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Abstract—Public bus transit plays an important role in city
transportation infrastructure. However, public bus transit is often
difficult to use because of lack of real-time information about bus
locations and delay time, which in the presence of operational
delays and service alerts makes it difficult for riders to predict
when buses will arrive and plan trips. Precisely tracking vehicle
and informing riders of estimated times of arrival is challenging
due to a number of factors, such as traffic congestion, operational
delays, varying times taken to load passengers at each stop. In
this paper, we introduce a public transportation decision support
system for both short-term as well as long-term prediction of
arrival bus times. The system uses streaming real-time bus
position data, which is updated once every minute, and historical
arrival and departure data - available for select stops to predict
bus arrival times. Our approach combines clustering analysis
and Kalman filters with a shared route segment model in order
to produce more accurate arrival time predictions. Experiments
show that compared to the basic arrival time prediction model
that is currently being used by the city, our system reduces arrival
time prediction errors by 25% on average when predicting the
arrival delay an hour ahead and 47% when predicting within a
15 minute future time window.

I. INTRODUCTION

Emerging trends and challenges. Bus systems are the
backbones of public transit services in many cities. With their
high capacity and relatively low investment and operational
costs, bus systems can reduce traffic congestion substantially
as well as bring environmental benefits such as reducing
energy consumption and air pollution [1]. However, one major
issue preventing many people from choosing bus service for
commuting and travelling is its unpredictability [2]. Buses
can often show up late due to various reasons: traffic con-
gestion, road construction, special events or bad weather. This
uncertainty forces potential riders to opt for other modes of
transportation.

Travel/arrival time prediction is one key research topic in
intelligent transportation research [3], [4], [5]. Often, transit
authorities use Automatic vehicle location (AVL) systems to
monitor bus service status in order to provide information to
city decision makers as well as commuters. The data collected
provides the potential for more intelligent applications such as
transit operation monitoring, smart trip planning, rough delay
time estimation, at-stop displays, etc.

In this paper, we focus on delay prediction for midsize
cities. Midsize cities with populations of 10,000s-100,000s [6]
of citizens. According to the statistics [7], more than 280
cities in the United States fall into the midsize city category.
Various statistical models have been applied to travel/arrival
time prediction [3], [4], [5]. However, in most cases the system
analyzed belonged to a large city with a large number of
vehicle trips, generating a large dataset that was then used
for analysis. Unlike large cities, midsize cities have limited
public resources to invest in the transportation services, and
moderate residential and employment density. As a result, the
transit network is often not very dense and the vehicles are
not scheduled very frequently. This reduces the amount of
data that is available for creating prediction models, which can
produce poor accuracy. In this paper, we shot that by using data
available at the route segment level, it is possible to produce
enough samples for more rigorous statistical analysis.

Contributions. This paper presents Transit-Hub, a decision
support system that addresses the question of whether it is
feasible to build a smart public transportation decision support
system that can efficiently use utilize data from shared route
segments to produce more accurate predictions. This paper’s
main contributions are as follows:

• We present a clustering model that learns bus perfor-
mance patterns during different hours of the day and
different days of the week.

• We describe a real-time vehicle schedule adherence and
prediction model. This model can be also used for iden-
tifying arrival time outliers and anomalous operations.

• We empirically validate our approach using a real-world
dataset and real-time transit feed from Nashville. The
experiments show that data collected over a two-hour
window is most suitable for real-time prediction. Our
model provides a 25% reduction error in average arrival
time prediction within the a 1-hour window and achieves
a 47% improvement when predicting the delay for next
15 minutes compared to the model currently in use by
the Nashville MTA.

Outline: Section II specifies the system model, our data
sources and defines the delay. Section III provides related
research. Section IV describes our key contributions to address
the system’s challenges, and the experimental evaluation of the978-1-5090-0898-8/16/$31.00 c©2016 IEEE



system. Section VI describes how we integrate the models and
describes the solution architecture of Transit-Hub. Section VII
presents concluding remarks and future work.

