
Leveraging EM Side-Channel Information to Detect
Rowhammer Attacks

Zhenkai Zhang†
Texas Tech University

Zihao Zhan†
Vanderbilt University

Daniel Balasubramanian
Vanderbilt University

Bo Li
UIUC

Peter Volgyesi
Vanderbilt University

Xenofon Koutsoukos
Vanderbilt University

Abstract—The rowhammer bug belongs to software-induced
hardware faults, and has been exploited to form a wide range
of powerful rowhammer attacks. Yet, how to effectively detect
such attacks remains a challenging problem. In this paper, we
propose a novel approach named RADAR (Rowhammer Attack
Detection via A Radio) that leverages certain electromagnetic
(EM) signals to detect rowhammer attacks. In particular, we
have found that there are recognizable hammering-correlated
sideband patterns in the spectrum of the DRAM clock signal. As
such patterns are inevitable physical side effects of hammering
the DRAM, they can “expose” any potential rowhammer attacks
including the extremely elusive ones hidden inside encrypted
and isolated environments like Intel SGX enclaves. However, the
patterns of interest may become unapparent due to the common
use of spread-spectrum clocking (SSC) in computer systems.
We propose a de-spreading method that can reassemble the
hammering-correlated sideband patterns scattered by SSC. Using
a common classification technique, we can achieve both effective
and robust detection-based defense against rowhammer attacks,
as evaluated on a RADAR prototype under various scenarios. In
addition, our RADAR does not impose any performance overhead
on the protected system. There has been little prior work that
uses physical side-channel information to perform rowhammer
defenses, and to the best of our knowledge, this is the first
investigation on leveraging EM side-channel information for this
purpose.

I. INTRODUCTION

As a fundamental requirement for implementing security
measures, memory protection prevents a process from modify-
ing memory it does not own. However, this essential protection
becomes at stake due to the discovery of a vulnerability,
known as the rowhammer bug [35], in the underlying dynamic
random-access memory (DRAM). The rowhammer bug be-
longs to the class of software-induced hardware faults, which
makes unauthorized data modifications possible.

The existence of the rowhammer bug has been reported
in numerous DRAM chips of DDR3 and DDR4 [35], [40].
Since its discovery, this hardware vulnerability has been
continuously exploited to form a wide range of powerful
rowhammer attacks. Examples of such attacks include sandbox
escaping [26], [49], [54], privilege escalation [8], [25], [26],
[54], [61], [64], cryptography subversion [7], [51], denial-
of-service [34], [41], [66], and even confidentiality breach-
ing [39]. Furthermore, rowhammer attacks have been effec-
tively demonstrated in the presence of ECC mechanism [16]
as well as in the context of only sending network packets [41],
[60].

†The first two authors contributed equally to the paper.

In response, many defense techniques against rowhammer
attacks have been proposed in recent years, including sev-
eral detection-based approaches [4], [27], [30], [33], [46].
Unfortunately, as more sophisticated rowhammer attacks are
developed, the effectiveness of detection-based rowhammer
defenses becomes questionable. As demonstrated in [25], all
of the practical rowhammer attack detection approaches can
be circumvented. In particular, by abusing the Intel SGX tech-
nology and closed-page memory controller policy, rowhammer
attack detection based on either static analysis [33] or dynamic
monitoring [4], [27], [30], [46] will become ineffective.

In this paper, we introduce a new direction to addressing
the problem of rowhammer attack detection. Specifically, we
propose to leverage certain electromagnetic (EM) emanations
to effectively and robustly detect rowhammer attacks. EM side-
channel information is capable of revealing much knowledge
about the ongoing activity in a computing device, and it has
been extensively exploited to breach confidentiality [2], [3],
[18], [20]–[23], [31], [38], [50]. However, it has been realized
that, as a double-edged sword, such side-channel information
can also be used to help build security defenses [28], [45].
Following this line, for the first time, we utilize EM side-
channel information to our advantage for rowhammer attack
detection. Because EM emanations are inevitably issued dur-
ing any computation and can be hardly suppressed by outside
adversaries, our proposed approach can detect any potential
rowhammer attacks including the extremely elusive ones that
are hidden inside attacker-controlled SGX enclaves. Moreover,
our detection approach does not degrade the performance or
resource utilization of the system under protection.

The main contributions of this paper are as follows:

• We study the correlation between certain EM emanations
and rowhammer attacks, based on which we propose a
systematic rowhammer attack detection approach named
RADAR (Rowhammer Attack Detection via A Radio).

• We propose the first approach to reversing the scattering
effect of spread-spectrum clocking on EM side-channel
information issued from high-frequency clocks in a com-
puting device.

• We have implemented a RADAR prototype using a $299
software-defined radio device, and we evaluate the ef-
fectiveness and robustness of our EM-based rowhammer
attack detection under different scenarios.

There has been little prior work that uses physical side-channel

information to perform rowhammer defenses, and to the best
of our knowledge, this is the first investigation on leveraging
EM side-channel information for this purpose.

The rest of this paper is organized as follows: Section II
briefly sets the background; Section III formulates the threat
model; Section IV presents a new direction to rowhammer
attack detection; Section V studies the correlation between EM
side-channel information and rowhammer attacks; Section VI
proposes our RADAR system, which can achieve rowhammer
attack detection in a non-intrusive manner; Section VII eval-
uates the proposed RADAR system; Section VIII gives the
related work; and Section IX concludes this paper.

II. BACKGROUND

In this section, we provide some background information
on DRAM organization, the rowhammer bug, and rowhammer
attacks. Moreover, we briefly present the physical side effects
leveraged in this paper, namely the EM emanations.

A. DRAM Organization

Modern computing devices use DRAM as the main memory.
For better memory bandwidth, DRAM is often partitioned
into multiple channels. Each channel may be associated with
multiple dual in-line memory modules (DIMMs). Each DIMM
has one or more ranks (e.g., modern DIMMs can be single-
/dual-/quad-/octal-rank), and each rank has multiple banks
(e.g., normally there are 8 banks for DDR3 and 16 banks for
DDR4). As depicted in Fig. 1, each bank can be viewed as
a two-dimensional array of memory words, organized in rows
and columns. The size of the memory word depends on the
data bus width, and decides how many cells are needed to store
its content (e.g., 64 cells are needed to store a 64-bit memory
word). Each cell consists of a capacitor and a transistor, where
the capacitor is either charged or uncharged to represent a
binary value1, and the transistor is used to access the capacitor.
In each bank, there is also a row buffer, which can hold the
contents of a single row. To access a cell, the corresponding
row has to be activated first to put the contents of the row
into the row buffer, and then the access is served from the row
buffer. An activated row remains in the row buffer until being
closed by the memory controller, and before then, consecutive
accesses to that row will be served directly from the row buffer.
Depending on what memory controller policy is being used,
an active row can be closed due to different reasons: If the
memory controller uses an open-page policy, the active row
will not be closed until a different row in the same bank is
accessed; and such a causal event is often called a row conflict.
On the other hand, if a closed-page policy is employed, the
memory controller will proactively close the row [25], [41].

Note that a DRAM cell can only keep its charged state for a
short period of time, as its capacitor leaks its charge over time.
In order to prevent any data loss, the cells must be refreshed
regularly. DDR3 and DDR4 specifications require that the

1Depending on the implementation, some cells use the charged state to
represent ‘1’, while other cells use the charged state to represent ‘0’.

Rank 0 (front of a DIMM) Rank 1 (back of a DIMM)

Memory
Controller

DIMMs

Channel 0

Channel 1

Bank 7

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

Bank 0

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

A simplified view of a rank

Fig. 1. A representative DRAM architecture (two channels and four dual-rank
DIMMs). A rank consists of all the chips on the same side (front or back) of
a DIMM.

refresh interval must not be longer than 64ms. Normally, the
refresh interval is between 32ms to 64ms.

B. The Rowhammer Bug and Hammering

As DRAM becomes denser, the capacitor in a cell becomes
smaller and the voltage margin separating ‘0’ and ‘1’ be-
comes lower, which unfortunately have reduced the overall
DRAM reliability [44]. First thoroughly studied in [35], the
rowhammer bug has become a well-known DRAM reliability
issue: When a DRAM row is repeatedly activated and closed
(namely, the row is hammered) enough times within a refresh
interval, one or more bits in its physically adjacent rows can be
flipped to the opposite value2. Usually, a row that is hammered
is referred to as an aggressor row, and a row that has flipped
bits is called a victim row.

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

(A)

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

(B)

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Row Buffer

(C)

Fig. 2. Three possible hammering techniques in the literature: (A) single-
sided hammering [35]; (B) double-sided hammering [54]; and (C) one-location
hammering [25].

Since many of the memory controllers use an open-page
policy, to trigger the rowhammer bug on such systems, two
aggressor rows in the same bank need to be alternately
activated. Consequently, the row buffer of that bank will
alternately hold the contents of these two aggressor rows. If the
two aggressor rows are not intentionally chosen to “sandwich”
a row, it is termed as single-sided hammering, as shown in
Fig. 2 (A). On the other hand, if the two aggressor rows are
selected to specifically lie on both sides of another row, it
is called double-sided hammering, as shown in Fig. 2 (B).
As demonstrated in practice, double-sided hammering is much
more effective and efficient than single-sided hammering [54].

2The large current coupled with toggling the activation of a row repeatedly
and rapidly accelerates the discharge rate of cells in the physically adjacent
rows. Before the next refresh, if too much charge in a cell has been leaked,
the stored bit information will be lost, namely the bit is flipped from 1 to 0
or from 0 to 1, depending on whether 1 or 0 is represented by the charged
state.

Some new memory controllers may use a closed-page (or
hybrid) policy, and in such cases even one aggressor row is
sufficient to induce bit flips around the row, which is called
one-location hammering [25], as shown in Fig. 2 (C).

C. Rowhammer Attacks

Because the rowhammer bug allows one to modify the
contents of a DRAM row without explicit permission, severe
security risks are posed. Since the discovery of this devastating
hardware vulnerability, many powerful attack vectors have
been developed by exploiting the rowhammer bug to compro-
mise the security defenses of a system. Usually, a rowhammer
attack consists of three basic phases:

1) Exploration phase. In the first phase, the attacker inten-
sively hammers the DRAM and searches for exploitable
bit flips. The prerequisite for performing this phase is to
design approaches used to trigger the rowhammer bug
on the targeted system. More details will be described
below.

