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C h a p t e r  T h r e e

Technology Support for 
Complex Problem Solving
From SAD Environments to AI

Gautam Biswas, Daniel Schwartz, John Bransford, 
and the Teachable Agents Group at Vanderbilt

For the past decade, our cognition and technology group at Vanderbilt (CTGV)
has been studying how technology can help students learn to approach the chal-
lenges involved in solving complex problems and learning about new topics.
Work centered around our video-based Jasper Woodbury Problem Solving Series
represents one example; a book written by our group summarizes this work
(CTGV, 1997). A summary of work that goes beyond the Jasper series appears in
CTGV (1998).

We note in the Jasper book (CTGV, 1997) that our work began with simple, in-
teractive videodisc technology, plus software for accessing relevant video segments
on a “just-in-time” basis. We needed the interactivity because Jasper adventures
are twenty-minute video stories that end with complex challenges for students to
solve. All the data relevant to the challenges (plus lots of irrelevant data that stu-
dents have to sort through) have been embedded in the story line. An overview of
the Jasper Series is illustrated in figure 1; a brief description of one of the Jasper
adventures, Rescue at Boone’s Meadow (RBM), appears in figure 2.

Figure 1. The twelve adventures of Jasper Woodbury.
Figure 2. Overview of the Jasper adventure, rescue at boone’s meadow.

After viewing a Jasper adventure, students usually work as groups to solve the
challenge. (A CD-ROM that accompanies the Jasper book illustrates this process;
see CTGV, 1997.) To succeed, students need access to the data embedded in the
Jasper story. Even if they cannot remember the details about required data, they
can usually remember where in the story the data had been provided. The soft-
ware lets them return to the relevant part almost instantly. For example, in the
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RBM adventure, students may return to the flying field scene to review how much
fuel an ultralight contained; go to the restaurant scene to find a conversation that
explained how large the landing field was in Boone’s Meadow; access Dr.
Ramirez’s office to review how far it was from one city to the next, and so forth.
An example of the visually organized, random-access environment for RBM is il-
lustrated in figure 3.
Figure 3. Map controller software for randomly accessing video scenes from Rescue at Boone’s

Meadow.
The software environments developed for each of the twelve Jasper adventures

are very simple for students and teachers to use and extremely helpful as a support
for student learning. From the perspective of AI, however, the software is trivial.
Our approach to research has been to start with stone age designs (SAD) environ-
ments and to add sophistication and complexity only as necessary to achieve our
instructional goals. Our SAD approach has allowed us to work closely with hun-
dreds of teachers and students and, in the process, identify and test situations
where increased technology support can further facilitate learning. In this chapter
we especially emphasize situations where AI insights and techniques have become
extremely helpful.

We will describe two examples where principles from AI have allowed us to im-
prove student learning. One involves creating an Adventure Player program, plus
offshoots of that program, to accompany the Jasper series (Crews et al. 1997). A
second involves the use of AI techniques to create “teachable agents” whom stu-
dents explicitly teach to perform a variety of complex activities. (The emphasis on
teachable agents is different from an emphasis on learning agents that learn on
their own without explicit teaching and without assessments of the adequacy of
the agents’ new knowledge. In other words, our teachable agents do not have ma-
chine learning algorithms embedded into their reasoning processes.) Our work
on teachable agents is quite new, so the ideas and data we present are still prelim-
inary. We hope that our discussion of this project will help connect us with others
who can provide insights about ways that we can strengthen and accelerate our
current work.

An Example of Moving from SAD to AI

As noted above, our approach to research and development has been to begin
with very simple uses of technology (SAD) and work in classroom settings to iden-
tify instances where increased technological sophistication could have a signifi-
cant impact on student (and often teacher) learning. One example comes from
our work on transfer. Our early data on Jasper showed that after students solved
a Jasper challenge, they were better able to solve similar, complex challenges (e.g.,
CTGV, 1997, chapter 4; Van Haneghan et al. 1992). However, their abilities to
transfer were still relatively brittle and inflexible (CTGV, 1997, chapters 4 and 5).
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One reason is that teachers sometimes had difficulty managing the learning of all
the students in the classroom, so their degree of initial learning was not sufficient
to support transfer (e.g., see Bransford, Brown, and Cocking 1999 for an
overview of the transfer literature). Another reason was that research on transfer
shows that learning can be “welded” to a particular concrete context and that
transfer can suffer unless it is facilitated by opportunities to see concepts applied
in multiple contexts rather than only one (e.g., Bransford et al. 1999; Gick and
Holyoak 1980, 1983).

Our original plan had been for teachers to always use at least two Jasper adven-
tures that built on one another. For example, after students solve RBM (which in-
volves concepts of distance, rate and time in the context of trip planning), teach-
ers could present Journey to Cedar Creek (which involves distance, rate and time
in the context of a boat trip). However, teachers often did not desire, or have the
time, to ask their students to solve two adventures that related to the same topic.
Instead, many wanted to move to Jasper adventures that focused on other topics
like introductory statistics, geometry and algebra. As a consequence, we faced the
challenge of designing a series of adventures that could be used flexibly yet also
overcome impediments to transfer.

We found that we could increase the flexibility of students’ learning by having
them solve a series of “what-if ” problems after solving a Jasper adventure (CTGV,
1997). For example, the challenge of RBM is to find the fastest way for Emily to
rescue an eagle and to explain how long that will take (most students’ solutions
make use of an ultralight that is shown in the adventure). After students solve the
initial challenge they complete what-if problems that ask questions such as: What
if the speed of the ultralight was x rather than y, how would that have affected the
rescue? What if the fuel capacity was a rather than b, how would that affect your
current plan to rescue the eagle? Flexibility and the ability to transfer also increase
when students solve analog problems like Lindbergh’s flight from New York to
Paris. (His planning for the trip is highly similar to the planning required to res-
cue the eagle in RBM.)

We used videodisc technology to deliver the what-if scenarios and analog prob-
lems. A limitation of this approach was that we could only present a limited set of
“canned” problems. In addition, our computer environment did not allow us to
present feedback to students about their planning and thinking—this had to be
left to the teacher. When one is teaching 20 to 30 students, providing “just-in-
time” feedback is an extremely difficult task. In addition, we found that students
liked to explore their own what-if scenarios and even create scenarios for others.
This was not possible with the “canned” problems that we had used.