II. SYSTEM MODEL

Transit network in a city is broken up into multiple routes.
Each route can be further divided into multiple transit stops.
Unique paths between two transit stops are call route segments.
A transit schedule consists of scheduled trips for each route. A
trip is identified by the time that it starts from the origination
bus stop. Given the finite number of transit vehicles, a bus
often finishes one trip and is then immediately allocated to an-
other trip. Therefore, delays in the systems can cascade across
scheduled trips. Furthermore, traffic and other phenomena can
add to delays, which is defined as the time between expected
arrival at a stop and the time of actual arrival. The stops with
a detailed record of departure and arrival time are called “time
points”.

A. Data Sources

We have collaborated with Nashville’s Metropolitan Transit
Authority (MTA) for accessing their static bus schedules,
historical data set of time points all across the city and real-
time transit data feeds. The data sources and their features are
as follows.
• Bus scheduling dataset: static transit data in General Tran-

sit Feed Specification (GTFS) [8] format that presents the
physical route layout, stop locations and static schedules.

• Time point dataset: historical data of the buses at time
points1, including bus ID, route ID, trip ID, actual depar-
ture and arrival time, dwell time.

• Real-time transit feeds: real-time updates of transit fleet
in GTFS real-time format for the following feed types:
trip updates, service alerts and vehicle positions. These
feeds are established by streaming AVL data on operating
buses.

• Crowd-sourced data feeds: the collected data from mobile
apps include anonymized information about the location,
when they get on/off the buses, their walking distances
to bus stops, etc. All data are collected anonymously.
It should be noted that this data set is not used in the
analysis described in this paper.

Bus scheduling dataset (static GTFS) is updated only when
MTA modifies its bus routes or schedule.; Historical time point
dataset is collected by MTA when each monthly period ends.
So at the end of each month, time point dataset is manually
imported into our MongoDB database; The real-time transit
data is collected from real-time feeds and persisted by the
back-end server every minute

B. Delay Definition

We consider two types of delay metrics, a delay associated
with a route segment and a delay associated with a time point.
Consider two adjacent stops A and B, the time interval of

1A time point is a preidentified transit stop which has recorded arrival and
department information per trip.

scheduled arrival time at B and the scheduled arrival time at
A is the normal travel time without delay. The travel time delay
for route segments between any two adjacent stops troute delay
can be calculated as follows: (Bactarr−Aschdep)− (Bscharr −Ascharr),
if Aactarr ≤ Ascharr or (Bactarr − Aactarr) − (Bscharr − Ascharr), if
Aactarr > Ascharr, where act and sch in superscript indicates
actual/scheduled time. And dep and arr in subscript indicates
departure/arrival time. For example, Bactdep − Aschdep refers the
actual departure time of time point B minus the scheduled
departure time of time point A. Specific delay for a particular
stop, say B is ttime point delay is Bactarr −Bscharr .

III. RELATED WORK

A. Historical Delay Analysis Models

Many researchers have conducted studies that analyze the
historical data of bus service to investigate factors that cause
delay and affect bus service. Abkowitz et al. [9] found that
trip distance, passenger activity and signalized intersections
could greatly affect the mean and variance of bus running
time. Kimpel et al. [10] analyzed the bus service performance
and passenger demand using Tri-Met Bus Dispatch System
data at time point level. They found that the delay variation at
previous time points, passenger demand variation, speed and
distance contribute to delay variations. They suggested that
optimizing delay at early time points could improve service
reliability. El-Geneidy et al. [11] investigated how reserved
bus lane affect the running time delay and arrival time delay
of other parallel routes.

B. Bus Service Quality Measurement

Researchers have defined several performance measures to
quantify the quality of bus service. Sterman et al. [12] tested
the inverse of the standard deviation of travel times to measure
service reliability. Camus et al. [13] proposed a new service
measure called weighted delay index. Saberi et al. [14] evalu-
ated the existing reliability measures and defined an alternative
metric at the stop level. Other researchers have presented
systematic frameworks for bus service measurement. Lin et al.
[15] created a quality control framework of Data Envelopment
Analysis (DEA) that uses data from AVL devices to quantify
route service reliability. Gilmore et al. [16] presented the
integration of quantitative analysis tools and applied to public
bus systems.

