as reusable components.

Pegasus is another scientific workflow system with the
ability of mapping resource-independent abstract workflows
into distributed executable workflows. Both Kelper and Pe-
gasus use the Grid as the main source for job processing. The
Grid consists of a set of heterogeneous and geographically
distributed hosts, where jobs are replicated on extra hosts to
achieve reliability.

Unlike Kelper and Pegasus, Lattice QCD computations2

(LQCD) make use of dedicated clusters at Fermi lab in
Batavia, IL, USA. To better exploit capabilities of high-
speed, low-latency networks, LQCD computations employ
tightly-coupled parallel processing and increase productiv-
ity by enabling reliable operation without use of redun-
dancy. Though some light weight monitoring tools for sci-
entific workflows have been developed [14], close workflow
monitoring for clusters has been lacking. This work allows
LQCD computations to get the runtime performance analysis
and workflow status using a reliable, distributed monitoring
framework.

Figure 1. Workflow Management Framework

3. Workflow Management Framework

Instead of using a flat network topology, we use a hier-
archical framework for managing scientific workflows. A
hierarchical framework benefits from the low resource cost
and high reliability. In a hierarchical network topology, each
node focuses on its own responsibility, which reduces po-
tential resource redundancy. A manager in such a design is
responsible for a limited zone and hence can provide bet-
ter trade-off between performance and fault-tolerance as it

2http://www.usqcd.org/fnal/



Figure 2. Workflow Manager State Machine

Figure 3. Workflow Instance Manager State Machine

is relatively easier to identify a fault in a limited area. Fig-
ure 1 shows our workflow management framework. The next
sub-sections details all the actors in this sequence diagram.

Workflow Manager(WM) and Scheduler: To submit a
workflow, a scientist writes a workflow description, which
are then compiled and submitted to the workflow manager
as a workflow. We require that all workflows to be directed
acyclic graphs. The workflow manager(WM) is a singleton
and resides on the central host in our workflow management
framework. We are currently considering the idea of deploy-
ing the workflow manager over a virtual machine. That way,
we can use the live migration capabilities in order to ensure
that it does not become a single point of failure. We rely on
existing cluster schedulers such as PBS/Maui3. The sched-
uler is responsible for scheduling workflow with required re-
sources.

When a workflow request from the workflow manager
comes, the scheduler checks the resource availability. If re-
quired resources for the workflow are available, the scheduler
notifies the workflow manager that the workflow can be run.
The scheduler also tells the workflow manager the potential
resources for execution (the resources for actual execution
may change). Thereafter, the workflow manager creates a
workflow instance manager to run the workflow. Notice that

3http://www.clusterresources.com/pages/products/torque-
resourcemanager.php

a workflow instance manager is responsible for a single in-
stance of a workflow. Figure 2 describes the state machine of
a workflow manager. The WM state machine is the top level
state machine. It shows that the workflow manager is con-
sidered to be alive when it is created. Once created, it stays
in the ‘Alive state’ until a timeout, an exception or the ‘done
event’ occurs.

Alive state is a composition of seven sub-states. If
the manager is running for the first time, it will enter the
‘NotScheduled’ state from init state directly. If it is sched-
uled successfully, the state machine enters scheduled state.
Then the workflow manager starts running and enters the
‘Running’ state. The ‘Pause’ state and ‘History’ junction
are used for pausing workflow instance manager, and resum-
ing it later. The main activity happens in the Running state,
which is a sub state of Alive state. In this state, a work-
flow manager maintains five queues: (a) Remainder Queue:
workflows waiting for resources, (b)Ready Queue: Work-
flows that have resources (c) Active Queue: currently run-
ning workflows, (d) Done Queue: Workflows that finished
correctly. (e) Failed Queue: Workflows that failed with an
error.

Workflow Instance Manager(WIM): A workflow in-
stance manager(WIM) controls an execution instance of a
workflow4. It is responsible for the following tasks (a) Cre-

4The same workflow can be executed multiple times.



Figure 4. Participant Manager State Machine

ation and starting of participant managers (described later):
It checks specified pre-conditions before the launch of a par-
ticipant and checks the post-condition when participant man-
ager finishes; (b) Monitor participant manager for progress;
(c) Report any failure to workflow manager; (d) Record data
provenance and return the results to workflow manager.