Efforts to develop a more flexible, feedback–rich environment brought us to
our first attempt to use some of the techniques made possible through AI. The re-
sult was Adventure Player, developed initially by Thad Crews and Gautam Biswas
in consultation with our Jasper group. It allows students to work either alone or
in groups to attempt to solve a Jasper problem and what-if analogs, and to see the
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effects of their efforts via a simulation (figure 4). For example, if they have not ac-
counted for fuel needs, the plane has to land prematurely or it crashes. Students
can then go back and revise their planning. If they get terribly stuck, they have ac-
cess to a coach. Adventure Player is designed both to facilitate initial learning of
each Jasper adventure and to promote flexible transfer with “what-if ” scenarios.

Figure 4. Adventure player interface.
Adventure Player combines features of intelligent tutoring systems (ITS)

(Wenger 1987) and cognitive tools (Lajoie and Derry 1993). The system provides
an intelligent simulation environment that enables students to test partial (and
complete) solutions to problems and receive feedback. Unlike traditional ITS (e.g.,
Anderson et al. 1990) the focus is not on student modeling (i.e., discovering the
students’ misunderstandings) or how their errors should be corrected. The feed-
back mechanisms borrow from the cognitive tools framework in which the em-
phasis is on highlighting important aspects of the domain and the problem solv-
ing techniques. In Adventure Player the feedback is designed to make explicit the
consequences of incompleteness and errors in defining and executing solution
steps. For example, if a student fails to check the payload on the ultralight, and
the total weight is too great, the ultralight fails to take off. Similarly, if the student
specifies an excessive flying time from the city to Boone’s Meadow, the ultralight
flies past its destination. We have tried to stage the feedback so students can read-
ily map explicit failures onto the relevant parameters of their plans. Ideally, this
helps students learn to identify, reflect upon, and correct their own errors. How-
ever, if students continually experience difficulty, they also have access to the
coach (we say more about this below).

AI techniques and representation mechanisms also underlie a suite of Adven-
ture Player tools that assist students in their problem solving efforts. For example,
the environment includes an information pallet that enables students to access in-
formation about people, locations, vehicles, and distances that are part of the
video adventure. There is a planning notebook that students use to sequence their
solution steps while considering the resources they need to make their solution
steps work. There is also a timeline tool to help students organize their solution
steps in time, and to assign start and completion times for each of the steps.

The planning notebook and timeline tool feature important representational
structures that we hope students will appropriate as their own. They also serve as
scaffolds by simplifying the planning and calculation tasks that may otherwise
overwhelm students in their problem solving. Our pedagogical strategy is to offer
scaffolds that permit students to freely explore the problem space and experience
complex problem solving without excessive floundering. We gradually remove the
scaffolds as students move on to solve analogous “what if ” problems and other re-
lated adventures.

Overall, the intelligent simulation and its suite of tools provide students with
an exploratory environment for guided discovery learning. Such environments
have been criticized because they can frustrate students who cannot recover from
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errors during problem solving or who get stuck at a plateau of performance. This
is why we have also implemented a coaching system (cf. Burton and Brown 1979)
that observes student problem solving, and intervenes to make suggestions at spe-
cific points in the problem solving process. The coaching system is useful because
the task of generating working plans in the RBM domain is complex for middle
school students, and in many cases they generate incomplete plans (Van
Haneghan et al. 1992). The trip planning coach helps move students to the next
level; for example, by assisting them in generating an optimal solution to the trip-
planning problem once they have a feasible plan to rescue the eagle. The reason-
ing engine of the coach employs a generic algorithm that combines hierarchical
planning and best first search. A small set of predefined heuristics guide the search
process. After a student generates a complete solution, the coach intervenes to ask
if the student could find a better solution. If the student says no, the coach com-
pares the optimal solution to the student’s solution, and based on the differences,
makes a number of suggestions to the student directing him or her toward a more
optimal solution. Details of the coach and the Adventure Player system appear in
Crews et al. (1997).

Data show that the use of the Jasper Adventure Player software greatly facili-
tates students’ abilities to solve RBM (Crews et al. 1997). For example, we know
from early studies on Jasper that students working alone can have great difficulty
solving the challenges (e.g., CTGV 1997, chapter  4; Van Haneghan et al. 1992).
Their performance levels are higher when teachers guide the learning process and
when they can work collaboratively in groups (see CTGV, 1997). However, teach-
ers often have difficulty managing the complexity of helping each student learn to
solve each adventure. Adventure Player is very effective in managing this com-
plexity.

In one study we tested Adventure Player by asking sixth grade students to solve
the problem by themselves—without having any prior experience solving Jasper
problems. From previous studies (e.g., Van Haneghan et al. 1992, CTGV, 1997),
we knew that even students who scored very high on standardized tests of math-
ematical skills and understanding were not prepared to deal with Jasper-like prob-
lems; instead, they were used to dealing with simple one- and two-step word
problems. So we wanted to see if Adventure Player could help the students suc-
ceed. Overall, students performed much better in the Adventure Player environ-
ment than when asked to simply solve a Jasper adventure on their own.

In our study, we also varied the support provided by Adventure Player by turn-
ing off some of its key features and comparing students’ learning in these situa-
tions with ones where all the features were operable. Figure 5 shows that the full
system led to fewer errors in sixth-grade students’ final RBM solutions compared
to a partial system called the CORE system. The CORE system simply provided stu-
dents with the map interface, information pallet, and planning tool, but not the
simulation environment, timeline tool, and coach. Additional data showed that
79 percent of the students who used the complete simulation environment gen-
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erated a complete plan compared to only eight percent of the students who used
the CORE system.

Figure 5. Student gains from using the full adventure player system versus a core system that
only includes the planning tool and the information pallet.

In more recent work (Katzlberger 1998), the design of Adventure Player has
been generalized using a generic object-oriented architecture for problem solving
with visual interfaces that retain the pedagogic characteristics of the Adventure
Player system. The environment uses Java internet foundation classes (Netscape)
making it accessible remotely via the Web. Domain experts can build problem-
solving environments as subclasses of the abstract simulation class. The simula-
tion contains and displays actors implemented as “agents” that perform roles
based on properties assigned to them. Class libraries provide support for imple-
menting many different kinds of actors.