C. Delay Prediction Models

Travel time and arrival time variation were found to have
a great impact on commuters’ satisfaction [17]. In the past
decade, numerous studies have been conducted to develop
models and algorithms to predict bus travel delay and arrival
delay. Abdelfattah et al. [18] developed linear and nonlinear
regression models for predicting bus delay under normal
conditions using simulation data. Williams and Hoel [19]
found that daily traffic condition patterns are consistent across
the weeks. Jeong et al. [20] presented a historical average
model and found that the historical model was outperformed
by other models because its prediction accuracy was limited by



the reliability of traffic patterns. Regression models measure
various independent variables to predict a dependent variable.
Patnaik et al. [4] used distance, number of passengers at
stops, stop numbers, and weather conditions for multilinear
regression models to predict bus arrival time. However, since
the attributes in transit services are often not independent but
correlated with each other, the performance of regression mod-
els will deteriorate as the dimension of the data increases. Ma-
chine learning models can deal with complicated relationships
and noisy data. Elhenawy et al. [3] presented a data clustering
and genetic programming approach to predict the travel time
along freeways. Artificial neural network (ANN)[21], [22],
[23] and support vector machine (SVM) [5], [24], [23], [25]
are two most widely used machine learning models in bus
time prediction. Kalman Filtering models rely on historical
data and real-time data and have been employed extensively
for bus time prediction [21], [26], [25].

D. Summary

Even though there are numerous models and algorithms
developed for historical data analysis and bus time prediction,
only few of them focus on using data of segments that are
shared by multiple routes. Yu et al. [23] investigated the
models of k nearest neighbours algorithm (kNN), SVM, ANN,
and linear regression (LR) on arrival time prediction that used
multiple routes’ segment data. However, they only studied the
peak hours’ data and the short-term prediction. Bai et al. [25]
presented a dynamic travel time prediction model based on
SVMs and Kalman filtering-based algorithm with multiple
bus routes. But Bai’s research did not study the model’s
performance for different prediction periods and training data
periods. Also in their system, long-term data analytics and
short-term delay prediction were not integrated together.

IV. LEARNING THE TRANSIT PERFORMANCE MODEL

We have developed a long-term analytics model that ex-
plores the historical bus delay patterns of arrival time delay at
time points and travel time delay for all route segments. Our
approach uses clustering methods which allows the decision
support system to provide typical delay information clustered
based on time of day and eventually other features such as
weather to users and city planners.

A. Clustering Analysis

For each day of week, K-means algorithm [27] is used to
cluster the delay data according to the delay and time in the
day by minimizing the within-cluster sum of squares (WCSS).

argmin
S

k∑
i=1

∑
x∈Si

‖x− µi‖2 (1)

where µi denotes the mean of all points in cluster Si.
Silhouete analysis [28] is a measurement of how close each

point is within one cluster.

s(i) =
b(i)− a(i)

max{a(i), b(i)} (2)

Fig. 1: Cluster historical delay data according to the delay and time in the
day at time point “HRWB” on route 3. The figure shows that there are two
active delay patterns. One before 1230 hours and the other after that.

Fig. 2: Gaussian distribution of the clustered historical delay data at time point
“HRWB” on route 3

where for each data point i in the cluster, ai is the average
distance between i and the rest of data points in the same
cluster, bi is the smallest average distance between data point i
and every other cluster. We calculate the silhouette scores from
2 to 5 clusters using K-means algorithm to find the optimal
number of clusters with the lowest silhouette score.



At the end of each month, the time point data is imported
into the database. The data is then divided into 7 groups
according to the day in the week. We then generate the clusters
and normal distributions for all the route segments in each
group. The clustered data and Gaussian distribution are then
cached and persisted in the database. This ensures that we do
not run clustering analysis every time we have to query the
model.