2) Manipulation phase. In the second phase, the at-
tacker steers the targeted security-critical data to the
vulnerable memory location that has the exploitable
bit flips found in the first phase. There are several
approaches developed for this specific task, including
memory spraying [54], memory grooming [61], memory
waylaying [25], and memory ambush [13].

3) Exploitation phase. Once the security-critical data has
been placed at the vulnerable location, in the third phase,
the attacker triggers the rowhammer bug again to flip the
bit(s), which achieves the final compromise.

When designing an approach to triggering the rowhammer
bug on the targeted system, several technical challenges need
to be overcome. One challenge is the lack of address mapping
information, including both virtual-to-physical and physical-
to-DRAM, which leads to some approaches using inefficient
random testing [49], [54]. While memory deduplication can
be exploited to ease this challenge [8], attackers have tried to
recover such mapping information, especially by reverse en-
gineering the physical-to-DRAM address mapping [47], [59],
[64], for more efficient and effective double-sided hammering.

Interconnect (an aggregate view of different buses)

Cache

Core

Processor

GPU

Memory Controller

DRAM

I/O Devices
e.g. NIC

DRAM Bus

(1)(2)
(3)

(4)

Fig. 3. Different types of techniques for rapidly and repeatedly access the
same locations in DRAM.

The other challenge is how to access the underlying DRAM
quickly enough. To trigger the rowhammer bug, the same
location in DRAM has to be accessed rapidly; otherwise, even
if the DRAM were extremely vulnerable to hammering, one
would still not be able to exploit the bug for a successful
rowhammer attack. However, due to the presence of the
caches, most of the memory accesses to the same location can
hardly reach the DRAM. (This is why the rowhammer bug
is seldom triggered during the ordinary use of a computing
device, even though the underlying DRAM might be extremely
vulnerable.) Over the past few years, several techniques have
been developed to overcome this challenge (e.g., to circumvent
the effect of the caches). Fig. 3 shows a typical computing
platform, and each of the dashed lines in the figure represents
a possible path taken to enable fast access to the same location
in DRAM: (1) flushing or evicting CPU caches [1], [4], [26],
[35]; (2) bypassing CPU caches [49], [61]; (3) evicting GPU
caches [19]; and (4) maneuvering DMA buffers from I/O
devices [60].

D. EM Emanations

Because the electric current in the circuitry of a computing
device varies with time, EM emanations arise. As inevitable
physical side effects, EM emanations carry information about
the underlying electronic activities, which can be linked with
certain high-level activities such as which instructions or
loops are being executed. Thus, this information leakage
has been exploited to facilitate certain attacks, e.g., stealing
cryptographic keys [3], [21]–[23], or inferring privacy [18],
[38]. Yet, other than being exploited for side-channel attacks,
EM emanations have also been used to track code execution
for ensuring control-flow integrity [28], [45] or profiling [10],
[56].

The generated EM emanations are distributed widely on the
spectrum. Although the sources of many of these emanations
are unknown, a few of them are in fact easy to determine, e.g.,
the ones created by well-known periodic activities like clock-
ing and DRAM refreshing. The EM-emanated signals created
by these periodic activities are also strong and can propagate
far. Interestingly, some of these signals may be unintentionally
modulated by other activities in the form of amplitude mod-
ulation (AM) or frequency modulation (FM) [12], [48]. For
example, signals emanated from switching voltage regulators
may be AM-modulated by activities in the circuits they power,
and signals generated by periodic DRAM refreshes may be
AM-modulated by memory access activities [12]. Therefore,
these signals act as carrier signals that convey information
about the modulating activities.

III. THREAT MODEL

Assume an attacker has access to a system equipped with
DDR3 or DDR4 memory modules. The attacker attempts to
find out whether the DRAM of the system has the rowhammer
bug, and if so, the attacker also scans for exploitable bit flips
for a subsequent attack. Given the very low probability that
exploitable bit flips can be found in the first few trials, the

attacker needs to intensively hammer the DRAM for such
bit flips. In this paper, we assume that the attacker will
either utilize special instructions such as clflush (namely
flushing the cache) or movnti (namely bypassing the cache),
or constantly evict the corresponding cache lines, to achieve
either double-sided, single-sided, or one-location hammering.
To circumvent simple detections, the attacker may manipulate
the system to run an SGX enclave, inside which the malicious
activities are performed.

In this paper, we mainly focus on computing platforms that
use DDR (instead of low-power DDR) and are seldom moved
on a daily basis, such as personal computers and workstations.
Although mobile/embedded systems are excluded, this actually
includes most of the currently vulnerable systems that have a
much wider rowhammer attack surface than mobile/embedded
systems and are harder to protect [19], [61], [62].

Another assumption is that the attacker is not able to
physically interfere with the EM emanations generated by the
system, e.g., she cannot place a high-power radio transmitter
nearby the target system and use it to jam the frequency band
of interest. Note, however, that this assumption does not limit
the applicability of our proposed method at all, due to the fact
that rowhammer attackers rarely need or have physical access
to the target systems.

IV. NEW DIRECTION TO ROWHAMMER DETECTION

Under the stated threat model, developing effective
detection-based defense techniques against the possible
rowhammer attacks remains an open research problem [13],
[25], [59]. In this section, we discuss why leveraging physical
side-channel information, EM emanations in particular, can
provide a feasible solution to this problem.

As we know, to effectively and robustly detect any type
of attacks, we need to discover and rely on information that
has a strong correlation with these attacks but can hardly be
tampered or concealed by any attacker-controllable running
program. Since physical side-channel information leaks much
fine-grained knowledge about system activities and can hardly
be corrupted by remote adversaries in reality, we can leverage
such information to help detect anomalies, including rowham-
mer attacks.

A variety of physical side effects are inevitably generated
during any activity of a computer system. For instance, power
is consumed, heat is issued, EM signals are radiated, and
even sound or light may be produced. Some of these side
effects may have strong correlations with the operations of
certain hardware components. As we can observe from Fig. 3,
the memory controller, memory bus, and DRAM modules are
the three hardware components that are always involved in a
rowhammer attack, no matter which technique is employed to
hammer the DRAM. Thus, we should primarily consider the
physical side-channel information that is strongly correlated
with the operations of these three hardware components. In
this paper, we argue that we can leverage EM side-channel
information for this purpose.

The rationale for leveraging EM side-channel information
to detect rowhammer attacks lies in the following facts:

• As mentioned in Section II, EM emanations are inevitable
physical side effects during any computation, issued both
intentionally and unintentionally [2], [12], [48], [65].

• EM emanations can be measured in a contactless manner
(e.g., via a radio device). This removes the need for un-
realistic hardware modifications to guarantee practicality.

• Compared to other physical side-channel information like
power consumption, EM emanations can provide more
fine-grained and niche-targeting insight into an activity.

• Most importantly, as illustrated in [11], [12], [48], [65],
rich information about memory activities can be found in
some EM emanations.

In the following, we will present our investigation on finding
information correlated with a potential rowhammer attack in
EM emanations. Additionally, we will describe our system de-
sign that uses simple and affordable measurements to achieve
an effective detection-based rowhammer attack defense. In the
course of our discussion, we will use EM emanations and EM-
emanated signals interchangeably.

V. FINDING HAMMERING INFORMATION IN EM
SIDE-CHANNEL EMANATIONS

As mentioned in Section II, rowhammer attacks need a
hammering process to tentatively trigger the rowhammer bug,
and then search for exploitable bit flips. The whole hammering
process consists of many hammering attempts, each of which
requires a large amount of toggling the activation of aggressor
row(s) within a short period of time. In the following discus-
sion, we will call such an activation toggling as a hammering
iteration. Therefore, there is a fast and nearly-regular switching
behavior in rowhammer attacks in nature. As a consequence,
when the three aforementioned hardware components (namely,
the memory controller, memory bus, and DRAM modules) are
stressed by hammering, the information about the hammering
activity is very likely carried by some EM-emanated signals
at certain frequencies.

153 154 155 156 157 158 173 174 175 176 177 178 179 319 320 321 322 323 324 325

Time(ns)

0

500

1000

1500

2000

2500

C
o
u
n
ts

clflush

movnti

eviction

Fig. 4. The timing distributions of 10,000 hammering iterations in terms of
approaches using clflush, movnti, and eviction.

Theoretically, such signals can be in any place of the EM
spectrum, but most likely, they should be correlated with the
frequency of the switching behavior. However, we do not
specifically know the switching frequency, because there can
be multiple approaches to triggering the rowhammer bug on

the same machine, each of which may have different computa-
tional overhead in its hammering iteration. Moreover, the time
consumed in each hammering iteration can hardly be identical,
which will result in a small range of switching frequencies in
the context of a single hammering attempt. For example, for
each of the three most commonly used approaches, which are
flushing the cache, bypassing the cache, and evicting the cache,
Fig. 4 shows the corresponding timing distribution of 10,000
hammering iterations. The timing measurements are performed
on a platform equipped with an Intel Haswell G3258 processor
and 8 GiB DDR3-1333 DRAM. In the rest of this paper, unless
stated otherwise, this is the platform used in the examples.

Nevertheless, the possible frequencies of this switching
behavior are bounded to some extent. Because the rowhammer
bug cannot be triggered if there are not enough times of
hammering iterations in between two refreshes, the frequency
has a lower bound. Obviously, the frequency must also have an
upper bound, because memory accesses cannot be arbitrarily
fast. (In effect, if the memory controller uses an open-page
policy, there exists an even tighter upper bound due to row
conflicts.)

A. Direct EM Emanations

Given the fast switching behavior in a hammering attempt
(e.g., the row buffer in a bank is repeatedly opened and closed
along with discharging and charging the aggressor rows), we
conjecture that there should be clear EM-emanated signals at
the possible switching frequencies. Therefore, we are tempted
to identify these signals directly.

However, there are some challenges and concerns in mea-
suring such direct EM emanations, even though their existence
is plausible: First, the switching periods are normally in the
range of one hundred to several hundreds of nanoseconds,
and therefore the corresponding frequencies are in a rather
low spectral range, where much noise exists due to radio
stations, appliances, and other sources. Second, these signals
may be very weak, and measuring such long wavelength weak
signals may require a physically large antenna or a special
antenna whose return loss is minimal around the frequencies
of interest.