Figure 3 depicts the state machine of a workflow instance
manager. When a workflow instance manager is created,
WIM enters the ‘Alive’ state. Notice that the top-level sta-
tus machine and the ‘Alive’ state machine are similar to the
workflow manager. The difference lies only in the implemen-
tation of the running state. The ‘Running’ state is a composi-
tion of two parallel threads: Dispatch process state machine
and Monitor process state machine in WIM.

A workflow is a Direct Acyclic Graph(DAG), in which
vertices represent participants and directed edges represent
the data and control dependencies between participants 5.
Five queues are used for facilitating participant management:

1. Remainder Queue: participants waiting for dependen-
cies to complete,

2. Ready Queue: participants that have resources,

3. Active Queue: currently running participants,

4. Done Queue: participants that finished correctly,

5. Failed Queue: participants that failed with an error.
This is similar to the queues used by the workflow man-
ager.

At the beginning, all participants in the workflow are in
Remainder Queue. WIM checks participants’ dependencies,
and inserts it into the Ready Queue if the dependency re-
quirements are met. When resources are available, partici-
pants are dispatched for execution and inserted into the Ac-
tive Queue. WIM sleeps for a while and then reenters ‘partic-
ipants remained’ state. WIM has a separate thread for mon-
itoring progress. This thread listens to events from partici-
pant manager. Two types of events are monitored: partici-
pant completed event and participant failed event. If partici-
pants finish successfully, they are inserted into Done Queue.

5A participant is a computation job specified in the workflow.

If participants fail while being executing, they are added to
Failed Queue. Upon mitigation of the failure condition, they
can be reinserted into Remainder Queue again. A workflow
instance is considered to be finished when all participants are
in Done Queue.

If the workflow is completed successfully, or if the work-
flow is deleted by workflow manager, WIM enters the finish-
ing state, in which the workflow instance manager releases
all resources. Timeout is an external signal coming from the
workflow manager. Timeouts are asynchronous to the state
machine.

Participant Manager: A Participant Manager runs on
the job head node. The job head node is chosen arbitrarily
from the list of nodes allocated for a participant job. Note
that we do not allow one node to belong to more than one
participant simultaneously. The participant manager is re-
sponsible for distributing binaries across the nodes or run-
ning several binaries(e.g. behaving as an independent Work-
flow Instance Manager). A participant manager monitors the
parallel job and returns the result to the workflow instance
manager.

The state machine of participant manager is shown in fig-
ure 4. It is the same as that of workflow manager and work-
flow instance manager. Again, the difference lies in the im-
plementation of running state machine. The running state
implements a Kahn Process Network [9]. After initializ-
ing, the participant manager runs sub tasks and enters idle
state. If there are input tokens to be processed, the partic-
ipant manager will enter firing state to consume tokens. In
this state it executes all the parallel instances of MPI jobs.
If any exceptions happen, or a sub task does not run suc-
cessfully, or enough tokens have been consumed, the partic-
ipant manager enters the ‘final state’. The firing state con-
tains two state machines: ‘Condition check state machine‘
and an ‘Invariant monitoring state machine’. In the condi-
tion check state machine, preconditions are checked first.
If preconditions are satisfied, fire state will be entered, and
‘monitor.startInvariant()’ function is called. When the task
is finished, ‘monitor.stopInvariant()’ function is called, and
the participant manager enters ‘PostConditions’ state. In this
state post conditions are evaluated and final state is entered.
These pre-, post- and invariant checks for each firing cycle
of the participant Kahn Process are based on the three tuple



program definition specified by Hoare in [8].

Figure 5. The layout of management entities
involving global (G), regional (R) and local (L)
managers.

4. Monitoring and Messaging Framework

The monitoring framework is required to support the auto-
nomic capabilities such as self-management and self-healing.
Two sets of values need to be monitored: infrastructure re-
source, and workflow status. Infrastructure resources need to
be checked before a workflow instance or a participant man-
ager can be scheduled. For example, some workflows may
output large amount of data, which requires disk space as
an essential resource; while other workflows may have high
demand for computing capability, thus CPU utilization need
to be checked. If a workflow fails, it is a waste of resource
and time required to start the workflow from the beginning.
Workflow status record helps determine the failure reasons.
Moreover, by using recorded intermediate results, a work-
flow can be resumed from the last failure point. Scientific
workflows require that the results can be reproduced. Work-
flow status and the intermediate results provide data prove-
nance for reproducibility.