This framework has been extended by introducing agents that add additional
“intelligence” to the environment and to the interaction between the student and
the environment (cf., Lester et al. chapter 8). Agents come in various forms. Some
are assistants that help users retrieve relevant data and remind them of salient fea-
tures about the domain. Others watch user actions to keep track of their prefer-
ences and their progress in problem solving tasks. Still others act as coaches to
help students with problem-solving steps, especially when they make repeated er-
rors or generate sub-optimal solutions. Agents have been designed to take on
characteristics of some of the actors in the Jasper adventures (Balac, Katzlberger,
and Leelawong 1998). As a result, students encounter multiple interaction styles
and a variety of opportunities for learning.

One of the major goals of recasting Adventure Player in an object-oriented ar-
chitecture has been to support a reconceptualization of the Jasper series—a recon-
ceptualization that emphasizes the importance of invention and modeling in or-
der to “work smart” in particular environments. As an illustration, note that the
Jasper Adventure Rescue at Boone’s Meadow (RBM) asks students to solve a single
problem—rescuing the eagle (see figure 2). The what-if analogs to this adventure
change the parameters of the problem, but it’s still the same problem. The Lind-
bergh analog adds another problem, but it is still a single problem involving flight
time and fuel from New York to Paris.

Problem-solving in the Jasper series is reconceptualized when one moves from
attempts to solve one or two complex problems to attempts to prepare for a large
class of recurring problems by inventing tools that allow one to “work smart.” For
example, a “working smart” extension for RBM involves Emily (the heroine who
saves the Eagle) setting up a rescue and delivery service where she flies into various
areas in her region depending on the needs specified by customers. She and her
employees need to be able to tell the customer—as quickly as possible—the type
of plane needed (depending on payload constraints), the flying time for the trip
(depending on the speed of the plane), the fuel charges (which vary by plane size),
and so on. To calculate these anew for each problem is cumbersome. Students
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learn to work smart by inventing tools like graphs, charts, and spreadsheets that
help them solve these problems at a glance. Examples of smart tools and of the
learning processes and motivation involved in creating, testing and using them,
are discussed in Bransford, Zech, et al. (2000).

The new object-oriented architecture of the Smart environment makes it easy
for students to transport tools, like rate-time-distance graphs, from one working
smart environment to another. This helps students see both the generality and
possible limitations of their representational tools as they move to new environ-
ments. For example, a spreadsheet is more likely to be generally useful than a par-
ticular graph or chart, but students may still prefer the latter, once they tailor it to
a particular set of constraints in a new environment (see Bransford, Zech, et al.
2000).

The object-oriented architecture has also facilitated the development of an Ad-
venture Maker environment. Adventure Maker lets students create their own sim-
ulated problems for other students to solve. A current version of the environment
provides students with a map background on which they can construct locations,
paths for travel between locations, and a number of vehicles. The system allows
students to create a variety of challenge problems that include RBM type planning
problems, overtake and catch up problems, and even versions of the traveling
salesman problem. Students responding to the challenge have to import tools
they created in other problem solving environments, tailor them for the particular
problems, and then find the best solution as quickly as possible. We find that this
is highly motivating for students, and that prior experience with the Jasper series
affects the quality of the problems they construct (see CTGV, 1997). One of our
hypotheses about why Adventure Maker activities are so motivating to students is
that it puts them in the position of creating programs that others can learn from
(see also Kafai et al. 1998). This fits the general idea of “learning by teaching,”
which is discussed below.

Creating Designs That Give Students 
More Responsibility by Asking Them to Teach

Over time, our work in classrooms helped us see that some types of activities were
consistently motivating to students and helped them appreciate feedback and op-
portunities for revision. These involved cases where students were preparing to
present their ideas to outside audiences (e.g., adults), preparing to teach others to
solve problems that they had learned to solve previously (e.g., college students; see
CTGV, in press; AUTHOR: IS THIS PUBLISHED YET? Bransford, Brophy,
and Williams 2000), and creating new problems to present to other students (see
the preceding discussion of Adventure Maker). These observations led us to con-
sider the value of using AI-techniques to create intelligent social agents (teachable
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agents) for whom students could take the responsibility of teaching.
We differentiate teachable agents from other agent technologies such as agents

that coach people as they learn new skills and knowledge, or agents that search the
web for a user and gradually learn preferences to tailor more efficient searches.
Moreover, our agents currently have no automated learning algorithms built into
their learning processes. For us, teachable agents are social agents who need ex-
plicit instruction to do well. Students provide this instruction to the agent as
knowledge structures or procedures that can be directly executed by the agent in
response to given queries and problems. For example, an agent may need to be
taught how to deal with trip planning problems like the “working smart” version
of RBM, or an agent may need to learn how to monitor the quality of rivers to dis-
cover evidence of possible pollution. We situate our agents in particular task en-
vironments that provide a focus for teaching and assessment that is more domain
targeted than simply asking students to “teach this agent to do something—any-
thing.” The agents do poorly or well in these task environments depending on
how well they are taught.

A number of factors motivated us to explore the idea of creating “teachable”
agents whose behavior would depend on the quality of the teaching provided by
students. One is that the challenge of teaching others appears to create a sense of
responsibility that is highly motivating to individuals of all ages. In a study that
interviewed sixth graders about the highlights of their year as fifth graders, doing
projects that helped the community and tutoring younger students received the
highest praise from the students (CTGV, 1997). In “reverse mentoring” studies
headed by Kay Burgess, inner-city students who had solved a Jasper adventure
were highly motivated to help adults and college students solve an adventure for
the first time (see Bransford, Brophy, and Williams 2000). In work with teachers,
we consistently find that the opportunity to teach their peers is highly motivating
and develops a strong learning community among the teachers (CTGV, in press).

The motivation to teach others also carries over to virtual environments. In the
newest release from the Little Planet Literacy Series that the Learning Technology
Center at Vanderbilt helped create (CTGV, 1998) students are highly motivated to
write letters to a character named Maria to help her learn to read (see The
Dougout Collection Sunburst, 2000). In early versions of our SMART Challenge
series (Barron, et al. 1995; Vye, et al. 1998), students eagerly wrote e-mails to vir-
tual students who asked for help in solving the Jasper Adventure that they were
working on. In video games, students are consistently motivated to affect the fate
of agents as they attempt various adventures. However, the fate of these agents
usually depends on physical and mystical powers. We want to change the
paradigm so that their fate hinges on the development of useful knowledge, atti-
tudes and skills.