In our experiments, we did not observe any EM-emanated
signal that is strongly correlated with the hammering switching
behavior in the frequency range of interest. Granted, we used
only a software-defined radio with a telescopic whip antenna
to try to capture such signals. Therefore, it may be possible
to find some signals of interest if using some lab-grade
instruments and carefully placing some customized EM probes
close to the chips. However, if such equipment is required,
the practicality of our detection approach will be decreased.
For our purposes, we need to leverage other possible EM
emanations containing hammering attempt information that
can also be easily measured.

B. AM-Modulated EM Emanations

As we know, many system modules like clocks and voltage
regulators intrinsically create EM-emanated periodic signals.

According to the study in [12], some of these periodic signals
will be AM-modulated by certain types of activities, and thus
information about the corresponding activities can be found in
those modulated signals. Moreover, such signals are relatively
strong and can propagate far, which lowers the requirements
for measuring them. Inspired by this study, we investigate
whether it is possible to find information about hammering
attempts in some of such AM-modulated signals. As an
educated guess, the hammering activity most likely modulates
some periodic carrier signals generated in the aforementioned
three hardware components.

As illustrated in [12], the strength of the EM emanations
generated by the DRAM clock varies when the amount of
activities driven by the clock changes, namely the emanations
at the DRAM clock frequency will be AM-modulated by the
DRAM activities. Therefore, our investigation will focus on
finding hammering attempt information in the AM-modulated
DRAM clock signals.

AM-modulation has a long history and is well understood.
We know that when a carrier signal is AM-modulated, there
are sidebands appearing on both sides of the carrier frequency
in the spectrum, and each sideband is a mirror-image of the
other relative to the carrier. These upper and lower sidebands
correspond to the spectrum of the modulating activity, namely
each modulating frequency will be present in each sideband.

Since nearly-regular and lasting switching behavior is asso-
ciated with a hammering attempt, if the DRAM clock signal
carries such hammering attempt information through AM-
modulation, we expect to identify that information via some
distinctive frequency patterns in the upper and lower sidebands
of the modulated DRAM clock signal. We have conducted a
large number of experiments that have verified the feasibility
of this idea. For instance, Fig. 5 shows the power spectra of
the DRAM clock signal measured using a software-defined
radio under six scenarios: The first scenario (A) is the simplest
one, in which only the system background tasks are running.
The following two scenarios represent some common uses
of a computer system, which are (B) playing a video and
(C) browsing web pages. The last three scenarios are to
(single-sided) hammer the underlying DRAM by means of the
three most commonly used approaches: (D) using clflush
instruction to flush the cache, (E) using non-temporal store
movnti instruction to bypass the cache, and (F) loading from
congruent addresses to evict the cache.

Given that DDR3-1333 memory modules are used in this ex-
ample, the DRAM clock frequency is around 666∼668 MHz.
On our platform, it is at 667.85 MHz, which corresponds to the
tallest central spike in each spectrum of Fig. 5. Note that, to
avoid a cluttered discussion, we turned off the spread spectrum
clocking feature in the BIOS for now (the motherboard used
in this example is ASUS Z87-A), and the problem caused by
this feature as well as our solution will be discussed later.

From Fig. 5, we can observe distinguishable sideband
patterns in the spectra when the underlying DRAM is being
hammered, namely there are noticeable “bumps” located on
both left and right sides of the central spike, which are circled

658 660 662 664 666 668 670 672 674 676
-60

-40

-20

0
d
B

(A) idle

658 660 662 664 666 668 670 672 674 676
-60

-40

-20

0

d
B

(B) playing a video

658 660 662 664 666 668 670 672 674 676
-60

-40

-20

0

d
B

(C) browsing a website

658 660 662 664 666 668 670 672 674 676
-60

-40

-20

0

d
B

(D) hammering DRAM (clflush)

658 660 662 664 666 668 670 672 674 676
-60

-40

-20

0

d
B

(E) hammering DRAM (movnti)

658 660 662 664 666 668 670 672 674 676

frequency(MHz)

-60

-40

-20

0

d
B

(F) hammering DRAM (eviction)

Fig. 5. The power spectra under six scenarios. Note that the vertical axis is on a logarithmic dB scale. Each spectrum is derived by averaging 78 FFTs of
16,384 values with 50% overlap sampled in 25 MHz over 32 ms.

and pointed to by arrows in Fig. 5 (D), (E), and (F). By
referring to Fig. 4, we can actually find the relation between
the times spent in hammering iterations and the frequencies
where the sideband patterns of interest are located. Take
the approach using movnti for an example. From Fig. 4,
we can see the dominant period of hammering iterations is
around 156 ns. As shown in Fig. 5 (E), the circled lower
sideband patterns are at about 661.4 MHz (i.e., 667.85 MHz -
1000/156 MHz), and the circled upper ones are at about 674.3
MHz (i.e., 667.85 MHz + 1000/156 MHz). These hammering-
correlated sideband patterns conform to the effect of AM-
modulation, which illustrates that we can find hammering
attempt information in the modulated DRAM clock signal.
Furthermore, we can notice that the “bumps” in Fig. 5 (D) and
(F) are slightly wider than that in Fig. 5 (E). This is because
the timing variances when using clflush and eviction are
larger than that when using movnti, as shown in Fig. 4.

Note that, since multimedia like videos is non-temporal data
(namely data needed in the near future is not in the cache),
there is a large number of DRAM accesses in the scenario
(B). However, as shown in Fig. 5 (B), no obvious patterns of
interest arise. Thus, it indicates that the presence of massive
cache misses or DRAM accesses is only a necessary but not
a sufficient condition for generating hammering-correlated
sideband patterns. Normally, it is rare that a benign program
generates high rate and periodic cache misses for more than

30 ms.
Furthermore, we can still observe these sideband patterns

even after introducing some disturbance into the periodic
behavior of a hammering attempt. (In such a case, the variance
of hammering period is increased, so the “bumps” become
wider and lower.) In other words, it is hard to conceal such
patterns while maintaining sufficiently fast toggling rate of
aggressor rows to trigger the rowhammer bug. We illustrate
some of the experimental results related to this random delay
addition in Appendix A.

C. Spread-Spectrum Clocking

One major difficulty in robustly detecting hammering-
correlated sideband patterns is created by spread spectrum
clocking (SSC), which has been commonly used in electronic
products like computer systems for meeting electromagnetic
compatibility (EMC) regulations. EMC standards impose al-
lowable limits on the EM-emanated signal energy at any
frequency above 30 MHz, and many high-frequency clock
signals in a computer system (e.g., the DRAM clock) are
strong enough to violate such legal limits. To achieve EMC,
SSC uses FM-modulation to vary the clock frequency over a
range so that the time spent by the clock signal at a particular
frequency is reduced and the energy is spread over that range
of frequencies [29].

Under the situation in which the underlying DRAM is being
hammered, Fig. 6 (A) demonstrates the problem when SSC is

658 660 662 664 666 668 670 672 674 676
-60

-40

-20

0
d
B

(A) hammering DRAM (clflush) -- before de-spreading

658 660 662 664 666 668 670 672 674 676

frequency(MHz)

-60

-40

-20

0

d
B

(B) hammering DRAM (clflush) -- after de-spreading

Fig. 6. The power spectra under hammering by means of clflush before and after de-spreading. Each spectrum is derived by averaging 78 FFTs of 16,384
values with 50% overlap sampled in 25 MHz over 32 ms.

turned on (which is the default option in most BIOSes). As
we can observe in the spectrum, instead of a single spike at
667.85 MHz, the clock frequency now ranges from 664.85
MHz to 667.85 MHz as a consequence of SSC. Compared
with the SSC-off clock signal power, when SSC is turned on,
the signal power is indeed significantly reduced (more than 15
dB in the given example). However, we find that the frequency
patterns of interest to our rowhammer attack detection are also
attenuated due to SSC, such that the hammering-correlated
sideband patterns become unrecognizable.

To overcome this problem, we need to de-spread the energy
in the signal. The details of our de-spreading process will
be described in the next section. Here, our aim is to show
that hammering attempt information can be found in the
EM-emanated DRAM clock signal. Fig. 6 (B) shows the
power spectrum of the measured signal after de-spreading.
Compared with Fig. 6 (A) which shows the spectrum of the
original signal without de-spreading, we can clearly notice that
the sideband patterns used for rowhammer attack detection
reappear. Therefore, we conclude that information correlated
with a potential rowhammer attack can be effectively found in
certain EM emanations.

VI. ROWHAMMER ATTACK DETECTION VIA A RADIO

In this section, we propose a rowhammer attack detection
system named RADAR (Rowhammer Attack Detection via A
Radio), which detects potential rowhammer attacks by iden-
tifying hammering-correlated sideband patterns in the AM-
modulated DRAM clock signal. The diagram of the proposed
RADAR system is depicted in Fig. 7. In the following, we
describe each component of our RADAR system.

System under watch

Detector

RF Receiver

Antenna
Measurement

De-spreading

Classification

Fig. 7. RADAR system illustration.

A. Measurement Component

In the first step, we use a measurement device to capture
the EM-emanated DRAM clock signal. As the time spent in

each hammering iteration could be as low as one hundred
nanoseconds (e.g., when using one-location hammering on a
high-performance platform), to capture both upper and lower
hammering-correlated sideband patterns, the measurement de-
vice utilizing quadrature sampling should be able to support at
least 20 MHz instantaneous bandwidth. Moreover, the clock
frequency of interest may be as low as 400 MHz (e.g., DDR3-
800) or as high as 1600 MHz (e.g., DDR4-3200), and thus it is
more flexible to have a measurement device that can be tuned
to all of the possible frequencies. Fortunately, inexpensive and
reliable instruments exist. For simplicity and convenience, in
our prototype, we use a software-defined radio for this task.

Because a clock signal is a square wave, there is an infinite
number of harmonics in the frequency domain. Here we only
consider the first harmonic. If there is too much noise around
the fundamental frequency, we may try to rely on some higher-
order harmonics.

The antenna used in our system should match the frequency
range of interest. Given the possible DRAM clock frequencies,
there are many antenna choices. Through experiments, we find
that a cheap whip antenna (e.g., a telescopic one or just a piece
of wire) suffices. The antenna can be placed inside or outside
the case of the computer being monitored, but its position and
orientation may need to be fine-tuned for the best performance.

