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ABSTRACT 

A general probabilistic fatigue crack growth 
prediction methodology for accurate and 
efficient damage prognosis is proposed in this 
paper. This methodology consists two major 
parts. First, the realistic random loading is 
transformed to an equivalent constant 
amplitude loading process based on a recently 
developed mechanism model. This 
transformation avoids the cycle-by-cycle 
calculation of fatigue crack growth under 
variable amplitude loading. Following this, an 
inverse first-order reliability method (IFORM) 
is used to evaluate the fatigue crack growth at 
an arbitrary reliability level. Inverse FORM 
method does not require a large number of 
function evaluations compared to the direct 
Monte Carlo simulation. Computational cost is 
significantly reduced and the proposed method 
is very suitable for real-time damage 
prognosis.  Numerical examples are used to 
demonstrate the proposed method. Various 
experimental data under variable amplitude 
loading are collected and model predictions 
are compared with experimental data for 
model validation.* 

1 INTRODUCTION 

Fatigue failure is one of most common failure modes 
for structures or components, e.g. aircrafts and 
rotorcrafts (S. K. Bhaumik, M. Sujata & M. A. 
Venkataswamy, 2008). The structures experience 
different load spectrums during the entire fatigue life. 
The applied fatigue cyclic loading on structures (S. 
                                                           
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

Pommier, 2003) is stochastic in nature, which changes 
the stress amplitude and stress ratio throughout the 
entire life of the structure. One big challenge in fatigue 
crack growth prediction is the proper inclusion of 
random loading history effects, because different 
loading sequences may induce different load-
interaction effects (S. Mikheevskiy & G. Glinka, 2009) . 
It may accelerate (underload) or decelerate (overload) 
the fatigue crack growth. During the last few decades, 
many studies have been performed to investigate the 
retardation of crack growth caused by single or 
multiple overloads (D. M. Corbly & P. F. Packman, 
1973; J. R. Mohanty, B. B. Verma & P. K. Ray, 2009; 
K. T. Venkateswara Rao & R. O. Ritchie, 1988) . 
Different models have been developed: yield zone 
models (O. E. Wheeler, 1972; E. R. Willenborg J, 
Wood RA, 1971), crack closure models (W. Elber, 
1971; A. U. d. Koning, 1981; J. C. Newman, 1981; A. 
Ray, 2000) , strip yield models (v. d. L. H. de Koning 
AU, 1981; J. C. Newman, 1981; A. Ray, 2000), and 
two-parameter approach (A. H. Noroozi, G. Glinka & S. 
Lambert, 2007; A. H. Noroozi, G. Glinka & S. Lambert, 
2008).These models focus on different explanations of 
loading interaction effect and used different types of 
variable block loading for model validation. Realistic 
random loading cases and the statistical description of 
loading interaction effects have not been fully 
investigated in the past. Due to the complicated and 
nonlinear nature of random loading interaction, a cycle-
by-cycle simulation is required for each different 
loading history and is computationally expensive for 
probabilistic analysis, which usually requires a large 
number of Monte Carlo simulations. In view of this, the 
objective of this paper is to develop an efficient 
probabilistic model for fatigue crack growth prediction, 
which is based on the statistical description of the 
applied random loading. The key idea is to derive an 
equivalent stress level based on the statistical 
description of the random loading, such as the 
probabilistic distribution of applied stress range and 
stress ratio. Then, the variable amplitude loading crack 
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growth problem is reduced to an equivalent constant 
amplitude crack growth problem, which greatly 
facilitates the integration for crack length prediction.  