A second reason for exploring the idea of teachable agents stems from the
strongly shared intuition that attempts to teach others is an especially powerful
way to learn. There is a research literature on learning by teaching. Research on
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mentoring has shown that tutors learn as much or more than tutelars (Webb
1983), and that lessons in which students tutor each other are beneficial (King
1998) especially if well-scaffolded (e.g., reciprocal teaching; Palinscar and Brown
1984). Nevertheless, the research on learning by teaching does not consistently
show a benefit for teaching over and above learning for oneself (Bargh and Schul
1980; Willis and Crowder 1974; Cohen, et al. 1982). We believe that some of
this has to do with a lack of a research base about where to look for the benefits
of teaching. It seems unlikely that the unique payoff of teaching would appear in
memory tests, although memory tests are typically used. It seems more likely that
the payoff would be in the structure of people’s knowledge and their readiness to
learn from further instruction and feedback (Bransford and Schwartz 1999). In
addition, there are many aspects of learning by teaching that have not been ex-
plored.

We identify at least three phases of teaching that might be expected to enhance
learning: planning to teach, explaining and demonstrating during teaching, and
interpreting the questions and feedback that come from students during and after
teaching. Research has concentrated on the effects of planning to teach. For ex-
ample, Bargh and Schul (1980) found that people who prepared to teach some-
one else to take a quiz on a passage learned the passage better than people who
prepared to take the quiz themselves. Chi, deLeeuw, Chiu, and LaVancher (1994)
showed benefits of explanation, even when there was no audience. For example,
directions to “self-explain” while reading a passage on the heart improved com-
prehension relative to students who simply studied without directions to self-ex-
plain.

In our initial studies on preparing to teach, we are finding benefits that suggest
preparing to teach can spontaneously affect the way students learn and self-ex-
plain. In a recent study, we videotaped twelve students separately as they studied
a psychology article that described a series of experiments on memory. Half of the
students heard they were studying in preparation for a class test, and the other
half heard they would have to teach their class about the article. They had up to
thirty minutes to prepare.

The teaching students spent twice as much time studying the article. More in-
teresting is the way they prepared and what they learned. Table 1 presents some
of the important contrasts. Students who prepared to teach spent substantial time
trying to understand “the why” of the studies, whereas the students who prepared
for the test tried to memorize the results of the studies. As a consequence, the lat-
ter were less successful at reconstructing the studies, their results, and their ratio-
nale (see table 1).
Table 1. Comparative effects of preparing to teach versus preparing to take a test on students’

emphasis during study and final understanding.
Written reflections collected by Lin and Bransford (1999) also show benefits of

learning by teaching. They had asked different groups of graduate students in a
class on cognition, culture, and technology to teach the undergraduates in the
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class about some articles on stereotypes that included empirical tests of various
theories. Some of the graduate students worked individually to prepare to teach,
and others worked in small groups.

After their teaching experiences, graduate students were asked to discuss any
benefits of being asked to teach the material to the undergraduates (compared to
simply studying the materials in preparation for a test). All the graduate students
were convinced that preparing to teach, plus actually doing the teaching, resulted
in levels of learning that exceeded what they would have experienced if they had
only studied for a test.

Planning to Teach: Some students focused on the fact that the responsibility of
teaching forced them to make sure they understood the materials:
The article that described the three theories was very hard for me to read…. I had
to be sure that I understood this article…. After my clear understanding of how
the theories work I was then able to prepare a comprehensive and compact pre-
sentation…. In short, I cannot prepare a presentation on something I do not un-
derstand.

Other students focused on the increased importance of a clear conceptual or-
ganization:

To teach something in a specified amount of time means that you need to be
able to differentiate what is important from what is less important and identify
component parts and relationships. In other words, it’s necessary to conceptualize
the framework of ideas that are presented in the article. When I read an article
with the mind set of discussing it, I am not so diligent about understanding the
hierarchy of the ideas presented. If I’m teaching something, I have to categorize
and prioritize the ideas. This insures I present the important ideas in a coherent
manner.

It seems clear that the planning that takes place depends on knowledge of one’s
audience and the constraints of the teaching opportunities. For example, the
graduate students in the Lin and Bransford course had a good idea of their audi-
ence (the undergraduates in their course) and the time constraints on their pre-
sentations, and these seemed to affect their thinking. Similarly the data illustrated
in table 1 involved graduate students planning to teach other graduate students.
The students relied on their knowledge of their audience to prepare for the types
of questions they might receive. But it is worth noting that all students envisioned
giving a lecture rather than teaching in some other, more interactive manner.
Moreover, students in primary and secondary school may not readily anticipate
the demands of teaching, or their expectations, like the graduate students’, may
be unduly constrained by the experiences that they have had in classrooms (e.g.,
lectures). This suggests that it is worthwhile to explore different ways to set the
preparation “stage” for students rather than simply to ask students to prepare to
teach.
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Learning During the Act of Teaching

We noted earlier that the advantages of learning by teaching involve more than
just planning to teach. For example, there would appear to be additional advan-
tages from the actual act of teaching—especially from the opportunity to get
feedback from one’s students’ about what they do and do not understand. In a re-
view of the literature on self-explaining and explaining to other people (as might
occur during a collaboration), Ploetzner, Dillenbourg, Preier, and Traum (1999)
conclude that feedback from a collaborator is a significant component of other-
explanation, yet its effects on learning have not been investigated.

The graduate students in the Lin and Bransford (1999) study spontaneously
noted some of the things they learned by actually attempting to teach their sub-
ject matter. The following quote comes from a graduate student who collaborated
with three colleagues in order to prepare to teach the undergraduates. The stu-
dent discusses the preparation process and then writes about his group’s actual at-
tempts to teach.

We had a list of ideas and feelings that we wanted the class to experience with us.
When it came time to present, however, I realized how difficult it was to explain the
emotions of our small group discussion to a large group who were not all that famil-
iar with the article. Our presentations became more a dissemination of facts instead
of a sharing of emotion, as I had hoped (and planned) that it would. I think the un-
dergraduates got our basic points and left having a better understanding of stereo-
types and our charge to open up to each other, but I don’t feel that they had the same
experience with the message that I had. I feel my experience was more intense and
more memorable because my small group took the article down to its bare issues and
discussed how those made us feel and think about stereotypes.

The student’s comments suggested that the goal of planning in order to teach
helped his group learn effectively. In addition, the act of teaching helped him ex-
perience the differences between merely “transmitting” information and helping
people experience the effects of their own stereotypes.