B. De-Spreading Component

As aforementioned, to robustly detect hammering-correlated
sideband patterns, we need to counter the effect of SSC by
de-spreading the energy in the measured clock signal. Given a
clock signal whose frequency is fc, SSC uses FM-modulation
to vary the clock frequency in accordance with a signal fm(t)
that is generated in the SSC hardware chip but undocumented.
At time t, the instantaneous frequency fi(t) of the clock signal
becomes:

fi(t) = fc +Kfm(t) , (1)

where K is some proportionality constant. In an analytic form,
the effect of SSC is equivalent to multiplying the clock signal
by a complex exponential function θ(t), which is defined as:

θ(t) = ej2π
� t
0
Kfm(t)dt (2)

If the DRAM is hammered when SSC is on, by reason of AM-
modulation, the frequency patterns of interest in the sidebands

are also shifted by Kfm(t) at time t. Hence, for the purpose
of de-spreading, we just need to estimate θ(t) and multiply
the measured signal by θ−1(t).

Although the exact mathematical expression of fm(t) is not
available, since we deal with sampled values in the system, as
far as we are concerned, only the discrete values of θ(t) at the
points of sampling are needed for de-spreading. We leverage
quadrature sampling to measure the SSC-affected clock signal
which also centers its spectrum at zero Hz. Let vk denote the
kth sample corresponding to the clock signal at a specific time
τ , namely

vk = |vk|ejφk , (3)

where |vk| is the magnitude of vk and φk is the phase angle
of vk. Using FM-demodulation, we can acquire:

dφk

dt
= 2πKfm(τ) (4)

Therefore, at time τ , the instantaneous value of θ(t) is derived:

θ(τ) = ej2π
� τ
0

Kfm(t)dt = ej(φk+Θ) = ejφkejΘ , (5)

where Θ is a constant phase angle. Although we do not know
the exact value of Θ, we may simply assume it is 0, because a
non-zero constant phase angle only shifts the signal in the time
domain by a constant but does not affect our analysis in the
frequency domain at all. Thus, we can simplify Eq. 5 to have
it rely on only the values acquired by quadrature sampling:

θ(τ) =
vk
|vk|

= ejφk (6)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sample

0

Fig. 8. The phase difference φk − φk 1 between successive samples, where
1 ≤ k ≤ 10, 000. Many of the apparent spikes above 0 are actually caused
by phase wrapping, i.e., any negative difference in the range of −π > Δφ ≥
−2π will be converted to an angle in the range of 0 < Δφ ≤ π.

To de-spread each sampled value of the SSC-affected signal,
the need for deriving the value of θ(t) at that point in time is
not desirable, since it is better to derive such values when the
amount of DRAM activities is little for less noise. Fortunately,
it is known that fm(t) is a periodic function [29], namely we
have fm(t) = fm(t+ Tm) where Tm is the period of fm(t).
Therefore, even though the sequence of the discrete θ(t) values
may not be periodic3, its phase difference sequence, which is
equivalent to FM-demodulation, must be periodic over Tm. In
other words, given a sampling frequency fs, we have:

φk − φk 1 ≈ φl − φl 1 , where l = k + �Tmfs� (7)

For example, in terms of the platform used in Section V, Fig. 8
shows the phase difference sequence of 10,000 values of θ(t)

3If the integration of Kfm(t) over Tm is an integer, θ(t) is periodic over
Tm. If it is not an integer but a rational value, θ(t) is still periodic. If the
integration is an irrational value, θ(t) is aperiodic.

over 0.4 ms (i.e., the sampling frequency is 25 MHz). Due to
random noises, we can observe singular jumps, although the
periodicity is obvious. By averaging the corresponding values,
we can effectively remove the noise.

Let Δ[0 . . . N−1] denote the phase difference sequence over
a Tm, where N = �Tmfs�. Note that we only need to derive Δ
once for each hardware platform, as it is software-independent.
When sampling the clock signal for Δ derivation, we do not
have user processes running on the target system, and we also
use a bandpass filter to attenuate frequencies outside the range
of possible clock frequencies. The sampling frequency should
be the same as the one used during detection.

To use Δ for de-spreading during detection, we first need to
achieve Δ alignment, which is to find a point p in the stream
S of the sampled values such that the phase of θ(t) varies by
Δ[0] between S[p + 1] and S[p], by Δ[1] between S[p + 2]
and S[p+ 1], and so forth. It is straightforward to see that Δ
alignment is periodic, namely if S[p] aligns with Δ, S[p+kN]
will also align with Δ. (Because it is very likely that Tmfs is
not an integer, strictly speaking, Δ alignment is quasiperiodic.)
Our solution to this problem is based on the fact that a correct
alignment leads to the maximum cross-correlation between the
entries of Δ and the phase changes of N successive sampled
values, which implies the maximum cross-correlation between
the sums of the first 1 ≤ m ≤ N entries of Δ and the phase
changes of the mth point relative to the first point. Therefore,
given a point q, we use the following equation to calculate the
cross-correlation:

ρ(q) =

�����
1

N

N�

m=1

S[q+m]
|S[q+m]|

S[q]
|S[q]|

e
−j

m−1�
i=0

Δ[i]

�����

=

�����
1

S[q]
|S[q]|

�����

�����
1

N

N�

m=1

S[q +m]

|S[q +m]|e
−j

m−1�
i=0

Δ[i]

�����

=

�����
1

N

N�

m=1

S[q +m]

|S[q +m]|e
−j

m−1�
i=0

Δ[i]

�����

(8)

Using Eq. 8, we can start at an arbitrary point q and compute
ρ(q + k(N + 1)) in the (k + 1)st round, where k ≥ 0, until
the cross-correlation reaches a spike, which signifies we have
found Δ alignment in that round. (Again, if Tmfs is an integer,
we will need at most N rounds to find Δ alignment. However,
it is very likely that Tmfs is not an integer, and we may need
more than N rounds.) As an example, Fig. 9 shows the cross-
correlation results in the first 800 rounds with respect to the
example given in Fig. 6, and we can clearly see that the initial
Δ alignment is found in the 266th round.

1 100 200 266 300 400 500 600 700 800

round

0

0.2

0.4

0.6

c
ro

s
s
-c

o
rr

e
la

ti
o
n

Fig. 9. Using cross-correlation to achieve the initial Δ alignment.

After we have found the initial Δ alignment, say, S[p] aligns
with Δ, for each of the next i ≥ 1 values after S[p], we use
the following process to obtain the de-spread sequence D:

D[p+ i] = S[p+ i]e−jϕp+i , where
ϕp+i = ϕp+i 1 +Δ[(i− 1) mod N] , and ϕp = 0

(9)

As the rounding error introduced by �Tmfs� when Tmfs is not
an integer will slowly make the alignment drift away, we need
to periodically calibrate the alignment. Since the floor is taken,
the accumulated error will reach a point where S[p+kN +1]
aligns with Δ, instead of S[p+kN]. We solve this problem by
computing two cross-correlations ρ(p+kN) and ρ(p+kN+1)
together, where k ≥ 0, on the fly in the de-spreading process,
and introduce a delay to Δ if ρ(p+ kN + 1) is larger, which
means performing a right circular shift on Δ by one position,
namely, we derive and use a new Δ as follows:

1 if ρ(p+ kN + 1) > ρ(p+ kN) then
2 for j = 0; j < N ; j = j + 1 do
3 Δnew[(j + 1) mod N] = Δ[j];

Interestingly, de-spreading will inadvertently help reduce
background noise unrelated to the EM emanations of interest.
This effect is due to the fact that de-spreading will act like SSC
on such noise, whose energy will be scattered over a range of
frequencies. Because of this, the robustness of the proposed
system is increased, as later shown in Section VII-C.

C. Classification Component

Having the stream of samples that are processed according
to Eq. 9, we continuously perform FFTs to obtain a sequence
of spectra. Each spectrum is treated as a feature vector that is
fed into a classifier. Since the hammering-correlated sideband
patterns are relatively easy to recognize, it is not hard to train
an appropriate model to achieve accurate binary classification.
However, if we predict there is a potential rowhammer attack
as soon as certain hammering-correlated sideband patterns are
identified in a single spectrum, the false positive rate may be
high because similar patterns may transiently arise due to some
factors like noise.

Recall that a hammering attempt lasts for a period of time,
usually tens of milliseconds, which means that the hammering-
correlated sideband patterns are very likely present in each
spectrum derived within that period of time. On the other hand,
if some similar sideband patterns appear in a spectrum, but not
due to hammering, they may disappear in the next few spectra.
Therefore, we can rely on this temporal dependency to achieve
more accurate classification.

The sideband patterns of interest and temporal dependency
imply that vertical lines are probably in the spectrogram if
some hammering attempts are ongoing. For instance, Fig. 10
shows two spectrograms over 40 ms under two scenarios, and
we can clearly observe two vertical stripes in the spectrogram,
symmetric about the DRAM clock frequency (represented by
the central red stripe), when using clflush to hammer the

(a) Playing a video

(b) Hammering the DRAM (clflush)

661.98 (MHz) 673.72 (MHz)

Fig. 10. Spectrogram patterns of different activities.

DRAM. In contrast, no such vertical stripes appear in the
spectrogram corresponding to the video playing scenario.

Since such patterns are local and share the property of space
invariance, we decide to use convolutional neural network
(CNN) that can automatically extract these local features and
perform classification on the basis of them. The input to
CNN is a magnitude spectrogram that is a sequence of w
magnitude spectra. The output from CNN is the probability
of the input being in the hammering class after applying a
softmax function. We use a sliding window of size w, whose
stride is s to successively feed the inputs. Note that w and
s depend on several factors including sampling frequency,
computational capacity, and classification accuracy. The values
used in our RADAR prototype are described in Section VII-A.

We find that it is important to normalize the magnitude
of each point in the spectrogram prior to training and clas-
sification. For each point, we normalize its magnitude by
subtracting the mean and dividing by the standard deviation
of the magnitudes of all the points in that spectrogram (i.e.,
using instance normalization). Note that we simply set the
magnitudes of the points within ±0.05 MHz of the clock
frequency to zero, namely, we zero out the central red stripes in
Fig. 10. The rationale behind this is twofold. First, the power
levels around the DRAM clock frequency totally dominate
(e.g., more than 20 or even 40 dB as shown in Fig. 5), which
can significantly affect the results of normalization. Second,
we do not lose any useful information for our detection
purpose, because the sideband patterns of interest induced by
actual hammering attempts will not fall in this range; otherwise
it will be too slow to trigger the rowhammer bug.