Fatigue reliability is a time-dependent reliability 
problem and different metrics can be used to describe 
the random nature of fatigue damage. One common 
approach is to calculate the reliability/failure 
probability at a specified life (Y. Liu & S. Mahadevan, 
2007; Y. Liu & S. Mahadevan, 2009a; Y. Liu & S. 
Mahadevan, 2009b). This approach is very useful for 
engineering design against fatigue since the service life 
is usually given in design problems. Both simulation-
based method and the FORM method can be used for 
this purpose (Y. Liu & S. Mahadevan, 2009a) . Another 
approach is the probabilistic life prediction, i.e. the 
remaining life estimation at a specified reliability level. 
This measure is very useful for damage prognosis and 
condition-based maintenance and is the focus of the 
current study. Direct Monte Carlo simulation can be 
used for probabilistic fatigue prediction, but is time-
consuming for large scale applications. Efficient 
methods for the probabilistic fatigue life prediction are 
the key objective of the proposed study and the inverse 
reliability method is proposed for this purpose. The 
inverse reliability methods have been developed and 
used for the reliability-based design optimization 
(RBDO) problem (A. Der Kiureghian, Y. Zhang & C.-
C. Li, 1994). The RBDO problem calculates the design 
variables under a specified reliability level, which is 
similar to the probabilistic fatigue life prediction 
problem (i.e., calculate the life variable under a 
specified reliability level). This is the motivation in the 
current study to investigate the inverse reliability 
method for fatigue prognosis.  

This paper is organized as follows. First, the 
proposed equivalent stress is derived for some special 
variable amplitude histories without considering the 
load interaction effect. Numerical examples are 
demonstrated to show the feasibility of the proposed 
equivalent stress level concept. Next, a small time scale 
fatigue crack growth model is briefly discussed and is 
used to obtain a correction term in the proposed 
equivalent stress level for load interaction effect. 
Following this, uncertainty quantification of material 
variability is performed, and an efficient numerical 
algorithm for probabilistic crack growth is 
implemented for iterative search in the inverse FORM 
calculation. Model predictions are compared with 
existing experimental data for model validation. Finally, 
some conclusions and future work are given based on 
the current investigation.  

2 Equivalent stress level without load interaction 

2.1 Basic concept of the equivalent stress level  

There are several different fatigue crack growth 
models, such as Forman’s model (N. E. Dowling, 2007), 
Nasgro model (NASA, 2000), EIFS-based fatigue crack 
growth model (Y. Liu & S. Mahadevan, 2009b), and 
two-parameter approach (A. H. Noroozi et al., 2007; A. 
H. Noroozi et al., 2008). Different models focus on 
different aspects and will give different predictions. A 
generic function of crack growth rate curve can be 
expressed as 

 ( )aRfdNda ,,/ σΔ=             (1) 
Where a and N are the crack length and the fatigue life 
respectively. Δσ is the stress range and R is the 
stress ratio. Eq. (1) can be reformulated as  
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For arbitrary fatigue cycle i, the increment of crack 
length can be obtained by integrating both sides of Eq. 
(2).   
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where ai is the crack size at the beginning of cycle i and 
ai+1 is the crack size at the beginning of cycle i+1. The 
total fatigue life N under arbitrary random loading 
history is the summation of Ni and can be written as 
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where a0 is the initial crack size and an is crack length 
at fatigue cycle N.  

The aim of this paper is to find an equivalent crack 
growth process under constant amplitude loading, 
which produces a similar crack length with that of the 
true random loading case. In this ideal crack growth 
process, the stress level is constant and is the proposed 
equivalent stress level (ESL). The equivalent stress 
level can be expressed as 
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The equivalent stress level can be obtained by 
equaling Eq. (4) and Eq. (5) as 
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Eq. (6) is the proposed equivalent stress level 
calculation and it can be applied to different types of 
crack growth models. For any arbitrary functions of f(). 
The analytical solution is not apparent and discussions 
of some special cases are given below. 
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2.2 Special cases of equivalent stress level   

The stress range, stress ratio and corresponding fatigue 
cycle are random variables in the probabilistic crack 
growth analysis under general variable amplitude 
loading conditions. Several special cases are discussed 
first.  
Case 1: fixed stress ratio 
 
 

 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 

(b) 
Fig.1 loading history: (a) variable amplitude loading, (b) 
equivalent loading 

A simple case for fixed R ratio is illustrated first for 
a two different loading cycles, as shown in Fig. 1. The 
solid line represents an arbitrary variable amplitude 
loading (two cycles), and the dashed line represents the 
equivalent loading. Both the variable and constant 
loadings are under the same constant stress ratio. These 
two loadings have the same initial and final crack size. 
The fatigue crack growth caused by the equivalent 
stress range is the same as that caused by the two 
arbitrary loading cycles (Eq. (7)). The crack increments 
for the true loading history and the equivalent constant 
amplitude loading can be expressed as  
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To further simplify the discussion, a modified 
Paris law is used to derive the analytical solution of the 
equivalent stress. The modified Paris law is expressed 
as 