Despite the benefits, it seems clear that not all teaching experiences will create
significantly new learning on the part of the teacher. Most teachers are familiar
with pupils who make them think and learn and with pupils who do not. This is
one reason why the idea of creating AI-based teachable agents can be so valuable;
it allows us to provide students with teachable agent pupils that optimize their
chances of learning, for example by ensuring the teachable agent asks questions
most relevant to the domain and the student’s level of development. And, unlike
peer tutoring, the teachable agent is not hurt if its teacher is really quite bad.

The idea of teachable agents has its precursors in activities such as teaching the
“turtle” to do things in LOGO (Papert 1980). This is a very motivating task envi-
ronment; we have worked with a large number of middle school students in this
context and know how motivating it can be (e.g., Littlefield et al. 1988). Howev-
er, it is also clear from the literature on Logo that it can be very difficult to
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demonstrate clear advantages of these kinds of activities unless one structures
them around particular types of goals and feedback structures (see Klahr and
Carver 1988; Mayer 1988). Our approach to teachable agents differs from LOGO

in the sense that we situate our agents in particular, anchored task environments,
which require specific sets of knowledge, skills and attitudes in order for the
agents to succeed. An example of a teachable agent is discussed below.

Meeting a Teachable Agent in Its Native Context

An example of a teachable agent is Billy Bashinall, high school student (figure 6).
He and friend Sally have been monitoring a local river to test for water quality.
Billy is ready to hand in the report, which says that the river is in excellent shape.
Sally is not so sure that their findings are accurate. She worries that the river is
polluted and will eventually kill the fish and other aquatic life. Billy’s response is,
“Lighten up Sally. This is only a school assignment. Besides, five pages is always
good enough for a C in Mr. Hogan’s class.” Billy’s negative attitude comes to the
attention of the D-Force—a group dedicated to helping students avoid the mis-
takes that they made as students. Billy needs their help.

Figure 6. Billy, a teachable agent, learns that his work is not good enough, and the D-Force
challenges students to teach Billy.

Billy is transported to D-Force headquarters, where he is shown videos of stu-
dents monitoring a river by collecting macroinvertebrates, calculating a water
quality index, measuring dissolved oxygen and so forth. Billy is asked to explain
what is happening. His answers reveal that he understands some things (e.g.,
macroinvertebrates can provide an index of the health of the river). However, he
seriously misunderstands other things like how and why some types of macroin-
vertebrates need considerable oxygen and are more sensitive indicators of water
quality than other macroinvertebrates that need less oxygen. Consequently, he
does not understand why the formula for water quality weights some macroinver-
tebrates more than others. And he does not understand how the amount of dis-
solved oxygen in the water is related to water quality and pollution.

The episode ends with Billy realizing that he needs help, and the D-Force ask-
ing people to help teach Billy. This becomes the task of the students in the class-
room. By adjusting Billy’s attitude and helping him learn important skills and
concepts, students learn by being teachers. By seeing how Billy performs follow-
ing their teaching, students can assess the quality of their teaching. After a series
of iterative teaching-assessment cycles, students eventually learn about rivers as
ecosystems and see that Billy has learned, too.

Initial SAD Studies Using Teachable Agents
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As was true with our work on Jasper, our research on teachable agents began with
a SAD approach. In particular, we began with a pre-scripted agent in order to test
our ideas in fifth-grade classrooms. Over time, we are replacing our scripted
agents with ones that have intelligence.

In a recent set of experiments led by Nancy Vye, fifth grade students began
their inquiry by meeting “Billy Bashinall,” the character introduced earlier (figure
6). Students saw him attempt to perform in a particular environment that re-
quired knowledge of ecosystems and water quality. They did research in order to
teach Billy, and they observed the effects of this teaching on his behavior. The Bil-
ly Bashinall environment was a scripted environment in the sense that we pre-
specified everything beforehand.

We used a software program called STAR.Legacy to organize students’ inquiry
into water quality monitoring (Schwartz et al. 1999). STAR.Legacy is a multimedia
shell that helps teachers, students, and instructional designers manage complex
inquiry activities. The interface shown in figure 7 organizes different stages of in-
quiry: students click on the icons to access relevant multimedia content. Students
begin with a Challenge that, in this case, asks students to help Billy learn about
macroinvertebrates and why they are used to check water quality.

Figure 7. The STAR.legacy interface that organizes complex inquiry activities.
Using the Legacy framework, students then generate their own ideas on the

topic of macroinvertebrates (generate ideas) and hear some ideas from experts
(multiple perspectives). In the course of discussing these ideas, students generate
many questions about macroinvertebrates, which set the course for their research
(research and revise). Students also have the opportunity to access specially-de-
signed computer tools to help them learn; for example, they use a simulation in
which they learn how to sample and sort macroinvertebrates to check water qual-
ity.

After studying macroinvertebrates, students take an assessment in Test Your
Mettle. Figure 8 shows the software interface that organizes the assessment ques-
tions (the software was developed by Jay Pfaffman). By clicking on a square, stu-
dents are brought to a question from the D-Force that Billy has already tried to
answer. Students give “advice” to Billy on how he should have answered the ques-
tion. For example, one of the questions on macroinvertebrates begins, “The D-
Force asked Billy to explain how scientists use macroinvertebrates to check water
quality.” Students then see Billy’s response to the question, in this case, “Scientists
count the total number of macroinvertebrates that are found in their sample.”
Students are asked to teach Billy by either telling him that his answer is correct or
by choosing a better answer for him from a set of alternatives that we provide. If
the students select correct advice, the relevant square in the grid turns green. If
they are wrong, the square turns red. The teacher (and class) can look at the accu-
racy of the students’ advice to Billy to get an assessment of class understanding.
So, although the students believe they are assessing and remediating Billy’s under-
standing in Test Your Mettle, they are actually completing assessment activities rel-
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evant to their own understanding.
Figure 8. Formative assessment interface.