D. Discussion on the Use of Detection Information

When suspicious sideband patterns are recognized, the
detector will notify the system under watch that a rowhammer
attack may be ongoing. To this end, the detector should be
connected to the system through some standard communica-
tion interface like USB, and will send notification messages
when potential hammering attempts are detected.

Upon receiving such a message, we may try to prevent the
system from being compromised in a very simple fashion,
which is to terminate all of the untrusted processes or the
processes belonging to untrusted users. Although this approach
can promptly thwart potential rowhammer attacks, it is overly

conservative, since many non-malicious processes are also
terminated. Alternatively, we may leverage the scheduling
information to narrow down the list of suspicious processes
(e.g., we can select the untrusted processes that were scheduled
to run in the last 100 ms as suspicious ones).

As a matter of fact, it is very likely that tens of (or even
hundreds of) hammering attempts are needed before finding
some exploitable bit flips, especially if the underlying DRAM
modules are not overly vulnerable (e.g., the number of bit
flips is below a threshold during some test). In such scenarios,
we can try to pinpoint the malicious process by individually
scheduling each suspicious process to see which one can raise
the alarm again. Of course, if the system under watch is
very security-sensitive and/or the underlying DRAM is very
vulnerable, we may wish to terminate all of the untrusted
running processes as soon as a notification message from the
detector is received.

VII. EVALUATION

We have implemented a RADAR prototype to demonstrate
its practicality, and have evaluated it on four platforms that
are summarized in Tab. I. As stated in Section III, an attacker
has various choices of hammering techniques for rowhammer
attacks. We show that our approach can protect a system from
all these possible techniques. Before presenting the evaluation
results, we will first describe our prototype in more detail.

TABLE I
Platforms on which our prototype is evaluated.

Platform Motherboard CPU Memory
A Asus Z87-A Intel G3258 8 GiB Hynix DDR3-1333
B Dell OptiPlex 990 Intel i7-2600K 8 GiB Samsung DDR3-1333
C Alienware Aurora R7 Intel i7-8700K 16 GiB Micron DDR4-2666
D Asus ROG Strix B350-F AMD Ryzen 7 1800X 32 GiB Samsung DDR4-2133

A. Prototype of RADAR

We use a software-defined radio, LimeSDR, to acquire the
EM-emanated DRAM clock signal data. The bandwidth we
need is 25 MHz, and LimeSDR can provide 61.44 MHz RF
bandwidth in the frequency range of 100 kHz – 3.8 GHz [43],
which is more than sufficient for our needs. A LimeSDR costs
$2994. We simply use a 20 cm telescopic antenna or two pieces
of 7.5 cm metal wire that can be easily placed inside the case.

The de-spreading and classification components run on a
dedicated computer that serves as our detector. For rapid pro-
totyping, we use the GNU Radio framework, and implement
the de-spreading functionality as a GNU radio module. The
classification component is implemented under the PyTorch
framework and integrated into the GNU radio using the
C++ interface. We train a 3-layer CNN model with 20,000
positive examples and 20,000 negative examples. The detector
is connected to the system under watch via the USB interface.
Note that we need to use a crossover USB cable which has
an embedded bridge controller to connect two USB hosts5.

4In fact, we need only a RF receiver instead of a transceiver, and thus a
customized device can even be much cheaper.

5In our prototype, we use a cable with a PL-2301 bridge controller.

Given the 25 MHz sampling frequency6, we perform 8192-
point FFTs that can provide about 3 KHz frequency resolution
and spans only 327.68 µs. The FFT overlap we use is 50%,
which means an FFT is performed with 4096 new points
and 4096 previous points. To overcome noise, we average
20 spectra to derive a single spectrum, i.e., each averaged
spectrum spans about 3.3 ms. For classification, we set the
sliding window size to 12 and the stride to 1. In other words,
the classification needs to run every 3.3 ms on the spectrogram
of the last 40 ms.

Due to the tight timing constraints, we need to minimize
the performance overhead incurred by the de-spreading and
classification components. To achieve this, we optimize them
by taking advantage of data-level parallelism. When imple-
menting the de-spreading component, we use the AVX-256
SIMD instructions, whenever possible, to process multiple
sampled values at a time. In terms of the classification, we fall
our back on GPU to provide sufficient acceleration. Although
our current RADAR prototype uses an extra computer as the
dedicated detector, it mainly serves as the proof-of-concept.
The whole detector can be surely implemented on the FPGA
of LimeSDR, which will be our future work.

B. Effectiveness of RADAR

We first evaluate whether our RADAR system can ef-
fectively detect potential rowhammer attacks under simple
situations, in which no memory-intensive tasks are running.
The evaluation is performed in a normal working environment,
where computers with the same DRAM clock frequency are
present but no closer than 1.8 m (note that later we will show
the distance can be as close as 0 m), and the antenna stands
outside on the metal case using a magnetic mount.

mov (X), %0
mov (Y), %0
clflush (X)
clflush (Y)
mfence

mov (X), %0
mov (Y), %0
clflush (X)
clflush (Y)

movnti %0, (X)
movnti %0, (Y)
mov (X), %0
mov (Y), %0
mfence

movnti %0, (X)
movnti %0, (Y)
mov (X), %0
mov (Y), %0

evict (X)
evict (Y)
mov (X), %0
mov (Y), %0

mov (X), %0
clflush (X)

(I) (II) (III) (IV) (V) (VI)

Fig. 11. Different hammering loop bodies.

The effectiveness of our RADAR system is evaluated
against the hammering methods illustrated in Fig. 11. The first
five ones (I)–(V) use two addresses to perform single-/double-
sided hammering via clflush, movnti, or eviction, and the
last one (VI) tests one-location hammering following the tool
flipfloyd [25]. We also evaluate the effects of a memory barrier
mfence using (I) and (III). We note that it does not matter if
single-sided or double-sided hammering is used with respect to
the generation of hammering-correlated sideband patterns, and
thus we use double-sided hammering on platforms A (Haswell)
and B (Sandy Bridge) as their DRAM address mappings are
available [47], [59], [64], and use single-sided hammering on
platforms C and D.

We run each hammering executable for about 3 seconds in
the order given by Fig. 11, and then we run three legitimate
applications for about 3 seconds. The three applications are:

6Since quadrature sampling is used, it provides 25 MHz bandwidth.

0

0.2

0.4

0.6

0.8

1

p
ro

b
a

b
ili

ty

(I) (II) (II) (IV
)

(V
)

(V
I)

Arra
y
Video

Kern
el

Platform A

(I) (II) (II) (IV
)

(V
)

(V
I)

Arra
y
Video

Kern
el

Platform B

(I) (II) (II) (IV
)

(V
)

(V
I)

SGX
Arra

y
Video

Kern
el

Platform C

(I) (II) (II) (IV
)

(V
)

(V
I)

Arra
y
Video

Kern
el

Platform D

Fig. 12. The detection results in the form of the probability of hammering.

(1) randomly accessing a large array of size 256 MiB, which
will miss the caches and access the memory very often; (2)
playing a video, which will continuously use non-temporal
instructions to access the video; (3) using gcc to compile a
Linux kernel, which will generate a large amount of processor-
memory-storage traffic. Fig. 12 shows the detection results.

From the results, we can observe that malicious hammering
attempts can be effectively detected for each platform under
each scenario (that are represented by the red dots in the
figure), and there are no false positives if the classification
probability threshold is chosen sufficiently high (e.g., we
simply use 0.85). We also notice some interesting phenomena
when conducting these experiments. First, we find that not
every hammering attempt can induce the sideband patterns
of interest, although most of the attempts will. This is why
the detector sometimes gives a probability output less than
the threshold even during hammering. Second, compared to
flushing or bypassing the cache, the patterns induced by
eviction are less obvious, as indicated by the first row of
Tab. II. Yet, they are still recognizable. Third, the use of
memory barriers seems irrelevant to the appearance of such
sideband patterns, although it ensures that all memory accesses
reach the DRAM.

In addition, as studied in [25], rowhammer attacks may be
hidden inside malicious SGX enclaves. Our conjecture is that,
regardless of whether or not hammering is performed inside
an SGX enclave, there should be no difference with respect
to its characteristics in the DRAM clock spectrum. We have
verified this speculation by evaluating our RADAR system
against malicious SGX enclaves on platform C, as illustrated
in Fig. 12. Thus, the proposed RADAR can effectively detect
elusive rowhammer attacks.

The effectiveness of our RADAR system has also been
evaluated against three well-known tools that are publicly
available for demonstrating rowhammer attacks: (1) Google’s
rowhammer-test7 [54], which uses a probabilistic approach to
perform single-sided hammering, or takes advantage of the
/proc/self/pagemap interface to acquire physical addresses
for double-sided hammering; (2) Tatar’s hammertime8 [59],
which can achieve more effective double-sided hammering by
considering the detailed information about end-to-end address
translation; and, (3) Gruss’s flipfloyd9 [25], which has a tool
for testing one-location hammering.

7https://github.com/google/rowhammer-test
8https://github.com/vusec/hammertime
9https://github.com/IAIK/flipfloyd

0

0.2

0.4

0.6

0.8

1

p
ro

b
a

b
ili

ty

hammertime rowhammer-test flipfloyd

Fig. 13. The detection results on platform A w.r.t. three well-known tools.

We run each tool as is, and Fig. 13 shows the detection
results when these tools are executed on platform A. We just
use platform A as the example, because (1) platform A is
very vulnerable to hammering; (2) hammertime only has the
detailed address translation model for the platforms A and
B; and (3) the detection results for other platforms are very
similar to that for A. From the results, we can observe that
our RADAR can effectively detect hammering attempts.

When running hammertime on platform A, on average there
are 6.6 bit flips per second reported. (Both rowhammer-test
and flipfloyd do not report any bit flip.) We implement a
kernel module that “kills” all of the processes belonging to
untrusted users upon receiving a message from the detector,
and execute hammertime for 100 times. In each of the 100
trials, the hammering behavior was always detected as soon
as it merely started. We have not observed any bit flip
before hammertime is detected and terminated, namely if
only considering prevention of bit flips, the false negative
rate in this case is 0%. The DRAMs on other platforms are
originally less vulnerable, and when our RADAR is on, we
have not observed any bit flip before any hammering tool is
detected and terminated.