The hierarchical network structure of monitoring is de-
scribed in Figure 5. A local manager runs in each machine
to collect and report local status. It gets monitoring control
commands from a regional manager. A regional manager is
a bridge between local managers and the central manager.
It supervises a set of local managers, collects status reports
from local managers, filters out necessary information, and
transfers the information to the central manager also known
as the global manager. A regional manager gets monitoring
control commands from the central manager, and distributes
the command to local managers it supervises. The central
manager also collects all status reports, processes these re-
ports and facilitates administrator to manage the system.

Existing computing nodes may be replaced or upgraded,
and new nodes may join the computing network at any time.
In both situations, easy extensibility is required. Traditional
server-client communication model is not suitable in this

Figure 6. Interaction between Regional Man-
ager and a Local Manager

Figure 7. Interactions between Central Man-
ager and a Regional Manager

case. In addition, a traditional client server model suffers
from the single point failure and performance bottleneck.
Additional servers may be a solution to single point failure.
However, the mechanism of server communication and in-
teraction is complex. Moreover, in our architecture, all man-
agers consume status messages and distribute control com-
mands and consume messages at the same time, acting as
server and client simultaneously.

Data Distribution Services for Real-Time Sys-
tems(DDS): Data-Distribution Service for Real-Time
Systems (DDS) [16] is a middleware standard for publish-
subscribe communication model that overcomes the typical
shortcomings of traditional client-server model. It features
extensive Quality of Service (QoS) configurations. In
publish-subscribe model, message sender and message
receiver are decoupled. Messages are distributed by pub-
lisher without knowing who will receive the messages.
Each message is associated with a special data type called



Figure 8. Data Delivery Channels. The host status information flows from bottom to top direction and
the commands flow in the opposite direction.

topic. A subscriber registers to one or more topics of its
interest. DDS guarantees that the subscriber will receive
messages only from the topics that it subscribed to. In DDS,
a host is allowed to act as a publisher for some topics and
simultaneously act as subscriber for others.

4.1. Implementation Details

Two types of topics are required for workflow monitor-
ing: control commands and host status information. Host
status information is for reporting performance status includ-
ing CPU utilization, memory utilization and so on. The host
status information messages distribute the sensor values. A
status message includes node name, sensor name and status
information. Thus the receiver gets to know the status for a
particular sensor at a specific node. As discussed in previous

section, each computing machine runs a local manager. A
local manager consists of a scheduler and a set of sensors. A
scheduler runs each sensor either periodically or sporadically
(according to the configured property). For periodic sensors,
sensing period depends on the influence of sensor value on
node’s health, as well as the rate of change of the sensed
parameter. For example, CPU utilization is critical for work-
flow scheduling, and changes rapidly. Thus the sensing time
period is set to a short value (10 seconds). This scheduler
as described in the introduction section, is based on a new
hard real-time component framework [3]. The distributed
synchronization of all sensors is achieved by an algorithm
explained in [2].

Monitoring: Currently, we are using sixteen periodic sen-
sors on all nodes (see table 1). The heartbeat sensor is critical
for monitoring. A heartbeat sensor sends out liveness mes-



Sensor Name Period Description
CPU Utilization 10 seconds Aggregate utilization of all CPU cores on the machines.
Swap Utilization 10 seconds Swap space usage on the machines.
Ram Utilization 10 seconds Memory usage on the machines.

Hard Disk Utilization 60 seconds Disk usage on the machine.
CPU Fan Speed 10 seconds Speed of CPU fan that helps keep the processor cool.

Motherboard Fan Speed 10 seconds Speed of motherboard fan that helps keep the motherboard cool.
CPU Temperature 10 seconds Temperature of the processor on the machines.

Motherboard Temperature 10 seconds Temperature of the motherboard on the machines.
CPU Utilization Per Process 10 seconds CPU usage of each process on the machines.
Swap Utilization Per Process 10 seconds Swap space usage of each process on the machines.
Ram Utilization Per Process 10 seconds Memory usage of each process on the machines.

CPU Voltage 10 seconds Voltage of the processor on the machines.
Motherboard Voltage 10 seconds Voltage of the motherboard on the machines.
Network Utilization 10 seconds Bandwidth utilization of each network card.
Network Connection 10 seconds Number of TCP connections on the machines.

Heartbeat 300 seconds Periodic liveness messages.