 ( ) mm KRgKC
dN
da ))(( Δ=Δ=                     (8) 

where C and m are the fitting parameters in the Paris 
law. Parameter C is expressed as a generic function of 
applied stress ratio to include the R ratio effect. For the 
case 1, the stress ratio is fixed and the C is a constant. 
Using Eq. (7) and the modified Paris law, the fatigue 
life Ni can be rewritten as  
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where iii aK πσΔ=Δ . Eq. (9) can be rewritten as 
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In this case, only two loading cycles are considered. 
A relationship between the equivalent stress level and 
the variable loading can be developed combining Eq. (7) 
and Eq. (10) as 
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where p1 and p2 are the occurrence probability of these 
two variable loadings. This solution can be easily 
extended to infinity variable loading.  
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Case 2: fixed stress range 
The above discussion is for variable loading cases 

with a fixed stress ratio. Another simple case is 
illustrated here, in which the stress range is fixed. As 
mentioned above, the parameter C in the modified Paris 
law is the a function of stress ratio (i.e., )(RgC = ). 
Under a constant stress range, the fatigue life can be 
rewritten as: 
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Firstly only two variable loading histories are 
considered. A relationship between equivalent stress 
and variable loading can be built:  
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where p1 and p2 are the occurrence probability of the 
two stress ratio. For more general cases of many 
fatigue cycles, the equivalent stress ratio can be 
described as 
 
 
 
 

(15) 
Case 3: varying stress range and stress ratio 
Above two special cases assume one of the applied 

loading parameters (e.g., stress range or stress ratio) is 
fixed. A general case is discussed here if both of them 
are random variables. A joint distribution of them is 
required for the derivation. In this case, the crack 
growth for any arbitrary cycle is determined by the 
following equation. 

                                                                  
 
 

 
   (16) 

 
Following the same procedure, the general 

equivalent stress can be expressed as                                                     
 
 
 
 

(17) 
where ),( iii Rp σΔ  is the joint distribution of stress 
range and stress ratio. Eq. (17) is the generalized 
equivalent stress level expression without considering 
the loading interaction effect. 
The proposed equivalent stress level in this Section is 
not a brand-new concept (N. E. Dowling, 2007). In the 
current study, the probabilistic distributions of stress 
range and stress ratio are integrated, which is easy for 
understanding and application.  
 

3 Equivalent stress level considering load 
interaction 

Section 2 discussed the equivalent stress level without 
considering load interaction.  

It is well known that the “memory” effect(S. 
Mikheevskiy & G. Glinka, 2009) exists for fatigue 

crack growth and coupling effect has to be considered. 
In this section, the previous developed equivalent stress 
model is extended to include the load interaction effect, 
such as the overload retardation and underload 
acceleration. The modification is based on a recently 
developed small time scale formulation of fatigue crack 
growth and a load interaction correction function. 

3.1 Small-Time-Scale (STS) model 

A new small time scale model has been developed by 
Lu and Liu (Z. Lu & Y. Liu, 2010). This method is 
based on the incremental crack growth at any time 
instant within a cycle, and is different from the classical 
reversal-based fatigue analysis. This methodology is 
based on the interaction of forward and reverse plastic 
zone and has been validated under variable amplitude 
loadings, such as a combination of overload and 
underload. The small time scale method is briefly 
described below, and the detailed derivation can be 
found in the referred paper (Z. Lu & Y. Liu, 2010)  .  

 
Fig. 2 Schematic representation of crack tip geometry  

The developed incremental crack growth model is 
schematically shown in Fig. 2. The model is developed 
based on the geometric relationship between the crack 
tip opening displacement (CTOD) and the 
instantaneous crack growth kinetics. Considering the 
geometry of crack tips at two time instants (t and t + dt), 
the relationship between the CTOD increment δd  and 
the crack growth da can be expressed as 

                      δδθ Cddctgda ==
2

                     (18) 

where 
2
θctgC =  and θ  is the crack tip opening angle 

(CTOA). It should be noted that Eq. (18) assumes the 
infinitesimal crack growth.  