One of the goals of the assessment environment is to help students self-assess
whether they are ready to advise Billy, and if they are not, to learn to consult re-
sources. Before advising Billy, students have the option to see online resources
such as relevant readings or animations By structuring the environment so stu-
dents may learn during an assessment, we encourage students to be reflective
about whether they understand well enough to teach Billy. The system’s backend
database tracks student use of resources. Among other things, this feature pro-
vides a measure of student motivation to teach Billy; if students are motivated to
give Billy good advice, we assume that they will consult resources when they are
uncertain or want to verify their advice. Figure 9 suggests that students are highly
intent on teaching Billy well. All students from the class represented in the figure
spontaneously consulted resources at least once before advising, and most con-
sulted multiple resources. As noted by a fifth grader, “It feels good to help some-
body out even though they are computer animated.”

Figure 9. Students consulted resources numerous times in preparation for teaching Billy.
In Test Your Mettle, students give advice on all aspects of water quality monitor-

ing, even aspects that they have not yet studied. They give advice on issues related
to macroinvertebrates and also on dissolved oxygen and river ecosystems. In this
way, the assessment is formative and students can use it to self-assess what they
have learned or have yet to learn. Once students have completed their teaching in
Test Your Mettle, we give them class-level feedback on their performance. The
feedback shows average performance for the class on each water quality topic.

Having “taught” Billy in Test Your Mettle, students watch (in Go Public) a car-
toon vignette in which Billy answers questions from the D-Force. Billy’s behavior
is scripted and it is not closely contingent on what the students actually taught
Billy in Test Your Mettle. Instead, it is contingent only at a general level. For exam-
ple, if the class as a whole does relatively well in Test Your Mettle, the subsequent
vignette shows Billy successfully answering the set of questions that were the focus
of attention in that particular legacy cycle. If the class did very poorly, the “go
public” video shows the D-Force asking the students to try again.

We created a different vignette for each challenge in the legacy cycle. The vi-
gnette for challenge one on macroinvertebrates shows Billy doing a good job an-
swering questions about macroinvertebrates, but the D-Force makes it clear that
he still does a poor job with questions about dissolved oxygen and ecosystems—
topics that students had not yet studied and that we can reasonably assume stu-
dents will not know much about. At the end of challenge 2, which focuses on
learning about dissolved oxygen, students see an epilogue in which Billy is now
able to answer questions about dissolved oxygen (and macroinvertebrates), but is
still unprepared to answer questions about ecosystems. In this way, we create the
idea that student performance in Test Your Mettle changes Billy’s ability to answer
queries from the D-Force.
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One important goal of our research is to study whether asking students to
teach an agent is effective in helping them learn. Our findings show that over
time, students improve their performance on the assessment. And, these improve-
ments occur in a predictable time course. After each challenge, students improve
most on the topic related to that challenge.

Bringing Agents to Life with AI

As noted earlier, the long-term goal of our work is to use insights from AI to
“bring Billy to Life.” Our major focus is not to make Billy learn on his own
through inductive, machine learning methods. Billy is a teachable agent not a
learning agent. Our goal is to create an environment that allows students to learn
both by preparing to teach agents, and by observing how the agents behave once
the teaching is completed (if there are problems, students can revise their teach-
ing). We are building teachable agents that can respond to different forms of
teaching (complete and incomplete) in flexible and informative ways so that stu-
dents may learn.

A simple example of this approach comes from Betty’s Brain, which we devel-
oped for instruction in the life sciences. (Betty is a second member of the
Bashinall family.) Betty, as an agent, is able to execute and portray inferences im-
plicit in a semantic network. Students and teachers can ask Betty questions as a
way to assess the quality of her knowledge. To develop her semantic network, stu-
dents teach Betty by drawing concept maps and taxonomic trees. In their draw-
ings, students define entities that are of interest in pollution studies (e.g., sun-
light, carbon dioxide, dissolved oxygen, algae, fish, etc.). And, they define the
relations between these entities (e.g., produce, breathe, and so on). Figure 10 il-
lustrates a concept map that was created by a student early in his learning. In con-
tains misconceptions that are quite typical for middle school students. After stu-
dents create their concept map, it serves as Betty’s semantic network and permits
her to draw inferences. In this way, students can get feedback on the quality of
what they believe and have taught. Given the map in figure 10, the agent offers
many mistaken answers that the student then has to explore and correct.

Figure 10. A representative, student concept map (early in their learning) given to Betty.
One of our tasks is to make sure that the effort of teaching an agent does not

incur the overhead of learning to program. For example, students do not need to
teach Betty how to draw inferences with a concept map. She already knows how
to do that. Moreover, the “programming” the students complete occurs in the
form of manipulating representational tools, like concept maps, which students
need to learn in the course of their normal studies. (Novak 1998) Similar to ask-
ing students to develop their adventure player plans with the timeline tool, we
scaffold student acquisition of useful tools and concepts by asking them to teach
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using “smart tools,” in this case, networks that help organize complex declarative
knowledge.

Figure 11 shows an interface that students can use to build Betty’s network. To
teach Betty, students can select from a list of entities relevant to a river ecosystem
using a pull down menu. They can also create new entities not available in the
menu. Students must also construct relations among the entities they select or
create. Students can use relation names from a pull down menu or create relation
names of their own. When they create new relation names, they are prompted to
categorize them into one of four classes that enable Betty to draw inferences. One
type of relation is qualitative causal, where an increase or decrease in one entity
can cause an increase or decrease in the other; for example, fish breathe (decrease)
dissolved oxygen. For Betty’s future inferences, this implies an increase in the fish
population results in a decrease in dissolved oxygen. All causal links are defined as
an increase (+) or decrease (-) relation between two quantities. For example, if
quantity A has a produce relation with quantity B, then an increase (decrease) in
A causes an increase (decrease) in B. On the other hand, if quantity A has a con-
sume relation with quantity B, an increase (decrease) in A will cause a decrease
(increase) in B. A qualitative amount relation, defined as a large, normal, or small
change, may further qualify the qualitative relations. (If the amount is not speci-
fied, a default value of a normal change is assumed.) This way, an increase in
quantity A may cause a large increase in quantity B. This framework allows the
inference mechanism of Betty’s Brain to implement a simple qualitative arith-
metic scheme for propagating amount values through a chain of causal relations
in a concept map. Work done in the qualitative reasoning community (e.g., de-
Kleer and Brown 1984, Forbus 1984, and Kuipers 1986) define more sophisticat-
ed qualitative reasoning mechanisms for dynamic systems that reason simultane-
ously with amounts and rate of change.