Table 1. Sensors

Figure 9. Domain Deployment

sages periodically (see table 1), which indicates the host’s
availability. If two or more contiguous liveness messages
are missing, the server pings the host to check whether the
host is alive or not. Meanwhile, jobs on the failed node are
rescheduled on other nodes, which avoid potential delay of
workflow completion. Each sensor collects a type of perfor-
mance status values, and stores these values locally. In nor-
mal mode, the sensor’s value is allowed to fluctuate within a
certain range. Sensor reports the value only if the difference
between current value and recorded value becomes greater
that the specified dead band.

Control Commands: Control commands are responsi-
ble for controlling sensors. Currently, we support five dif-
ferent commands: STOP (stop the sensor), START (start
the sensor), RELOAD (reload the library consisting sen-
sor implementation), CONFIG (change the sensor configura-
tion parameters, including period, deadband and threshold),
QUERY(specifically ask for the value of a particular sensor).
There are two levels of control command topics: regional
commands, which are distributed from the central manager
to a selected regional manager, and local commands, which
are issued by regional managers to respective local man-
agers. Central managers can issue local commands by us-
ing a regional command for the corresponding region and
wrapping the local command in the header. A regional com-

mand consists of command type, sensor name, and command
content. The central manager distributes regional commands
with the respective regional ID embedded in the message
header. When a regional manager receives a regional com-
mand, it extracts the local command, and distributes the com-
mand to all local mangers in that region .

Figure 10. Workflow Example

Manager Interactions: The interactions between the
central manager, regional managers and local managers are
shown in figure 6 and figure 7. In our monitoring framework,
the central manager publishes regional commands, and is a
subscriber for regional status messages. Regional managers
subscribe to local status messages and regional commands,
process these messages (and filter them) and commands, and
publish regional status messages and local commands. Lo-
cal managers publish local status messages, and subscribe
to local commands. Figure 9 shows the domain deployment
for the monitoring framework. Since the central manager
only interacts with regional managers, and a local manager
only interacts with its regional manager that supervises the
region, there is no need for local managers to communicate
directly with the central manager. We deploy a central do-
main, which is responsible for communications between the
central manager and regional managers. A regional domain
contains a regional manager and several local managers. This
design eliminates the possibility that network overload oc-
curs at central manager. Every region is distinguished using
a unique ID. The typical flow of data in this framework is
shown in figure 8.



Figure 11. Combined Infrastructure

5. Integration With the Workflow System

In previous sections, we described the workflow manag-
ing framework and their timed state machine semantics. We
also discussed the monitoring framework. In this section we
will discuss their integration by using a simple representa-
tive example. Consider a workflow shown in figure10, which
consists of four participants: job 1, job 2, job 3, and job 4 that
has been submitted to workflow manager. Participant 1 is re-
quired to execute first. Then participant 2 and 3 are executed
before participant 4 works. The order of participant execut-
ing order can be represented as {1} → {2, 3} → {4}.

The workflow instance manager (WIM) checks the re-
source requirement for participant with the scheduler, and
return sets of nodes(N) and regions(R). The requirements for
a participant are represented as N = {n1, n2 . . . ni}, and
R = {r1, r2 . . . rj}, where Children(rk) = {np . . . nq}
and N =

⋃
(Children(R)).

Assume that the requirements for participant Job1 are
N = {nA, nB , nD}, R = {r1, r2}, where Children(r1) =
{nA, nB} and Children(r2) = {nD}. The integrated in-
frastructure for this example is shown in figure 11. Each
region contains two nodes with local managers, a regional
manager, and a regional domain data space. Local managers
send their status information data to the regional domain data
space. The scheduler and the central manager run on the
same host. The central manager and regional managers are
in the central domain, and share status information through
central domain. The workflow manager runs on a separate
host. During the workflow execution, the workflow instance
manager subscribes to different domains at different times.
Following steps illustrate the sequence of activities:

1. When a scientist submits a workflow, the workflow
manager sends a request to the scheduler and asks
whether it can run the workflow or not.

2. The scheduler checks resource availability, and returns
a union of possible regions (region 1 and region 2) with
resources. Notice that the union of possible resource re-
gions may differ from the final regions that will execute
the workflow.

3. The workflow manager creates a workflow instance
manager in a separate host, and tells the workflow in-
stance the union of regions(region 1 and region 2) that
may have the required resources.