∫

∫
+

+

Δ

Δ

Δ

Δ

Δ−Δ
=

Δ
=

1

1

))(0(
1

)(
)0(

))((
1

i

i

i

i

a

a m
thii

a

a m
ii

i

da
KagRg

g

da
aRg

N

πσ

πσ

σ

σσ

Δ=

Δ=Δ

∑

∑

mi
ii

n

mi

total

i
n

eq

g
RgRp

g
Rg

N
N

1

1

1

1

)
)0(
)()((

)
)0(
)((

mm
i

i
iii

n

mm
i

i

total

i
n

eq

g
RgRp

g
Rg

N
N

1

1

1

1

)
)0(
)(),((

)
)0(
)((

σσ

σσ

ΔΔ=

Δ=Δ

∑

∑



Annual Conference of the Prognostics and Health Management Society, 2010 

 5 

 
Fig.3 Illustration of forward and reverse plastic 

zone under variable amplitude loading  
Crack growth prediction can be performed by 

directly integration of Eq. (18). The load interaction 
effect is modeled by the interaction of forward and 
reversed plastic zone model. A schematic explanation 
is shown in Fig. 3. The blue region and orange region 
represent the current forward plastic zone and the 
reverse plastic zone after overload. The limit state 
function is used to determine the crack growth regime 
during the time integration, i.e., shown as Eq. (19):  
                          folpol rara +=Δ+ ,              (19) 
If overload exist in the history, a large reversed plastic 
zone occurs ahead of the crack tip and retards the crack 
growth.  

3.2 Response function for load interaction 

The key idea of this paper is the efficient calculation 
of probabilistic fatigue crack growth. As discussed in 
the Section 1, one big challenge for fatigue analysis for 
random loading case is how to handle the loading 
sequence effects. The traditional methods are using 
cycle-by-cycle-based simulation, which is 
computationally expensive for probabilistic analysis. 
To simplify the calculation, the developed small time 
scale model is used to find a response function of the 
applied random loading. In the current investigation, 
overload spectrums are used to demonstrate this 
response function construction. For overload spectrums, 
a correction term is added to handle the load interaction 
effect of the proposed equivalent stress level model. 
The equivalent stress level consider load interaction 
effect is defined as 

eqeq σησ Δ=Δ *                        (20) 

where *
eqσΔ  is the equivalent stress level considering 

the load interaction effect and eqσΔ  is calculated 
using Eq. (17) without considering the load interaction 
term. η  is the coefficient for the load interaction effect 
and is a function of the applied overload ratio ROL and 
the occurrence probability POL of the overload cycles. 

Because η does not have physical meaning, a method 
similar to DOE (design of experiment) combined with 
regression analysis is used to construct the response 
function. First, ROL takes the value of 1.2, 1.5, and 1.7, 
respectively. At each value of ROL, the POL takes the 
value of 0.020, 0.057, 0.107, 0.167, 0.333 and 0.5. In 
the current study, a nonlinear function as shown Eq. (21) 
is used to fit the simulation results. 

B
OLOLOLOL RPAPRk )1)(log(1),( −+==η     (21) 

k is a generic function and can be fitted using the 
numerical simulation results. A and B are fitting 
parameters and equals to 0.12 and 0.38, respectively. 
Fig. 4 (a) shows the fitting curve for three different 
overload ratios. A comparison of the fitted curve with 
simulation results is shown in Fig. 4 (b).  

 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Fig.4 Comparison between fitting points with 

simulation results 

4 Numerical examples   

A numerical example of fatigue crack growth is 
shown in Fig.5. The material is Al-7075 with an initial 
crack 1.27 mm. The probability density function (PDF) 
of stress range is shown in Fig. 5 (a), which follows a 
normal distribution with mean value 200 MPa and 
standard deviation 20 MPa. 10000 cycle random 
loading is shown in Fig.5 (b). The stress ratio is a 
constant equaling to -0.5. Using the fatigue model 
discussed in Section 2, the fatigue crack prediction has 
been performed using the equivalent stress level. A 
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comparison has been shown in Fig. 5 (c). The dashed 
line is the fatigue crack growth curve under the true 
random loading history; and the solid line is the fatigue 
crack growth under equivalent stress range. Although 
some small discrepancy of fatigue crack growth curve 
can be seen, the same final crack size can be obtained.  
 