Example Consider a time point “HRWB” on route 3 in
Nashville. The historical data of bus arrival delay which we
selected is for Tuesday, outbound direction, between August 1
2015 and August 31 2015 (107 points). Figure 1 plots the delay
data in 24 hours. In the figure most of the points are roughly
clustered into two groups (green and blue), one between 7 AM
- 12:30 PM and another between 12:30 PM and 7 PM. This
means there are two different delay patterns in the morning
and in the afternoon.

B. Normality Test and Prediction.

Assuming that the historical delay data has a Gaussian
distribution we perform normality test on each cluster that we
get from the analysis in the previous step. From the distribution
curve we can calculate long-term delay prediction confidence
interval and provide the results to a mobile app and dashboard
(these applications are described later in section VI-A).

Example: Doing the normality test on the clusters generated
from the data describe in the previous example, we get the two
Gaussian distributions in Figure 2. The cluster for the delay in
the morning has a lower mean value (85.8s v.s. 196.7s) and a
narrower Gaussian distribution curve, which indicates that for
this time point on Tuesday, the route 3 buses are more likely to
be on time in the morning than in the afternoon. In the morning
the 95% confidence interval of delay is between 45.6s to 126s
while in the afternoon the 95% confidence interval of delay is
between 123.5s to 269.8s.

C. Outlier Analysis.

Outlier analysis is important for transit data analysis because
it provides cleaner data for the normal distribution analysis
and prediction. Furthermore, it helps to identify major sporting
and special events, hazardous weather conditions, peak hour
congestion, all of which could cause abnormal delays. By
analyzing outliers, city decision makers can understand the
factors that unusually affect the delay time.

To identify the outliers, Mahalanobis distances [29] are
computed for the points in each Gaussian distribution. Ma-
halanobis distance measures the distance between a point xi
and a distribution by the following formula:

dµ,Σx
2
i = (xi − µ)

′
Σ−1(xi − µ) (3)

where µ is the mean value and Σ is the covariance matrix for
the delay vector.

Example: For the dataset discussed in the previous two
examples, there are some outliers (red points) identified in
Figure 1. These outliers happened mostly during the morning
and evening rush hour. Our hypothesis is that in rush hour there

Fig. 3: Time points on route 3 in Nashville: the colors at time points indicate
the arrival delay; the colors on route segments between time points indicate
the travel delay. The bus in this route travels from MCC5 towards HRWB.

are typically more passengers and more traffic congestion on
the road. Since our back-end server is monitoring the real-time
transit feeds, it also records in real-time about which trips have
severe outliers and do not fit in the typical delay pattern, which
can then be investigated.

D. Bottleneck Identification

Once we have the mean delay patterns for all time points
and all route segments, we can use them to identify the
bottlenecks along the routes and take actions to optimize the
route performance. As shown in Figure 6, there are three time
points “MCC5_5”, “WE23”, “WE31” preceding to time point
“HRWB” on route 3. We perform analytics on time point
“WE23” and “WE31”. The typical arrival delay for “WE23”
on Tuesday afternoon is 114 seconds while for “WE31” is
195 seconds, considering the fact that typical delay for the
succeeding time point “HRWB” on Tuesday afternoon is 196.7
seconds, which is statistically closer to 195 seconds. Therefore,
we can conclude that the bus stops between “WE23” and
“WE31” are the bottlenecks of route 3 which generate the
delay. In Figure 3 the color of segments between adjacent
time points shows the travel delay. Green means the delay is
less than 100 seconds while yellow means delay is larger.

V. INTEGRATING REAL-TIME DATA

As described earlier, the automated vehicle locators provide
time stamped position for each vehicle in real-time. It also
provides a basic additive arrival estimate using the the delay
accrued till the previous stop. The resolution of the provided
estimate is in minutes. However, unlike the time point data it
does not include the actual arrival and departure time at each
bus stop.

We use a two-staged Kalman filter model to integrate the
data and analyze it. The first stage filter is the location filter,
which uses the real-time feed data to better estimate the current



position of the vehicle. Then, we use a shared segment delay
filter to update the current delay for the route segment.