4. The workflow instance manager joins all these regions
(region 1 and region 2) by subscribing to their domain,
and starts listening to node status information in these
regions.

5. Workflow instance manager sends a request to the
scheduler when it is ready to run a participant.

6. The scheduler sends back the exact set of nodes and
their regions (node A and node B in region 1, node D
in region 2) for running the participant.

7. The workflow instance manager starts participant man-
ager in any of the given nodes. This node is also known
as the job head node. Data for running the participant
(e.g. binaries, the set of nodes and their regions for ex-
ecuting the participant) is sent to participant manager
when it is created.



8. The participant manager joins the given regions (re-
gional 1 and region 2) and starts listening to the status
of specific nodes that it has been allocated to (node A in
region 1 and node B in region 2).

9. The participant manager finishes initialization and starts
firing when the data tokens are present (node A in region
1 and node B in region 2).

10. When a node finishes its work, it returns the results to
participant manager.

11. When the participant manager gets results back from all
given nodes (node A in region 1 and node B in region
2), and gets the final result of the participant, it sends
the final result to the workflow instance manager. At
that time, the participant manager will stop running.

12. The workflow instance manager checks DAG depen-
dencies, and starts scheduling job 2 and job 3. When
all jobs are finished and the whole workflow instance is
completed, the workflow instance manager returns re-
sults to the workflow manager. The workflow instance
manager then leaves all regions, and is destroyed.

Notice that the workflow instance manager and partici-
pant managers dynamically subscribe to the sensor topics
that they are interested in. Reliable QoS provided by DDS
framework ensures that the participant manager or the work-
flow instance manager will receive the data even if any one
of the nodes in the region fails. In such a case, regional man-
agers are automatically restarted on a different node in the
region. The framework is reliable even in case of failure of
a worker node, participant manager failure, or workflow in-
stance manager failure. Node Failure: If a non participant
manager node, A, fails, its heartbeat will be lost. When the
participant manager (in node B) realizes that the node A is
lost it will schedule the work to other node.

Participant Failure: If a participant manager (in node B)
fails, its heartbeat will be lost. The workflow instance man-
ager then restarts the participant manager for executing the
participant on another set of nodes. The workflow manager
can selectively restart the failed participant from the failed
queue. Thus, it does not need to start the workflow from be-
ginning. In case a participant cannot recover (a consecutive
failure), the workflow instance manager uses the algorithm
outlined in [12] to execute the maximal workflow that can
finish and informs the administrator.

Workflow Instance Manager Failure: If a workflow in-
stance manager fails, its heart beat will be lost. the workflow
manager then creates a new workflow instance manager for
executing the workflow instance again. However, it recovers
the information about the participants that have already been
completed successfully from the database. Thus, it restarts
the session and reruns only the participants that have not ex-
ecuted yet.

Workflow Manager Failure: The central manager recre-
ates the workflow manager if its heartbeat is lost.

Figure 12. Web Extension Architecture

Central Manager Failure: Due to the reliable Quality of
service provided by DDS, Central manager data topic is not
lost even if the node hosting central manager fails. We can
just re-instantiate the central manager on another node and it
can retrieve all the previous data without any loss. We can
see that this architecture does not suffer from a single point
of failure. This is made possible by the use of reliable data
distribution services framework.

6. Monitoring Web Services

Due to the flexibility of our monitoring framework, extra
modules can be plugged in at runtime. A subscriber or pub-
lisher can join or leave a domain at any time, without affect-
ing other participants existing in that domain, or causing any
changes to current architecture. For example, we have devel-
oped a web services extension that plots the monitoring val-
ues. With this extension, a scientist is able to learn the current
performance of any host at run time from a web browser re-
motely, without installing any special client application. The
structure of this service is shown in figure 12. Since only sta-
tus information is needed, we omit command delivery in this
figure. It is possible to extend this service so that the user
can directly issue control commands from the browser. The
web host contains a DDS subscriber, and a database service.
The DDS subscriber joins central domain and registers to sta-
tus information topic. When status information is published
by workflow instance manager, the web host receives it and
stores it into a database. On the client side, a scientist views
status information through a web browser. A request for a
particular sensor values is sent from the web browser to the
web host. When the web server gets the request, it queries
sensor status data from the database, and sends it back to the
client.