 

 
 

 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 

 
 
 
 
 
 
 

(c) 
Fig.5 (a) distribution of the random loading, (b) a 
random loading history (fixed stress ratio), (c) Fatigue 
crack growth  

.  
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(b) 
 
 
 
 
 
 
 
 
 
 
 

c) 
Fig.6 (a) distribution of the random loading, (b) a 

random loading history (fixed stress range), (c) Fatigue 
crack growth curves under random loading  

. A similar numerical example is performed for the 
fixed stress range case and is shown in Fig. 6. The 
loading follows a normal distribution as shown in Fig.6 
(b). The history of 10000 cycle random loading is 
shown in Fig.6 (a). The random loading has the 
constant stress range equaling 150 MPa, but the stress 
ratios are random variables. The mean value and 
standard deviation of stress ratio are -1 and 0.3 
respectively. Fatigue crack growth prediction has been 
done using equivalent stress amplitude. Good 
agreement of the final crack size can be observed in Fig. 
6 (c).  
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 (b) 
 

 
 
 
 
 
 
 
 
 

(c) 
Fig.7 (a) Joint distribution of the random loading, 

(b) a random loading history, (c) Fatigue crack growth 
curves under random loading. 

The last numerical example is applied to the general 
case where both stress range and stress ratio varies. A 
joint distribution (Gaussian) of stress range and stress 
ratio is shown in Fig. 7 (a). The mean value and 
standard deviation of stress range are 200 MPa and s 20 
MPa. The mean value and standard deviation of stress 
ratio are -1 and 0.3 respectively. The correlation 
coefficient between stress range and stress ratio   is 0.1. 
The random 5000 loading history is shown in Fig. 7 (b). 
Fatigue crack prediction has been performed for this 
joint-distributed stress range and stress ratio. 
Satisfactory results are obtained 

5 Inverse FORM method 

Above discussion uses Monte Carlo simulation for 
probabilistic crack growth prediction. To further 
increases the computational efficiency, analytical 
reliability method is used to avoid large number of 
simulations in the direct MC method. A detailed 
comparison (cycle-by-cycle simulation, equivalent-
stress-level with MC simulation, equivalent-stress-level 
with IFORM) has been done to demonstrate the 
efficiency of proposed method in Section 6. The Details 
of Inverse FORM method is shown below. 

5.1 Inverse FORM methodology 

The first-order reliability method is a widely used 
numerical technique to calculate the reliability or 
failure probability of various engineering problems (J. 

Cheng & Q. S. Li, 2009; S. Thorndahl & P. Willems, 
2008; D. V. Val, M. G. Stewart & R. E. Melchers, 
1998). Many studies have been reported on static 
failure problems using the FORM method (L. Cizelj, B. 
Mavko & H. Riesch-Oppermann, 1994; T. H. Skaggs & 
D. A. Barry, 1996; S. Thorndahl & P. Willems, 2008). 
It has been applied to fatigue problems to calculate the 
time dependent reliability (T. Y. Kam, K. H. Chu & S. 
Y. Tsai, 1998; M. Liao, X. Xu & Q.-X. Yang, 1995; Y. 
Liu & S. Mahadevan, 2009a; Y. Xiang & Y. Liu, 2010 
(accepted) ). Unlike the FORM method (A. Haldar & S. 
Mahadevan, 2000; Y. Liu, Mahadevan, S, 2009), the 
inverse FORM method tries to solve the unknown 
parameters under a specified reliability or failure 
probability level, which is more suitable for 
probabilistic life prediction (i.e., remaining life 
estimation corresponding to a target reliability level).  

Limit state function is required for the analytical 
reliability method. A generic limit state function is 
expressed as Eq. (22a) as a function of two sets of 
variables x and y. x is the random vector and represents 
material properties, loadings, and environmental factors, 
etc. y is the index variable vector, e.g., time and spatial 
coordinates. The limit state function is defined in the 
standard normal space in Eq. (22a) and the non-
Gaussian variables will be discussed later. The limit 
state function definition is similar to the classical 
FORM method (A. Haldar & S. Mahadevan, 2000). 
The solution for the unknown parameters needs to 
satisfy the reliability constraints, which are described in 
Eq. (22b) and Eq. (22c). β is the reliability index, which 
is defined as the distance from origin to the most 
probable point (MPP) in the standard normal space. 
The failure probability Pf  can be calculated using the 
cumulative distribution function (CDF) Φ of the 
standard Gaussian distribution. Numerical search is 
required to find the optimum solution, which satisfies 
the limit state function (Eq. (22d)). Details of the 
general inverse FORM method and concept can be 
found in (A. Der Kiureghian et al., 1994). 
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  The overall objective of the inverse FORM method is 
to find a non-negative function satisfying all constraint 
conditions specified in Eq. (22). Thus, the numerical 
search algorithm can be used to find the solutions of 
the unknown parameters. Numerical search algorithm 
is developed to iteratively solve the Eq. (22). The 
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search algorithm is expressed as Eq. (23) after k 
iterations.  
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where kd1  and kd 2  are the search directions 
corresponding to different merit functions and can be 
calculated using Eq. (24)  