0

0.5

1

p
ro

b
a
b
ili

ty

bzip2 libquantum sjeng milc zeusmp lbm apache

SPEC-INT SPEC-FP

Fig. 14. The detection results on platform A w.r.t. SPEC integer and floating-
point benchmarks as well as Apache HTTP server.

On the other hand, the false positive rate of our RADAR
detection is also extremely low. As studied in [4], gcc induces
many false positives under ANVIL; yet, from Fig. 12, we can
observe that gcc introduces no false positives under RADAR.
We also evaluate other SPEC 2006 benchmarks and Apache
HTTP server on platform A. For SPEC benchmarks, we use
their reference inputs, and for Apache server, we use the tool
ab to generate heavy workloads. The representative results are
shown in Fig. 14, and the results for other SPEC benchmarks
are similar to bzip2 (integer) and lbm (floating-point). From

Fig. 14, we can clearly see that no false positives arise. Note
that no floating-point SPEC benchmarks are used in [4], but we
argue that these benchmarks should be included for evaluation
due to their pervasive manipulation on very large matrices.

C. Robustness of RADAR

There are two types of noise that may affect the operation of
RADAR. The first type of noise is generated internally, due
to a legitimate use of the computer system which changes the
power of the DRAM clock signal constantly. To create such
noise, we run different applications to impose loads on the
memory system. To quantify the obviousness of the sideband
patterns, we measure how relatively “tall” the patterns of inter-
est are, namely the power difference between the patterns and
their neighboring frequency components. The measurements
are in dB and shown in Tab. II for sideband patterns caused
by clflush, movnti, and eviction. Note that Tab. II only
shows the first one that is recognizable for each case.

TABLE II
The relative power (measured in dB) of the hammering-correlated sideband

patterns caused by clflush, movnti, and eviction respectively.

Scenario Platform A B C D

Baseline 21.97/23.57/9.63 31.06/32.99/27.42 25.22/20.17/13.55 30.83/30.01/19.78
stress -m 10 13.49/16.57/8.37 30.89/26.94/17.97 –/–/– –/–/–
Playing a video 21.39/22.85/9.97 33.61/29.83/27.20 21.10/18.65/14.11 29.02/25.24/12.89

Compiling kernel 21.30/22.78/8.92 32.86/27.32/26.99 23.20/16.60/13.35 28.27/29.21/15.01

The first row of Tab. II lists the baseline values for each
platform having the minimum workload. As we can observe
from the other rows, except for platforms C and D under
stress, the patterns used for rowhammer attack detection are
still discernible in the spectrum when much noise is created.
Note that there are n high memory traffic threads spawned
by stress -m n. We find that, when running stress
-m 10 on platform C or D, all of the 10 threads can run
in parallel with the hammering process leading to memory
bandwidth exhaustion, so that up to five-fold time is spent in
a hammering iteration. By contrast, platform A has a dual-
core processor without SMT, which supports only 1 stress
thread simultaneously running with the hammering process;
hence, there is actually no difference between stress -m
1 and stress -m 10 on A, and the memory bandwidth is
sufficient for its traffic. Surprisingly, on platform B, 7 stress
threads can run in parallel with hammering, but our test shows
that they together impose only 1.7 GB/s traffic, which is
much less than the supported 20 GB/s bandwidth. (On other
platforms, one single stress thread can generate 4∼5 GB/s
traffic.) Note that, even with enough memory bandwidth, we
have observed that the rowhammer bug is much harder to
trigger while stress is running, let alone when bandwidth
is exhausted. For example, platform A is very vulnerable to
hammering, and on average 6.6 bit flips per second can be
observed without running stress, but only 0.85 bit flips
per second when running one stress thread. Therefore,
the disappearance of the patterns of interest under extreme
conditions is only a minor issue.

The second type of noise exists externally. In reality, there
may be some neighboring computer systems having the same
DRAM clock frequency as the one under RADAR’s watch.
To test whether our RADAR will become “confused”, we
settle platform A as the system under protection and observe
how other platforms using DDR3-1333 affect the operation of
RADAR.

First, we gradually move platform B towards A starting from
1.5 meters away. The antenna stands outside on the metal case
of platform A. The operation of RADAR is not affected at
all, as shown in the first row of Tab. III. This is because, as
mentioned in Section VI-B, de-spreading will inadvertently
help reduce such noise. Recall that, for de-spreading, the
hardware-dependent Δ is aligned and used to modulate the
measured signal, and if the measured signal has components
unrelated to the used Δ, the energy of these components will
be spread. Since the Δ of A is different from that of platform
B, when using the Δ of A for de-spreading, the EM-emanated
DRAM clock signals of B are unrelated to the used Δ, and
their energy is scattered to become negligible noise.

TABLE III
The impacts of external noise on RADAR for platform A.

Scenario Distance 1.5 m 1.0 m 0.5 m 0 m
B & antenna out none none none none
A* & antenna out none slight moderate† moderate/severe†

A* & antenna in none none none none
†These unfavorable impacts can be mitigated.

A more interesting scenario arises from using identical
motherboards, as they have the same Δ. Thus, we move
another platform A*, which is the same as A, gradually
towards A starting from 1.5 meters away. The antenna still
stands outside on the metal case of A. When the distance is
reduced to about 1 m, we start observing “bumps” regularly
and symmetrically sweeping back and forth within ±3 MHz
around the DRAM clock frequency in the spectrum. This
phenomenon is due to the fact that the correct Δ alignment
with the SSC-affected signal of A is most likely incorrect with
respect to that of A* (unless they coincidently have the same
SSC phase). As long as the antenna picks up the signal from
A more than the signal from A*, the Δ remains aligned with
the SSC-affected signal of A. As A* gets closer to A, the
magnitudes of the sweeping “bumps” get increased, reaching
the same level as the hammering-correlated sideband patterns.
However, their impacts are moderate, because they have very
distinguishing features such as the spikes forming the bumps
are actually separated from each other by exactly 32 KHz (a
behavior of SSC) so that we can take them into account in the
classifier. The severe impacts come from the situation where
the antenna is too close to A* such that the correct Δ alignment
is disrupted. We find that the severe impacts can be avoided
by carefully placing the antenna, e.g., on the other side of the
case of A when A* and A are side-by-side.

The same experiment using A* is performed again but with
the antenna placed inside the metal case of A. We use a very
simple self-built antenna, which consists of two pieces of 7.5

cm metal wire. This antenna can easily placed inside the case
of any computer, as shown in Appendix B. This time, no matter
how close A* gets to A, there are no impacts on the operation
of RADAR at all, as shown in the third row of Tab. III. The
reason is straightforward: On one hand, the case of A acts
as a EM shield, and on the other hand, the signal of A is
much stronger inside the case. Note that there may be apparent
reflection effects if the antenna is placed inside the case, but
we notice that many spots can be found where reflections are
not obvious and thus can be ignored.

VIII. RELATED WORK

In this section, we mainly concentrate on existing rowham-
mer defenses that do not require unrealistic hardware modifi-
cations. In addition, we describe some related work on using
physical side-channel information to bolster security defenses.

Since the activation of an aggressor row needs to be toggled
enough times within a refresh interval to successfully trigger
the rowhammer bug, a straightforward countermeasure is to
double the refresh rate [32]. However, as shown in several
tests [4], [40], this approach still cannot prevent the bug
from being triggered, especially if the double-sided hammering
technique is used [54]. Another straightforward defense is
to use ECC memory to correct or detect bit flips [35], but
it has been demonstrated that reliable rowhammer attacks in
presence of ECC memory are still highly possible [16], [39].

Due to the explicit use of some special instructions like
clflush in early rowhammer attacks, some mitigation tech-
niques simply prohibit the use of such instructions [49], [54],
but they cannot hinder eviction-based hammering [4], [26].
Given regularities found in various approaches to circum-
venting the effects of CPU caches, static code analysis has
been used to identify suspicious binaries and estimate their
intention levels to perform rowhammer attacks [33]. However,
encryption and secure enclaves can be used to hide any
malicious intention from static analysis [25], [53].

Based on certain characteristics observed in many rowham-
mer attacks, several dynamic detection approaches are pro-
posed. Since a large number of last level cache misses are
usually incurred in the hammering process, some detection
techniques rely on hardware performance counters to capture
suspicious activities for further analysis [4], [30]. Nevertheless,
it is noticed that such cache misses will be concealed from
CPU performance counters, e.g., when an attack is running
inside an Intel SGX enclave [25], [53], which subverts the
assumption made for the detection. Due to the traditionally
used open-page policy in memory controllers, to trigger the
rowhammer bug, two aggressor rows in the same bank need
to be alternately activated. Consequently, some detection meth-
ods use such memory access patterns as an indication of
rowhammer attacks [4], [17]. However, on some platforms, the
memory controllers may be configured to use a closed-page
policy to proactively close a row. In such scenarios, even one
aggressor row is sufficient to induce bit flips around the row
(named as one-location hammering) [25], [41], which makes
access pattern based detection limited.

Usually, to successfully perform a rowhammer attack, an
adversary not only needs the ability to trigger the rowhammer
bug on the targeted system, but also needs to be capable
of steering targeted security-critical data to some vulnera-
ble rows for exploitation. Therefore, instead of detecting or
impeding triggering the rowhammer bug, some mitigation
techniques focus on hardening the system against rowhammer
bug exploitation. Since the two early approaches to exploiting
the rowhammer bug, memory spraying [54] and memory
grooming [61], need to allocate a large portion of memory,
prevention of memory exhaustion has been considered as a
feasible countermeasure [26], [61]. Moreover, in [9], CATT
is proposed to physically partition the main memory into
different security domains, and each domain is segregated
with one another by at least one unused DRAM row (i.e.,
a guard row), in which case, cross-domain bit flips become
impossible. Unfortunately, two new approaches to exploiting
the rowhammer bug, memory waylaying [25] and memory
ambush [13], have been developed lately, which defeat the
above-mentioned mitigation techniques.

