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Abstract—High-confidence embedded real-time designs stretch
the demands placed on design and development tools. We will
demonstrate the design and testing of an embedded control
system built using the ESMoL modeling language and supporting
tools. ESMoL adds distributed deployment concepts to Simulink
designs, and integrates scheduling analysis as well as platform-
specific simulation. The testing system includes a simulated
physical plant running in a hardware-in-the-loop configuration
with the actual embedded controller.

I. INTRODUCTION

Many classes of real-time embedded systems require assur-
ance that engineering designs and implementations are safe,
secure, and correct. Examples include software for medical
devices, weapons control systems, and aircraft flight control.
The time and effort (and consequently cost) of such assurance
stands in contrast with the cost and schedule pressures of
production engineering.

The ESMoL (Embedded Systems Modeling Language)
domain-specific modeling language (DSML) provides user
modeling constructs for designing embedded systems – in-
cluding functional specifications in Simulink, models for dis-
tributed computing platforms, and deployment models assign-
ing functions to tasks on computing nodes [1]. The language
structure and the supporting Model-Integrated Computing
(MIC) tools [2] enable the integration of analysis tools to
provide design assurance for use in high-confidence designs.

The development workflow supported by the tools is de-
picted in Fig. 1. After the Requirements Specification has been
created, designers start with familiar tools like Simulink to
design and simulate the functional control system (Control
Design). The Simulink design is imported into the modeling
environment, and then annotated with Software Architecture
and Component Design concepts. Platform models (Hard-
ware and System Architecture Design) represent the hardware
architecture. Componentized functions and signals are then
assigned to tasks and messages deployed on the hardware
(Software Deployment). From the composed model we can
perform static real-time schedule determination and synthesize

code for a distributed platform – assuming the platform pro-
vides clocked synchronous task execution and time-triggered
messaging services.

The tools currently support development for unmanned
aerial vehicles, in particular the Starmac quadrotor helicopter
[3]. The control architecture is based on a fast inner-loop
controller for attitude (here simplified to angle) and a slower
outer-loop controller for position (here simplified to a scalar
value). Our control technique is based on a composition of
nested passive (PD) controllers to stabilize a process modeled
as a cascade of continuous-time systems [4, Fig. 1].

II. TOOL FEATURES AND PROGRESS

The enabling ideas (beyond the existing capabilities of
model-based development) are the integration of analysis and
simulation tools to provide meaningful feedback to designers
as early as possible in the development cycle, and a search
for decoupling techniques which help make required analyses
tractible. This demonstration will focus on the first aspect
of our work (integrated analysis and simulation early in the

Fig. 1. Embedded development workflow supported by the tools.



design cycle) for embedded software synthesized from models.
A detailed presentation of the design philosophy, intended uses
and features, and limitations of the language and its tools is
available in [1]. A few features are noteworthy:

1) The TrueTime toolkit [5] extends Simulink with blocks
for modeling distributed platforms to simulate uncer-
tainties due to distributed processing. Our modeling
tools allow resimulation of the design using TrueTime
blocks synthesized from the deployment model. A single
design model targets both the continuous-time platform
simulation environment of TrueTime and the tasks in the
actual distributed system. Platform-specific simulation
exposes potentially destabilizing effects of communica-
tion delays before physical system construction.

2) Platform communication delays are captured explicitly
in the models. An integrated scheduling tool uses these
timing parameters for analysis. Computed schedules are
fed back into the modeling environment for TrueTime
simulations and for the final physical deployment. De-
signers can iterate over possible component and plaform
design alternatives and check schedulability.

3) In contrast to code generation tools like Real-Time
workshop [6] – which generate code for individual pro-
cessing nodes – ESMoL generates the task configuration
code as well as the communication glue code for the
distributed platforms on which it runs. The network may
be a heterogeneous collection of processors and buses, as
long as processing node and communication link types
are supported by the code generators.

4) The entire tool infrastructure has been built around a
single abstract semantic model, greatly simplifying the
process of integrating additional analysis and synthesis
tools. This ensures that all integrated tools have a single,
consistent view of the modeling language semantics.

Current development includes extension of the TrueTime
simulation generator, investigations into automated quantiza-
tion of the digital controllers (subject to safety constraints),
and consideration of other tools for verification of control
properties and deadlocks. In particular, integration of new tools
will require expansion of the language to include specification
of richer operational models.

III. TOOL DEMONSTRATION

The demonstration will display the following aspects the
ESMoL modeling language and tools:

1) Synthesis of a Simulink control design from the GME
modeling environment [7] to run on a simple distributed
embedded processing system (Gumstix processor with
an attached Robostix I/O processor [8]).

2) Computation of a cyclic real-time schedule using the
integrated Gecode constraint solver [9] [10].

3) Execution of the synthesized control functions on a
portable time-triggered virtual machine (FRODO [11])
running on the embedded hardware.

4) Simulation of the control loops using a hardware-in-the-
loop (HIL) simulator communicating with the embedded

Fig. 2. Hardware-in-the-loop simulation architecture. The high-end PXA
processor runs generic Linux, and the low-end AVR microcontroller runs
FreeRTOS. The two communicate via an I2C bus using a lightweight time-
triggered messaging protocol. Communication to the plant simulator PC
occurs over multiple high-speed serial lines.

system through a physical interface. The HIL simulator
is a PC running the Mathworks’ xPC target [6]. Fig. 2
shows the structure of the simulation system.
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