[ ]

[ ]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∇+−⋅∇

∇
∇

−−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −∇
∇

−⋅∇

=

y
yxg

yxgyxgxyxg

yxg
yxgx

d

xyxg
yxg

yxgxyxg
d

xettx

x

x
ett

k

x
x

x

k

),(
),(),(),(

),(
),(

0

),(
),(

),(),(

arg

arg

2

21

β

β

   (24) 

a1 and a2 are the weight of function and can be 
calculated as 
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The convergence criterion for the numerical search 
algorithm is 
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where ε  is a small value and indicates that the relative 
difference between two numerical solutions is small 
enough to ensure the convergence. It is noted that the 
above derivation assumes the random variables are 
standard Gaussian variables. This paper uses the 
transformation method proposed by Rackwitz and 
Fiessler (R. a. F. Rackwitz, B, June 1976) to transform 
the non-Gaussian variables to their equivalent standard 
normal space before the use of the inverse method. The 
random variable transformation can be expressed as 
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where ( )Φ  and ( )*xFX are the cumulative distribution 
functions (CDF) of the standard normal and original 

non-normal variables, respectively. ( )φ  and ( )*xf X  
are the probability density function (PDF) of the 
standard normal and original non-normal variables, 
respectively. This transformation works well for the 
fatigue problem in the current investigation since the 
distributions of random variables are not highly skewed. 
For highly skewed distribution, the transformation 
proposed by Rackwitz and Fiessler (R. a. F. Rackwitz, 
B, 1978) can be used instead. 
    In practical applications, the crack growth prediction 
with a certain confidence bound is usually required for 
risk assessment and decision making. If a confidence is 
specified, the crack growth corresponding to the 
specified confidence bounds can be calculated using 
the above mentioned inverse FORM method. 

6 Probabilistic crack prediction and comparison 
with experimental data 

Previous discussion did not include much more 
uncertainties than those of the material properties.  
Previous discussions do not include the uncertainties 
from material properties and only focused on the mean 
prediction. Monte Carlo simulation is used for 
probabilistic crack growth analysis and the fitting 
parameters in the constant amplitude loading testing are 
assumed to be random variables. These random 
variables represent the material uncertainties. The 
constant amplitude loading testing is shown in Fig. 8 
for Al-7075 and fitted statistical distribution of material 
parameters is listed in Table 1. The experimental data 
are reported in (T. R. Porter, 1972). A summary of the 
properties of the specimens used for the collected 
experimental data are listed in Table 2.  

 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 8 Fatigue crack growth for Al-7075 under 

different stress ratios 
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Table 1 Stochastic coefficient of a and fatigue 
limit 

Material stress 
ratio parameter mean std. 

C 7.72E
-10 

1.82E
-10 0.03 

Kc 50 5 

C 7.96E
-10 

1.88E
-10 

Al  
7075-T6 

0.05 
Kc 50 5 
 

Table 2 Geometry and material properties of plate 
specimens 

Specimen material 7075-T6 
Ultimate strength   uσ    (MPa) 575 

Yield strength    yσ   (MPa) 520 

Modulus of elasticity E (MPa) 69600 
Plate width (mm) 305 

Plate thickness (mm) 4.1 
Ref. (T. R. Porter, 

1972) 
Experimental data of Al 7075-T6 (T. R. Porter, 1972) 

under two blocks loading spectrum are used for model 
validation. A schematic illustration of the two blocks 
loading is shown in Fig. 9. p and n in Fig. 9 controls the 
number of cycles at the high amplitude and the low 
amplitude, respectively. Eight sets of experimental 
different block loadings (two constant and six variable 
amplitude loadings) are used for model validation and 
are plotted in Fig.9. p and n values for each spectrum 
loading are shown in the legend. 