A. Time Window Configuration.

We have two parameters for using the real-time data to
predict bus delay time in the future, Tpast and Tfuture. Tpast
is the length of the time window from which the real-time data
is used; Tfuture is the upper bound of duration for which we
predict the arrival and delay parameter. For example, if Tpast
is 3 hours and Tfuture is 30 minutes, it means the model
is using real-time dataset of the past 3 hours to predict the
delay up to 30 minutes in the future. Experiments that explore
the relation between prediction accuracy and configuration of
Tpast and Tfuture is shown in Section V-F. By default, we
use 2 hours as Tpast and 15 minutes as Tfuture.

B. Location Filter.

Since rate at which the vehicle location is updated is not
fixed and varies from several seconds to several minutes, we
aggregate the collected data - the timestamped vehicle position
array [(t1, d1), ..., (tk−1, dk−1), ...] and then use it to estimate
the bus locations. We assume that the following state transition
model (

d̂k
v̂k

)
= φk−1

(
dk−1

vk−1

)
+ ωk (4)

φk =

(
1 ∆t

0 1

)
(5)

where the state variable vk is the velocity at time step k.
ωk denotes the zero mean normal distribution noise with
covariance Qk; ∆t = tk − tk−1 is the update time interval.

The observation equation can be modeled as:(
d̃k
ṽk

)
=

(
dk
vk

)
+ νk (6)

where variable zk represents the observation of distance at
time step k. νk represents the zero mean Gaussian distribution
observation noise with covariance Rk. ωk and νk are assumed
to be independent.

C. Smoothing the Arrival Data.

The actual time that a bus arrives at a stop is not available
in the real-time GTFS feed. Therefore, we estimate it using
the data generated from the location filter.

From the static bus scheduling data, we get the distance
array [dstop1 , ..., dstopn] for the bus stops along each route
from its origination point. Then we use the timestamped
vehicle position array [(t1, d1), ..., (tk, dk), ...] to estimate the
bus’s arrival time at each bus stop.

tstop = tk−1 + (tk − tk−1)
dstop − dk−1

dk − dk−1
(7)

where dk−1 <= dstop, dk > dstop, and tstop denotes the
estimated arrival time at the destination stop. This equation
uses the average speed between dk−1 and dk to estimate the
time the bus reached the stop.

Fig. 4: Example of Using the Shared Route Segment’s Delay Data to Predict
a trip’s delay on one route.

D. Shared Segment Delay Filter.

Once we know the estimated arrival time of the bus at a
stop, we can use it to update the delay time for that stop. By
using the estimated arrival time at the previous stop and the
scheduled time for that route segment we can calculate the
estimated delay per route segment. This estimate is then used
using a Kalman filter which uses observations generated from
the estimates of all buses traveling on that route segment. The
state transition equations is modeled as:

xk = xk−1 + ωk−1 (8)

where the state variable xk denotes the delay time at time step
k that needs to be predicted, ωk denotes the zero mean normal
distribution noise with covariance Qk.

The observation equation can be modeled as:

zk = xk + νk (9)

where variable zk represents the observation of delay at time
step k. νk represents the zero mean Gaussian distribution
observation noise with covariance Rk. ωk and νk are assumed
to be independent.

E. Using the Filters

An example of how the real-time prediction engine works
is shown in Figure 4. Suppose a bus b1 is running on route
r1 and it has just passed a bus stop si, now a user requests to
predict the bus b1’s arrival time delay at stop sn. From the real-
time GTFS data feed we also know there are two preceding
buses b2 on route r1 and b3 on route r2 that have traveled
through the segment between stop si and stop sn. Then the
corresponding delay prediction work flow will be:
• Since the bus b1 has already traveled from stop s0 to stop
si, the actual delay within this segment can be calculated
from the result of bus b1’s position update Kalman filter.

• For the route segment between stop si and stop sn, since
this segment is shared by route r1 and r2, the preceding
bus b1’s actual travel delay from b1’s position update
Kalman filter and bus b2’s actual travel delay from b2’s
position update Kalman filter should be inputted into the
delay update Kalman filter of the route segment between
stop si and stop sn.