Although CATT is no longer effective, the concept of guard
rows is still valid and effective for absorbing exploitable bit
flips. By using guard rows for fine-grained memory isolation,
GuardION and ALIS can make the DMA-related hammerable
area non-exploitable [60], [62]. To enable defenses against
more general rowhammer attacks, ZebRAM is proposed
in [37] to isolate all data rows with guard rows in a zebra
pattern. To avoid wasting half of the DRAM, the guard rows
in ZebRAM are used as an efficient swap space in memory.
However, much performance overhead may still be caused for
memory-intensive applications. On the contrary, our proposed
technique does not incur any performance overhead due to its
completely non-intrusive and passive nature.

There has been much research work on exploiting physical
side-channel information for attacks [2], [3], [5], [18], [20]–
[24], [31], [36], [38], [50], [52], [58]. Lately, many researchers
have also started examining how to leverage such side-channel
information to help defenses. For instance, power- or EM-
based code execution tracking has been proposed to check
whether the control flow integrity is violated [28], [42], [45].
Moreover, power or EM side-channel information has been
used in discovering malware and anomalies on embedded
devices [15], [55], [63], identifying the attacker ECU on in-
vehicle networks [14], detecting intellectual property theft [6],
[57], and so forth. Yet, there has been little prior work that
uses physical side-channel information to perform rowhammer
defenses, and to the best of our knowledge, only one very
recent proposal leverages features in power traces to detect
rowhammer attacks on embedded systems [63]. Our work is
the first one on leveraging EM side-channel information to
detect rowhammer attacks.

IX. CONCLUSION

In this paper, we have investigated how to leverage EM
side-channel information to detect rowhammer attacks. We
have found that there are distinguishable sideband patterns

correlated with hammering activities in the spectrum of the
DRAM clock signal. Based on this observation, we have
proposed and implemented RADAR, which unveils and rec-
ognizes hammering-correlated sideband patterns to help set
up defenses against even elusive next-generation rowhammer
attacks. The effectiveness and robustness of our RADAR have
been demonstrated under different scenarios. In the future,
we plan to implement the detector part of RADAR using the
FPGA on the software-defined radio device.

REFERENCES

[1] M. T. Aga, Z. B. Aweke, and T. Austin, “When Good Protections
Go Bad: Exploiting Anti-DoS Measures to Accelerate Rowhammer
Attacks,” in 2017 IEEE International Symposium on Hardware Oriented
Security and Trust, ser. HOST ’17, 2017, pp. 8–13.

[2] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM
Side-Channel(s),” in Proceedings of the 4th International Workshop on
Cryptographic Hardware and Embedded Systems, ser. CHES ’02, 2002,
pp. 29–45.

[3] M. Alam, H. A. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and
M. Prvulovic, “One&Done: A Single-Decryption EM-Based Attack on
OpenSSL’s Constant-Time Blinded RSA,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 585–602.

[4] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin, “ANVIL: Software-Based Protection Against Next-
Generation Rowhammer Attacks,” in Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’16, 2016, pp. 743–
755.

[5] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder,
“Acoustic Side-channel Attacks on Printers,” in Proceedings of the 19th
USENIX Conference on Security, ser. USENIX Security ’10, 2010.

[6] G. T. Becker, M. Kasper, A. Moradi, and C. Paar, “Side-Channel
Based Watermarks for Integrated Circuits,” in 2010 IEEE International
Symposium on Hardware-Oriented Security and Trust, ser. HOST ’10,
2010, pp. 30–35.

[7] S. Bhattacharya and D. Mukhopadhyay, “Curious case of rowhammer:
flipping secret exponent bits using timing analysis,” in International
Conference on Cryptographic Hardware and Embedded Systems, ser.
CHES ’16, 2016, pp. 602–624.

[8] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup est machina:
Memory deduplication as an advanced exploitation vector,” in 2016
IEEE symposium on security and privacy, ser. S&P ’16, 2016, pp. 987–
1004.

[9] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “CAn’t
Touch This: Software-only Mitigation against Rowhammer Attacks tar-
geting Kernel Memory,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 117–130.

[10] R. Callan, F. Behrang, A. Zajic, M. Prvulovic, and A. Orso, “Zero-
overhead Profiling via EM Emanations,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ser. ISSTA
2016, 2016, pp. 401–412.

[11] R. Callan, A. Zajić, and M. Prvulovic, “A Practical Methodology
for Measuring the Side-Channel Signal Available to the Attacker for
Instruction-Level Events,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-47, 2014,
pp. 242–254.

[12] ——, “FASE: Finding Amplitude-modulated Side-channel Emanations,”
in Proceedings of the 42Nd Annual International Symposium on Com-
puter Architecture, ser. ISCA ’15, 2015, pp. 592–603.

[13] Y. Cheng, Z. Zhang, S. Nepal, and Z. Wang, “Still Hammerable and
Exploitable: on the Effectiveness of Software-only Physical Kernel
Isolation,” CoRR, vol. abs/1802.07060, 2018. [Online]. Available:
http://arxiv.org/abs/1802.07060

[14] K.-T. Cho and K. G. Shin, “Viden: Attacker Identification on In-Vehicle
Networks,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’17, 2017, pp. 1109–
1123.

[15] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, K. Fu, and
W. Xu, “WattsUpDoc: Power Side Channels to Nonintrusively Discover
Untargeted Malware on Embedded Medical Devices,” in Proceedings
of the 2013 USENIX Conference on Safety, Security, Privacy and
Interoperability of Health Information Technologies, ser. HealthTech ’13,
2013.

[16] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correcting
Codes: On the Effectiveness of ECC Memory Against Rowhammer
Attacks,” in 2019 IEEE Symposium on Security and Privacy, ser. S&P
’19, 2019.

[17] J. Corbet, “Defending against Rowhammer in the kernel,” 2016.
[Online]. Available: https://lwn.net/Articles/704920/

[18] M. Enev, S. Gupta, T. Kohno, and S. N. Patel, “Televisions, Video
Privacy, and Powerline Electromagnetic Interference,” in Proceedings of
the 18th ACM Conference on Computer and Communications Security,
ser. CCS ’11, 2011, pp. 537–550.

[19] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit:
Accelerating Microarchitectural Attacks with the GPU,” in 2018 IEEE
Symposium on Security and Privacy, ser. S&P ’18, 2018, pp. 357–372.

[20] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic Analysis:
Concrete Results,” in Proceedings of the Third International Workshop
on Cryptographic Hardware and Embedded Systems, ser. CHES ’01,
2001, pp. 251–261.

[21] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer, “Stealing Keys
from PCs Using a Radio: Cheap Electromagnetic Attacks on Windowed
Exponentiation,” in International Conference on Cryptographic Hard-
ware and Embedded Systems, ser. CHES 2015, 2015, pp. 207–228.

[22] ——, “ECDH Key-Extraction via Low-Bandwidth Electromagnetic At-
tacks on PCs,” in Topics in Cryptology - CT-RSA 2016, 2016, pp. 219–
235.

[23] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom,
“ECDSA Key Extraction from Mobile Devices via Nonintrusive Physical
Side Channels,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16, 2016, pp.
1626–1638.

[24] D. Genkin, A. Shamir, and E. Tromer, “Acoustic Cryptanalysis,” Journal
of Cryptology, vol. 30, no. 2, pp. 392–443, Apr. 2017.

[25] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another Flip in the Wall of Rowhammer
Defenses,” in 2018 IEEE Symposium on Security and Privacy, ser. S&P
’18, 2018, pp. 489–505.

[26] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” in International Con-
ference on Detection of Intrusions and Malware, and Vulnerability
Assessment, ser. DIMVA ’16, 2016, pp. 300–321.

[27] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A Fast
and Stealthy Cache Attack,” in Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721, ser. DIMVA ’16, 2016, pp. 279–299.

[28] Y. Han, S. Etigowni, H. Liu, S. Zonouz, and A. Petropulu, “Watch
Me, but Don’T Touch Me! Contactless Control Flow Monitoring via
Electromagnetic Emanations,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17,
2017, pp. 1095–1108.

[29] K. B. Hardin, J. T. Fessler, and D. R. Bush, “Spread Spectrum Clock
Generation for the Reduction of Radiated Emissions,” in Proceedings
of IEEE Symposium on Electromagnetic Compatibility, ser. EMC ’94,
1994, pp. 227–231.

[30] N. Herath and A. Fogh, “These are Not Your Grand Daddy’s CPU
Performance Counters - CPU Hardware Performance Counters for
Security,” in Black Hat Briefings, 2015.

[31] J. Heyszl, S. Mangard, B. Heinz, F. Stumpf, and G. Sigl, “Localized
Electromagnetic Analysis of Cryptographic Implementations,” in Pro-
ceedings of the 12th Conference on Topics in Cryptology, ser. CT-RSA
’12, 2012, pp. 231–244.

[32] L. Inc., “Row Hammer Privilege Escalation Lenovo Se-
curity Advisory (LEN-2015-009),” 2015. [Online]. Available:
https://support.lenovo.com/us/en/product security/row hammer

[33] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: Preventing Mi-
croarchitectural Attacks Before Distribution,” in Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’18, 2018, pp. 377–388.

[34] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking Down the
Processor via Rowhammer Attack,” in Proceedings of the 2nd Workshop

on System Software for Trusted Execution, ser. SysTEX ’17, 2017, pp.
5:1–5:6.

[35] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors,” in
Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ser. ISCA ’14, 2014, pp. 361–372.

[36] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
Proceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’99, 1999, pp. 388–397.

[37] R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuffrida,
and K. Razavi, “ZebRAM: Comprehensive and Compatible Software
Protection Against Rowhammer Attacks,” in 13th USENIX Symposium
on Operating Systems Design and Implementation, ser. OSDI ’18, 2018,
pp. 697–710.

[38] M. G. Kuhn, “Electromagnetic Eavesdropping Risks of Flat-Panel Dis-
plays,” in Proceedings of the 4th International Conference on Privacy
Enhancing Technologies, ser. PET ’04, 2004, pp. 88–107.

[39] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading
Bits in Memory Without Accessing Them,” in 41st IEEE Symposium on
Security and Privacy, ser. S&P ’20, 2020.

[40] M. Lanteigne, “How Rowhammer Could Be Used to Exploit
Weaknesses in Computer Hardware,” 2016. [Online]. Available:
http://www.thirdio.com/rowhammer.pdf

[41] M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice, L. Raab,
and L. Lamster, “Nethammer: Inducing Rowhammer Faults through
Network Requests,” CoRR, vol. abs/1805.04956, 2018. [Online].
Available: http://arxiv.org/abs/1805.04956

[42] Y. Liu, L. Wei, Z. Zhou, K. Zhang, W. Xu, and Q. Xu, “On Code
Execution Tracking via Power Side-Channel,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16, 2016, pp. 1019–1031.