Figure 11. The interface students use to construct Betty’s concept map.
A second type of relation is dependency where one entity needs another with-

out implying quantitative changes; for example, plants need sunlight but do not
use it up. A third relationship is belongs-to where one entity belongs to another
entity; for example, fish belong to the class of living objects. Finally, the has-a re-
lationship allows students to define entity attributes; for example, water has dis-
solved oxygen.

After students teach Betty’s Brain by building her concept map, they can “test
her mettle” by asking questions composed from a pull-down menu. For example,
a student can ask, “How does an increase in fish change dissolved oxygen?” In
full-discourse mode, Betty uses an exhaustive forward chaining algorithm (a brute
force, depth-first search) to find all possible paths connecting the entities in the
query. If there are multiple paths with conflicting solutions, the system weights
the paths to arrive at a conclusion. To present her conclusion, Betty can explain
her answer in stylized natural language, or she can highlight the relevant portion
of her concept map. For the concept map in figure 10, there is only one path and
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Betty replies, “I think an increase in fish increases dissolved oxygen,” and she
shows her inference path as in figure 12 If there were more than one path, Betty
would offer a single answer, but show that there is more than one chain of infer-
ence.

In more detail, students and teachers can ask Betty three kinds of questions: (1)
What happens to quantity B when the amount of quantity A increases(decreas-
es)?, (2) What is the effect of an increase(decrease) in quantity A?, and (3) What
quantities can cause an increase(decrease) in quantity A? For query types 1 and 2,
the mechanism does an exhaustive search over the entire concept map, identifying
all possible forward paths from quantity A. A single step in the forward search
process involves identifying a forward causal link from the current (source) con-
cept, and applying the qualitative reasoning mechanism to compute the resultant
value for the destination concept. When multiple paths exist between two enti-
ties, the reasoning mechanism applies qualitative rules of the form, a large in-
crease and a small decrease imply a normal increase, and a normal decrease and
small increase, imply a small decrease. Situations, such as a normal increase and a
normal decrease lead to an ambiguous situation, and Betty responds by saying
that she is unable to tell whether the result is an increase or a decrease. For query
type ), the reasoning mechanism employs an exhaustive backward search instead
of a forward search.
Figure 12. Betty portrays how she inferred that an increase in fish increases the amount of dis-

solved oxygen.
In addition to the concept map provided by the student, the Betty system can

include an age-appropriate network created by the instructor (using the same in-
terface tools) that can also draw inferences. If needed, these inferences can be used
to help students rectify their concept maps. Betty’s Brain is similar to Adventure
Player in that it can operate with and without this type of domain model. The
students can simply create and test their own concept maps, just like they can cre-
ate their own simulations in Adventure Maker. When there is a domain model
available, the Betty system, also like Adventure Player, can compare the discrep-
ancies between Betty’s inferences based on the map provided by a student and the
domain model’s inferences to determine possible points for instruction. However,
unlike Adventure Player, the Betty system produces indirect coaching based on
discrepancies. We say “indirect” because we make the feedback come through
Betty to maintain the student’s sense of responsibility. For example, Betty can ask,
“I know I figured that an increase in fish would increase the dissolved oxygen, but
I remember my teacher said the opposite. Where have we gone wrong?” The sys-
tem can gradually increase the directness of the feedback depending on student
difficulties. For example, Betty can ask, “Are you sure that fish eat dirt?” because
the domain model does not include a dirt entity. At an even greater level of sup-
port, Betty can say she asked a teacher or friend who handed her a concept map.
She can show the map that is the subset of the domain model deemed most rele-
vant to the question.
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After students assess and revise Betty’s Brain, they ask her to go public. This
can take a variety of forms. For example, each student in a class may create a sep-
arate Betty. When ready, the students submit their Betty to the teacher’s website.
(Betty has Java genes. She is implemented as a platform-independent Java applet.)
The teacher can then ask the same question of all the Betty’s, and students can see
the different responses. This serves as an excellent context for classroom discus-
sion as students try to resolve which answers are correct and why. A similar form
is that students generate questions for one another that they know their own Bet-
ty can answer. A third form of going public involves collaborative problem solv-
ing. Under this model, students join their Betty’s into team betty. (The Betty sys-
tem supports the automatic merging of databases and the redrawing of the
subsequent concept map.) Team Betty then tries to answer questions. In the best
of cases, team Betty can answer questions that none of the Betty’s could resolve in
isolation. In other cases, team Betty contradicts herself, because the students had
conflicting concept maps. Our hope is that it will be highly motivating for teams
of students who build a team Betty, and it will provide an excellent context for de-
veloping classroom discussions about knowledge organization.

One of the exciting possibilities with teachable agents is that they can help stu-
dents reflect on the dispositions of effective learners. The students can explore
how different attitudes affect an agent’s ability to learn and reason. For example,
students can adjust Betty’s “attention” parameter that determines how well she
“encodes” the relations she is taught. If her attention is poor, she may put an en-
tity into the wrong relationship or leave it out all together. Of course, the goal is
not to teach children that good attention is all that is needed for learning. There-
fore, we plan to include a complex of different disposition parameters that stu-
dents can adjust, balance, and discuss. For example, Betty can be stubborn and
refuse to do homework so she forgets some relationships over time.

Students can adjust disposition parameters that affect her reasoning. Although
students do not program the search algorithms, they can indirectly change them
via Betty’s disposition. For example, if they receive a lazy Betty and do not adjust
her “thoroughness” parameter, Betty only searches one level or stops after finding
one solution. Betty can be too wordy and report every step of every inference
chain she tries, right or wrong. Betty can be a little too loose in her reasoning and
chain across nodes that have no actual relationship. Students get a chance to ex-
plore and change disposition parameters as they work with Betty. Ideally, this ac-
tivity can help students reflect upon and discuss the appropriateness of their own
dispositions for learning.

Summary 

Our goal in this chapter was to describe some examples where AI techniques have
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helped to improve learning in classroom environments. We noted that our re-
search strategy has been to begin with SAD applications of technology. This has al-
lowed us to identify situations where increased technological sophistication could
have a significant impact on student (and often teacher) learning. We discussed
two examples of moving from stone-age designs to designs enriched through AI.

One example involved creating the Adventure Player program to accompany
the Jasper Series (Crews et al. 1997). Students can work on the program either in-
dividually or in groups. Tests of the program (Crews et al. 1997) show that it fa-
cilitates initial learning and leads to more flexible transfer. Teachers who have
taught Jasper with and without the aid of Adventure Player have noted how help-
ful the program was for managing the complexity of the learning environments
that Jasper adventures entail.