• The final arrival time delay for bus b1 at stop sn should
be the sum of bus b1’s actual delay from stop s0 to stop



Fig. 5: The delay signal (actual arrival delay), prediction of MTA‘s basic
model and our real-time prediction model.

Fig. 6: Route 3 and route 5 both start from downtown and have several shared
route segments along the routes.

si and the predicted travel delay for segment between
stop si and stop sn. The system will use the delay from
multiple segments, if required.

It should be noted that we are not only using the data of the
buses on the same route that we are predicting, but also the
data from buses from other routes that have traveled along th
route segment. This allows to collect more delay data points
and improve the prediction accuracy.

F. Results

We divide all the data into two subsets: the training set
includes the static bus scheduling data and real-time vehicle
position feed; the validating set includes the vehicle position
feed data that has been continuously recorded by our back-
end server. We use the training dataset to simulate the delay
prediction for each trip in the month, and then validate the
difference between the actual delay of the trip and the delay
prediction made by our model and Nashville MTA’s basic
model. Nashville MTA’s existing basic delay prediction model

Fig. 7: RMSD of predicted delay vs length of window from which past data is
used. In this experiment, Tfuture is configured to be 15 minutes and Tpast

varies.

periodically measures the difference between a bus’s actual
arrival time and scheduled arrival time at the latest time point
that the bus passed, and use it for predicting delay time of all
the rest bus stops along the route.

Route 3 and Route 5 are two of the main bus routes in
Nashville. As shown in Figure 6, more than half of their route
segments (MCC5_5-WE23, WE23-WE31 and WE31-HRWB)
are shared by each other. In this experiment, we analyzed the
arrival estimate filter for the bus stop ‘HARBOSWM’ (time
point ‘HRWB’) of Route 3 on November 2 2015. Results are
shown in Figure 5. We used the data collected from buses of
both route 3 and route 5.

Figure 5 shows that our model’s prediction curve roughly
follows the actual delay signal while the basic model is only
able to provide prediction between 1PM - 2PM and 4PM -
8PM. Since MTA’s model only considers the delay of previous
time points, the it predicts delay to be 0 when there is no delay
data from the same route at the time that prediction is made.
Our model collects data from Route 3 and Route 5. So when
there is not enough data from Route 3, our model can still
utilize Route 5’s data of the shared segments for prediction.

G. Effect of length of past time window (Tpast) from which
data is used

Figure 7 shows the root-mean-square deviation (RMSD) of
delay prediction as the length of time window in the past from
which we use the AVL data for real-time prediction. RMSD
of delay prediction is calculated as:

RMSD =

√∑
(tactarr − t

pred
arr )2

n
(10)

where variable tactarr represents the actual arrival time and tpredarr

represents the predicted arrival time at the time point, n is the
number of bus trips in the dataset.

The prediction performance of the model is expected to
improve as more training data is included because Kalman
Filtering model’s accuracy relies on historical data. Since the



shared segments of multiple routes should provide more data
than a single route in the same time period, we expect the
model which uses shared segment’s dataset to outperform the
one using single route’s data set.

The experiment results validate our hypothesis. (i) The basic
prediction model’s curve is a flat line because the model only
considers current trip’s delay at preceding time point. (ii)
For the same length of time window, the filter that uses the
shared segments’ data has better performance than using single
route’s data. (iii) We can see from figure 7 that as the Tpast
increases from 30 minutes to 90 minutes, our model has a vast
improvement in accuracy. However, the performance increase
begins to taper out as the length of time window is further
increased. If length of the time window is larger than 120
minutes, the curves of our model almost become flat lines.
This indicates that only data within 120 minutes before the
current time is important for real-time delay prediction. This is
important because calculating and smoothing the delays from
previous trips using Kalman Filters is expensive, especially
when the computation is done for all the stops in the transit
network. Using a smaller time window reduces the overhead.