[43] L. Microsystems, “LimeSDR.” [Online]. Available:
https://limemicro.com/products/boards/limesdr

[44] O. Mutlu, “The RowHammer Problem and Other Issues We May Face
As Memory Becomes Denser,” in Proceedings of the Conference on
Design, Automation & Test in Europe, ser. DATE ’17, 2017, pp. 1116–
1121.

[45] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic,
“EDDIE: EM-Based Detection of Deviations in Program Execution,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA ’17, 2017, pp. 333–346.

[46] M. Payer, “HexPADS: A Platform to Detect “Stealth” Attacks,” in
Proceedings of the 8th International Symposium on Engineering Secure
Software and Systems, ser. ESSoS 2016, 2016, pp. 138–154.

[47] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks,” in 25th USENIX
Security Symposium (USENIX Security 16), 2016, pp. 565–581.

[48] M. Prvulovic, A. Zajić, R. L. Callan, and C. J. Wang, “A Method
for Finding Frequency-Modulated and Amplitude-Modulated Electro-
magnetic Emanations in Computer Systems,” IEEE Transactions on
Electromagnetic Compatibility, vol. 59, no. 1, pp. 34–42, 2017.

[49] R. Qiao and M. Seaborn, “A new approach for rowhammer attacks,”
in 2016 IEEE International Symposium on Hardware Oriented Security
and Trust, ser. HOST ’16, May 2016, pp. 161–166.

[50] J.-J. Quisquater and D. Samyde, “ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smart Cards,” in Proceedings of
the International Conference on Research in Smart Cards: Smart Card
Programming and Security, ser. E-SMART ’01, 2001, pp. 200–210.

[51] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip Feng Shui: Hammering a Needle in the Software Stack,” in 25th
USENIX Security Symposium (USENIX Security 16), 2016, pp. 1–18.

[52] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P. Seifert,
“Simple Photonic Emission Analysis of AES: Photonic Side Channel
Analysis for the Rest of Us,” in Proceedings of the 14th International
Conference on Cryptographic Hardware and Embedded Systems, ser.
CHES ’12, 2012, pp. 41–57.

[53] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache Attacks,”
in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, ser. DIMVA ’17. Springer, 2017, pp.
3–24.

[54] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug
to Gain Kernel Privileges,” in Black Hat Briefings, 2015.

[55] N. Sehatbakhsh, M. Alam, A. Nazari, A. Zajic, and M. Prvulovic,
“Syndrome: Spectral Analysis for Anomaly Detection on Medical IoT
and Embedded Devices,” in 2018 IEEE International Symposium on
Hardware Oriented Security and Trust, ser. HOST ’18, 2018, pp. 1–8.

[56] N. Sehatbakhsh, A. Nazari, A. Zajic, and M. Prvulovic, “Spectral
Profiling: Observer-effect-free Profiling by Monitoring EM Emanations,”
in The 49th Annual IEEE/ACM International Symposium on Microar-
chitecture, ser. MICRO-49, 2016, pp. 59:1–59:11.

[57] D. Strobel, F. Bache, D. Oswald, F. Schellenberg, and C. Paar, “Scan-
dalee: A Side-channel-based Disassembler Using Local Electromagnetic
Emanations,” in Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, ser. DATE ’15, 2015, pp. 139–144.

[58] T. Sugawara, D. Suzuki, M. Saeki, M. Shiozaki, and T. Fujino, “On
Measurable Side-channel Leaks Inside ASIC Design Primitives,” in
Proceedings of the 15th International Conference on Cryptographic
Hardware and Embedded Systems, ser. CHES ’13, 2013, pp. 159–178.

[59] A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating Software
Mitigations Against Rowhammer: A Surgical Precision Hammer,” in
Research in Attacks, Intrusions, and Defenses, ser. RAID ’18, 2018, pp.
47–66.

[60] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and
K. Razavi, “Throwhammer: Rowhammer Attacks over the Network and
Defenses,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18), 2018, pp. 213–226.

[61] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16, 2016, pp. 1675–1689.

[62] V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna,
C. Kruegel, H. Bos, and K. Razavi, “GuardION: Practical Mitiga-
tion of DMA-Based Rowhammer Attacks on ARM,” in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, ser. DIMVA ’18, 2018, pp. 92–113.

[63] S. Wei, A. Aysu, M. Orshansky, A. Gerstlauer, and M. Tiwari, “Us-
ing Power-Anomalies to Counter Evasive Micro-architectural Attacks
in Embedded Systems,” in 2019 IEEE International Symposium on
Hardware Oriented Security and Trust, ser. HOST ’19, 2019.

[64] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips,
One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege
Escalation,” in 25th USENIX Security Symposium (USENIX Security 16),
2016, pp. 19–35.

[65] A. Zajic and M. Prvulovic, “Experimental Demonstration of Electromag-
netic Information Leakage From Modern Processor-Memory Systems,”
IEEE Transactions on Electromagnetic Compatibility, vol. 56, no. 4, pp.
885–893, 2014.

[66] S. Zeitouni, D. Gens, and A.-R. Sadeghi, “It’s Hammer Time: How to
Attack (Rowhammer-based) DRAM-PUFs,” in Proceedings of the 55th
Annual Design Automation Conference, ser. DAC ’18, 2018, pp. 65:1–
65:6.

APPENDIX A

To demonstrate the effectiveness of our RADAR on certain
adaptive attacks, which try to circumvent detection by delib-
erately introducing some random delays into each hammering
iteration of a hammering attempt, we use the approach shown
in Fig. 16 to simulate such an adversarial situation. (Note that
the experiments described here are performed under normal
circumstances where the SSC feature is always on.) The outer
loop in Fig. 15 denotes a hammering attempt which hammers
the DRAM for N iterations. Inside each iteration, we use an
inner loop to introduce some random delay, as its bound b is
randomly chosen in the range of 1 to M .

Fig. 15 shows the DRAM clock spectra of platform D under
different M values. As expected, when random delays are
introduced, the periodic behavior of hammering is disrupted to
some extent, and the hammering-correlated sideband patterns
become less prominent than those without adding such delays.

1055 1060 1065 1070 1075

-40

-30

-20

-10

0
d
B

(A) no random delay

1055 1060 1065 1070 1075

-40

-30

-20

-10

0

d
B

(B) M = 100

1055 1060 1065 1070 1075

-40

-30

-20

-10

0

d
B

(C) M = 200

1055 1060 1065 1070 1075

-40

-30

-20

-10

0

d
B

(D) M = 300

1055 1060 1065 1070 1075

-40

-30

-20

-10

0

d
B

(E) M = 400

1055 1060 1065 1070 1075

frequency(MHz)

-40

-30

-20

-10

0

d
B

(F) M = 500

Fig. 15. The power spectra under different M . In a hammering attempt, each hammering iteration will be delayed by a loop whose bound is randomly chosen
in the range of 1 to M . The larger M is, the more disturbance is added into the hammering period.

for i := 0 to N − 1 do
b := rand(M)
for j := 0 to b− 1 do

nop
mov (X), %0
mov (Y), %0
clflush (X)
clflush (Y)
mfence

Fig. 16. Add random delay to each iteration to disturb the hammering period.

However, as we can observe from the figure, even when M
reaches 500, the patterns are still recognizable for its use in
detection, as illustrated by Fig. 17. (Although theoretically we
cannot prove that bit flips can be prevented when M is 500, we
do empirically notice that it becomes much harder/impossible
to trigger the rowhammer bug on the evaluated platforms when
M is 300, and no bit flips are induced when M is 500.)

0

0.2

0.4

0.6

0.8

1

p
ro

b
a

b
ili

ty

M = 100 M = 200 M = 300 M = 400 M = 500

Fig. 17. The detection results in the form of the probability of hammering.
The red dots represent the probabilities being above the threshold, which is
0.85 in this figure.

From Fig. 15 (A) that corresponds to the normal situation
without adding random delays, we can observe three pairs of

“bumps” very clearly on both sides of the central spike, which
are circled and pointed to by arrows. They are located at about
1066 MHz ± k × 3.9 MHz in the spectrum, where k = 1, 2, 3.
The reason for this phenomenon is that the modulating signal
generated by the switching behavior of hammering on platform
D has strong second and third harmonics. Therefore, when
this signal AM-modulates the DRAM clock carrier signal,
the sideband patterns corresponding to the second and third
harmonics will arise noticeably. Nevertheless, this does not
cause any problem or difference for our detection method,
since there are still two vertical stripes symmetric about the
DRAM clock frequency in the spectrogram.

APPENDIX B

The antenna used in our RADAR can be a very simple whip
antenna, such as a telescopic antenna or just a piece of wire.
Fig. 18 shows two antennas used in RADAR. The left one is a
telescopic antenna, which has a magnetic mount to make itself
easy to stand on the metal case of a computer. The right one
is a self-built antenna, which consists of two pieces of metal
wire connected to an antenna balun. The wire is coated with
plastic for isolation.

As evaluated in Section VII-C, when two identical platforms
are very close (e.g., right next to each other), we need to place
the antenna inside the metal case. We can generally manage to
place the telescopic antenna inside the mini tower (or bigger)
cases. By contrast, our self-built antenna can be easily placed

Fig. 18. Two antennas that have been used in RADAR. In both figures, the
used LimeSDR is also shown.

inside the case of any size (e.g., small form factor or server
chassis).

Fig. 19. Placing the self-built antenna inside the metal case of a SFF computer.

For example, Fig. 19 illustrates how to place our self-built
antenna inside a small form factor (SFF) computer of size 31.2
× 29.0 × 9.3 cm. The antenna is inserted into the computer
case through the holes on the backplate and taped on the power
supply, which can be seen from the left part of Fig. 19 (denoted
by the dashed line). We simply leave the antenna balun outside
the case, as shown in the right part of Fig. 19. The placement
just needs several minutes.

Given the aforementioned antenna placement, we execute a
program for hammering. As we can observe from Fig. 20, the
hammering-correlated sideband patterns are extremely clear.
Again, the SSC is always on and the spectrum is shown after
de-spreading.

Fig. 20. Apparent hammering-correlated sideband patterns.