We also noted that we have created object-oriented variations on Adventure
Player that allow students to create tools for “working smart,” plus create simula-
tions for other students. The “smart tools” application supports the reformulation
of Jasper from a series where students only solve a single complex problem, to one
where they must learn to work smart in order to solve large classes of frequently
recurring problems (Bransford, Zech et al. 2000). The Adventure Maker applica-
tions allow students to create new adventures of their own.

A second example of moving from SAD to the use of AI techniques centered
around the concept of “teachable agents” whom students explicitly teach to per-
form a variety of complex activities. Our focus on teachable agents is part of a
larger effort to explore the potential benefits of learning by teaching. There is a
great deal of intuitive support for the benefits of learning by teaching—both mo-
tivationally and conceptually. By contrast, the research literature on the topic is
extremely modest. Our research is helping us understand the conditions under
which learning by teaching can have powerful effects. We find benefits of plan-
ning to teach, as well as benefits of actually trying to teach and getting feedback
from students. But we noted that even these categories are very general and need
to be explored more carefully. For example, how one plans to teach is affected by
knowledge of (1) who will be taught; (2) under what conditions (e.g., time con-
straints), and (3) the range of possible teaching strategies that might be used (e.g.,
lecture versus alternatives).

We also argued that people learn during the act of teaching (and when reflect-
ing on their teaching), and that what a teacher learns will depend on the quality
of his or her students (e.g., the kinds of questions they ask). And we wanted to en-
sure that students are not harmed by inexperienced or underprepared teachers.
Therefore, we are creating virtual “teachable agents” who are not hurt by poor
teaching, and who provide the kinds of questions and feedback that best enable
their teachers to learn from them.

Our effort to design teachable agents follows the tradition of viewing comput-
ers as not only tools and tutors, but also tutelars (Taylor 1980). Attempts to pro-
gram the Logo turtle represents an excellent example of the computer as tutelars
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approach (e.g., Papert 1980). However, unlike Logo, we situate our teachable

agents in particular environments that require specific sets of attitudes, skills, and

knowledge to function effectively. This allows us to focus on the acquisition of

conceptual knowledge that is important for areas such as science, mathematics

and history.

Our work on teachable agents has followed our strategy of beginning with SAD

approaches and adding complexity as needed. Our initial SAD designs involved

agents whose behaviors were all prespecified. This work has allowed us to learn a

great deal about student motivation and learning, and about ways to provide

feedback to students that facilitate this process. Subsequent work is allowing our

agents to be much more flexible by using agent-based AI techniques.

Our work on teachable agents is quite new, so the ideas and data we presented

were preliminary. Nevertheless, students’ reactions to the “faux” agents have been

highly promising, and the AI-based agents are making the learning situations

even more exciting. One of our ultimate goals is to change the nature of video

games from environments that primarily emphasize weapons and fighting abili-

ties to ones that highlight important sets of knowledge, skills, and attitudes.

Combing our teachable agent software with the Adventure Player type simulation

environments will allow students to design agents for particular challenge envi-

ronments, and then evaluate and cheer for the superior problem-solving perfor-

mance of their agents in these environments. As the environments become more

complex, the knowledge students will need to teach will become increasingly so-

phisticated and flexible. In this way, students can develop an appreciation for the

“big ideas” that organize thinking in different domains.

Acknowledgements

This chapter was made possible by the Teachable Agents grant—NSF REC-

9873520T, and by a grant for The Challenge Zone—NSF ESI-9618248. The

opinions expressed in the chapter do not necessarily reflect those of the granting

agency. Members of the Teachable Agents Group at Vanderbilt who contributed

to this chapter are Gautam Biswas, John Bransford, Sean Brophy, Thomas Katzl-

berger, Xiaodong Lin, Taylor Martin, Jay Pfaffman, Daniel Schwartz, Nancy Vye,

and Yingbin Wang.

20 BISWAS, SCHWARTZ, AND BRANSFORD

4/6 Preliminary Proof — Return by 23 April 2001



TECHNOLOGY SUPPORT FOR COMPLEX PROBLEM SOLVING 21

Complex Trip Planning
Journey to Cedar Creek
Rescue at Boone's Meadow
Get Out the Vote

Statistics and 
Business Plans
The Big Splash
Bridging the Gap
A Capital Idea

Geometry
Blueprint for Success
The Right Angle
The Great Circle Race

Algebra
Working Smart
Kim's Komet
The General is Missing

The Adventures of Jasper Woodbury

AU: THE RESOLUTION OF THIS FIGURE IS HORRIBLE. WE
DO NOT GUARANTEE THAT WE WILL BE ABLE TO IN-
CLUDE IT IN THE BOOK. PLEASE SUPPLY REPLACEMENT.

4/6 Preliminary Proof — Return by 23 April 2001



22 BISWAS, SCHWARTZ, AND BRANSFORD

4/6 Preliminary Proof — Return by 23 April 2001



TECHNOLOGY SUPPORT FOR COMPLEX PROBLEM SOLVING 23

0

10

20

30

40

50

60

70

80

FULL System

CORE System

4 
Errors

3
 Errors

2
 Errors

Payload 
Error

Pilot 
Error

Fuel
 Error

No 
Errors

Pe
rc

en
ta

ge
 o

f f
in

al
 s

ol
ut

io
n 

co
nt

ai
ni

ng

4/6 Preliminary Proof — Return by 23 April 2001



24 BISWAS, SCHWARTZ, AND BRANSFORD

Look Ahead
& 

Reflect Back

Go Public

Test Your
Mettle

Research
& Revise

Multiple
Perspectives

Generate
Ideas

Tips

Help

The Challenges

4/6 Preliminary Proof — Return by 23 April 2001



TECHNOLOGY SUPPORT FOR COMPLEX PROBLEM SOLVING 25

AU: PLEASE SUPPLY AN “EDITABLE” VERSION OF THE
TOP FIGURE. WE ONLY HAVE A BITMAPPED PDF.

4/6 Preliminary Proof — Return by 23 April 2001



26 BISWAS, SCHWARTZ, AND BRANSFORD

4/6 Preliminary Proof — Return by 23 April 2001



TECHNOLOGY SUPPORT FOR COMPLEX PROBLEM SOLVING 27

4/6 Preliminary Proof — Return by 23 April 2001