7. Conclusions

In this paper, we described the design and implementa-
tion of a new workflow management system using the OMG
Data Distribution Service (DDS) standard. It is an exten-
sion of our previous work on the autonomic scientific work-
flow management systems by presenting a hierarchical dy-
namic workflow management system that tracks the state of
job execution using timed state machines. We described the



two specific channels of information flow: monitoring status
message and control commands. The advantages of using
DDS were also discussed. Firstly, it allows us to be dynamic
in that publishers and subscribers can be created at runtime.
Secondly, we eliminate any single point of failure in the net-
work. We also presented timed state machine based formal
semantics for all the major actors in the framework. Future
work in this area involves further study of workflow-resource
mapping, and formal verification of the state machine seman-
tics.

8. Acknowledgment

This work was supported in part by Fermi National Ac-
celerator Laboratory, operated by Fermi Research Alliance,
LLC under contract No. DE-AC02-07CH11359 with the
United States Department of Energy (DoE), and by DoE Sci-
DAC program under the contract No. DOE DE-FC02-06
ER41442. We are grateful to the help and guidance pro-
vided by Ted Bapty, Sandeep Neema, Jim Kowalkowski, Jim
Simone, Don Holmgren, Amitoj Singh, Nirmal Seenu and
Randolph Herber.

References

[1] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kessel-
man, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity,
J. C. Jacob, and D. S. Katz. Pegasus: A framework for map-
ping complex scientific workflows onto distributed systems.
Sci. Program., 13(3):219–237, 2005.

[2] A. Dubey, G. Karsai, and S. Abdelwahed. Compensating for
timing jitter in computing systems with general-purpose op-
erating systems. ISORC, 2009.

[3] A. Dubey, G. Karsai, R. Kereskenyi, and N. Mahadevan. To-
wards a real-time component framework for software health
management. Technical Report ISIS-09-111, Institute for
Software Integrated Systems, Vanderbilt University, 11 2009.

[4] A. Dubey, S. Nordstrom, T. Keskinpala, S. Neema, T. Bapty,
and G. Karsai. Towards a model-based autonomic reliability
framework for computing clusters. EASE’08, pages 75–85,
2008.

[5] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview
of workflow management: from process modeling to work-
flow automation infrastructure. Distrib. Parallel Databases,
3(2):119–153, 1995.

[6] A. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox,
C. Goble, M. Livny, L. Moreau, and J. Myers. Examining
the challenges of scientific workflows. IEEE Computer vol,
40:24–32, 2006.

[7] A. Goldberg and G. Horvath. Software fault protection with
ARINC 653. In Proc. IEEE Aerospace Conference, pages
1–11, March 2007.

[8] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Commun. ACM, 12(10):576–580, 1969.

[9] G. Kahn. The semantics of a simple language for parallel pro-
gramming. In J. L. Rosenfeld, editor, Information Process-
ing ’74: Proceedings of the IFIP Congress, pages 471–475.
North-Holland, New York, NY, 1974.

[10] J. Kephart and D. Chess. The vision of autonomic computing.
IEEE Computer, 2003.

[11] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow
management and the kepler system. In Concurr. Comput. :
Pract. Exper, page 2006, 2005.

[12] S. Nordstrom, A. Dubey, T. Keskinpala, R. Datta, S. Neema,
and T. Bapty. Model predictive analysis for autonomic work-
flow management in large-scale scientific computing environ-
ments. In EASE ’07, pages 37–42, 2007.

[13] L. Piccoli, A. Dubey, J. Kowalkowski, and J. Simone. Lqcd
workflow execution framework: Models, provenance, and
fault-tolerance. Journal of Physics: Conference Series, 2009.
Accepted for Publication.

[14] S. M. Serra da Cruz, F. N. da Silva, L. M. R. Gadelha,
M. C. Reis Cavalcanti, M. L. M. Campos, and M. Mattoso.
A lightweight middleware monitor for distributed scientific
workflows. In Proc. 8th IEEE International Symposium on
Cluster Computing and the Grid CCGRID ’08, pages 693–
698, May 19–22, 2008.

[15] R. Sterritt. Towards autonomic computing: effective event
management. In Software Engineering Workshop, 2002. Pro-
ceedings. 27th Annual NASA Goddard/IEEE, pages 40–47,
5-6 Dec. 2002.

[16] OMG. Data distribution service for real-time systems, v1.2.
Technical report, Object Management Group, 2007.