H. Effect of length of prediction horizon (Tfuture)

Figure 8 shows the delay prediction’s RMSD as the pre-
diction horizon increases to a future of 5 minutes to 120
minutes after current time. The RMSD is calculated the same
as Equation 10. It illustrates that generally the prediction
performances of both models worsen as the prediction is
applied further in the future. For instance, the RMSD of our
model using data from route 3 and 5 (red line with square
markers) increases from 110 seconds to 372 seconds when
prediction horizon is increased from 5 minutes to 120 minutes
in the future. Compared to the RSMD of the basic model, w
there is a 147s improvement for the 15 minute horizon, which
is a 48% improvement. For the future horizon of an hour, our
real-time prediction model reduces error by 25% on average
compared to the basic model. Note that in this experiment, we
used a Tpast of 3 hours and 30 minutes. It should be noted that
because the Tpast is greater than 120 minutes, the prediction
using multiple routes’ data only slightly outperforms the one
using single route’s data, which is seen in the result.

VI. SYSTEM INTEGRATION

A. Applications

The Transit-Hub system is accessible to users by a mobile
application that can be deployed on individual user’s smart
phones and an analysis dashboard that can be deployed online
and accessed by local MTA analysts.

B. Deployment

Currently the analytics and prediction models are all de-
ployed on a private cloud. The deployed system consists of
three layers: data feed layer, analytics and prediction layer,
and application layer, as shown in Figure 9. Data feed layer
provides a reliable data feed mechanism for Transit-Hub sys-
tem by integrating multi-source data and persisting them into

Fig. 8: RMSD of delay prediction as the prediction is applied further in the
future time. In this experiment, Tpast is configured to be 2 hours and Tfuture

varies.

Fig. 9: The high-level architecture of Transit-Hub consists of three layers: (a)
data feed layer; (b) analytics and prediction layer; (c) application layer

MongoDB. At a global level, Data Feed Layer integrates static
transit schedules, historical time point data set and real-time
transit feeds. At the user level, Data Feed Layer anonymously
collects planned trips, real-time locations, walking and transit
distances.

C. Overall Workflow

When predicting the travel or arrival time delay for a
specific trip on the same day, the system will first run the
real-time prediction model to get the predicted delay at the
stop, and then compare the difference between current time
and the predicted time for the bus, if the time difference is
smaller than the configured Tfuture (see section V-A), then the
system will provide the predicted time to the user; if the time
difference is larger than Tfuture, which means the predicted
time is too far away in the future, then the system will return
the historical delay information calculated by the clustering
model described in Section IV-A to the user. Prediction for a
future day always uses the model generated by the clustering
analysis.

VII. CONCLUSION AND FUTURE WORK

This paper investigates the integration of real-time and
predictive analytics in a smart decision support system. To



evaluate the proposed model, we use real-world historical data
of two routes of Nashville’s bus system. The results show that
our real-time prediction model outperformed MTA’s current
basic model and using a 2-hour time window produces the
best trade-off between overhead and performance. Our future
work will be focused in two directions: integrating more data
characteristics and adaptive system deployment.

A. Data Features

In the current Transit-Hub system, we are using data that
is directly related to the transit system, such as static and
real-time transit feeds, historical time point datasets, etc.
One possible improvement in the future would be integrating
more feature vectors into the analysis and prediction models.
We have begun to collect data from other sources that can
potentially affect bus arrival time. The features we plan to
integrate are traffic flow, weather conditions and special events
in the city. Analyzing these additional data sources would be
helpful to answer the questions like which feature plays the
most important role in causing bus delays and how to predict
delay in the future when there is no real-time transit data
available. Furthermore, the work can be expanded to other
cities to compare the differences in delay factors across cities.

B. System Deployment

Currently the analytics and prediction models are all de-
ployed on a private cloud, the performance may decrease when
the number of users and computation scale increase in the
future. In the next step, different modules in the system can
be deployed in different cluster groups in the cloud according
to the module’s time requirement, data scale and computation
latency. For example, the long-term transit analytics engine
has the largest latency but its tasks are not time sensitive,
therefore it can be deployed on a public cloud that is far away
from the users. Real-time delay prediction engine has smaller
latency but its response is expected to be real-time, so it can
be deployed in the cloudlet which is closer to the users.
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