 
 
 
 
 
 
 
 
 
 

Fig. 9 Schematic illustration of the two blocks loading 
(T. R. Porter, 1972) 

In Fig. 10, the fatigue crack growth prediction has 
been performed for Al-7075-T6. Both one thousand 
samples of Monte Carlo simulation (equivalent stress 
level) and Inverse FORM method are used to calculate 
the probabilistic fatigue crack distribution. In Fig. 10, 
the fatigue crack growth prediction results for Al-7075 
have been shown for 2 constant amplitude loading 
cases ((a),(b)) and 6 variable amplitude loading cases 
((c)~(h)). The triangles shown in Fig. 10 are the 
experimental data (T. R. Porter, 1972). The solid lines 

and the dashed lines represent median prediction of 
fatigue crack growth and 90% confidence bounds using 
Monte Carlo simulation, respectively. The dots shown 
in Fig. 10 are for the results of median and 90% 
confidence bounds using the inverse FORM method. It 
is shown that the inverse FORM results agree well with 
Monte-Carlo simulation for the median fatigue life 
prediction and 90% confidence bounds. Both methods 
capture the major trends of fatigue life curves and 
scatters.  
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(e) 
 
 
 
 
 
 
 
 
 
 
 
 

(f) 
 
 
 
 
 
 
 
 
 
 
 
 

(g) 
 
 
 
 
 
 
 
 
 
 
 
 

(h) 
Fig. 10 Comparison of the predicted results with 

the experimental data of Al 7075-T6 under two block 
loading (T. R. Porter, 1972) 

A very large scatter of fatigue crack prediction can 
be observed in Fig. 10. This is because large variance 
of the two input random variables. In the current study, 
the random variables are assumed to be independent 
and the correlation effects will be included in future 
study.  

A summary of computation time using three different 
approaches are shown in the Table 3. The computations 
are performed using the same PC: dual core (intel 6600) 
with 4gb rams and windows 7 OS. MATLAB 2009b is 
the program used in the current study. For cycle-by-
cycle simulation, the computation time for simulation 
single run is about 5 hours. 1000 sample cycle-by-cycle 
MC simulation is estimated. It can be easily observed 
that, the MC simulation using the equivalent stress level 
is much more efficient. It is shown that the most 
efficient one is the equivalent stress level concept with 
the inverse FORM. The computational time is several 
magnitudes less than both cycle-by-cycle and 
equivalent-stress-level-based MC simulation. Thus, the 
proposed method (equivalent stress level with inverse 
FORM) is very useful for real-time damage prognosis 
and is potentially initial damage tolerance design. It 
should be noted that a large number of MC simulation 
is required for very low failure probability (e.g., one 
million samples for 0.001% failure probability) to 
increase the simulation efficiency. In that case, the ratio 
of computational time of the proposed method and the 
direct MC will be even larger. Due to the extreme long 
computational time, direct MC simulations with a large 
number of simulation samples were not performed.  
 

Table 3 Summary of computation time 
Approach Computation time

Cycle-by-cycle simulation  
(1000 sample MC simulation ) 

5000 hours 
(estimated) 

Equivalent stress level  
(1000 sample MC simulation)  1 hours 

Equivalent stress level  
(Inverse FORM) 50 seconds 

 

7 Conclusion   

In this paper, an efficient probabilistic methodology 
is proposed for fatigue crack growth prognosis. The 
proposed method simplifies the fatigue crack growth 
analysis under general random loadings and does not 
need cycle-by-cycle calculation. Analytical inverse 
FORM method avoids large number of simulations and 
further enhances the computational efficiency. The 
advantage makes it very suitable real-time damage 
prognosis and decision making. Extensive experimental 
data for Al-7075-T6 under two blocking loading 
spectrum are used to demonstrate the validation of the 
proposed methodology. Generally, the model 
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predictions agree with experimental observations well. 
Current study focused on two blocking loading 
spectrums. Future study is required to extend the 
proposed method to structural system applications 
under general random loadings.  Online prognosis will 
be investigated based on the proposed methodology.  
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