
1

Institute for Software Integrated Systems

Vanderbilt University

Nashville, Tennessee, 37235

A Backstepping Control Framework for m-Triangular Systems

Nicholas Kottenstette, Heath LeBlanc, Emeka Eyisi, Joseph Porter

TECHNICAL REPORT

ISIS-11-104

Original Draft: 03/15/2011

Revised Draft: 04/01/2011

Official Release: 04/28/2011

NOTICE: A slightly different version of this technical report is currently under review in the IEEE Transactions on

Control Systems Technology under the following title, “A Backstepping Control Framework for Networked Control of

m-Triangular Systems”, Nicholas Kottenstette, Heath LeBlanc, Emeka Eyisi, Joseph Porter.



2 ISIS TECHNICAL REPORT ISIS-11-104, “APRIL” 28, 2011

Abstract—m-Triangular Systems are dynamical physical
systems which can be described by m triangular subsystem
models. Many physical system models such as those which
describe fixed-wing and quadrotor aircraft can be realized as
m-Triangular Systems. However, many control engineers try to
fit their dynamical model into a 1-Triangular System model.
This is commonly seen in the backstepping control community
in which they have developed pioneering adaptive control laws
which can explicitly account for operating state constraints. We
shall demonstrate that such control laws can even be imple-
mented in a non-adaptive form while still addressing actuator
limitations such as saturation. However, most importantly, by
removing the adaptation component, a strictly output passive
input-output mapping can be realized. This important property
is most applicable to the networked control community. For the
networked control community, this key property allows us to
integrate an aircraft into our framework such that a discrete-
time lag compensator can be used by a ground control station
for remote navigation in a safe and stable manner in spite of
time-varying delays and random data loss. The applicability
of our result shall be made clear as we demonstrate how
an inertial navigation system for a quadrotor aircraft can be
constructed. Specifically: i) the desired inertial position (ζs =
[ζNs, ζEs, ζDs]

T) and yaw (ψs) setpoints can be concatenated

to consist of the virtual desired setpoint (ū = [ζTs , ψs]
T); ii) the

virtual desired setpoint corresponds to the m = 3-concatenated
state outputs x̄ = [xT(1,1), x

T
(2,1), x

T
(3,1)]

T = [[ζN , ζE ], ζD, ψ]
T;

which iii) are augmented such that the output v̄ equals x̄ at
steady-state operation; iv) using Lemma 1 we can show that
the backstepping framework renders the quadrotor aircraft to

be strictly output passive (sop) (V̇ (v) ≤ −ǫbv̄
Tv̄ + v̄Tū) such

that V (v) = 1
2
vTv is a Lyapunov function in terms of all

concatenated system states v associated with the m-Triangular
System. Lemma 2 then shows how the resulting continuous-time
strictly output passive system involving the quadrotor aircraft
can be integrated into an advanced digital control framework
such that a strictly output passive discrete-time lag compensator
can be used to control the inertial position from a ground-
station in an Lm

2 -stable manner such that time-delays and data
loss will not cause instabilities.

I. PROLOGUE

This technical note concludes a chapter in my early

research career. In particular it presents a general framework

to allow an engineer to interconnect m-Triangular Systems

to a discrete-time lag controller in a safe and stable manner

in spite of arbitrary sampling rates Ts and communication

delays between the digital controller and a m-Triangular Sys-

tem. I had set out to develop such a framework approximately

ten years ago while working as a member of the Advanced

Technology Group at MKS Instruments. At MKS I helped

develop an ethernet enabled pressure insensitive mass flow

controller known as the πMFC (piMFC) [1]. The piMFC

is an advanced cyber-physical system (CPS) in which each

member of the development team inherently understood how

the entire CPS functioned; however, each member had depth

within a given discipline in order to address specific aspects

of that CPS.

At the time, my depth was in advanced digital control

software development, analog sensor, actuator and embed-

ded systems design. Many of the digital MFCs developed

0

Contract/grant sponsor (number): NSF (NSF-CNS-1035655)
Contract/grant sponsor (number): Air Force (FA9550-06-1-0312)

during this time were required to be interconnected to

a low-bandwidth controller area network (CAN) interface

and comply with a high-level specification known as De-

viceNet [2]. I had witnessed that the product engineers were

struggling to get their products to comply with an overly

complex and demanding timing specification. Why would

there be such demanding real-time constraints on a high-

level communications protocol in which most of the real-

time control functions were delegated to advanced devices

such as the piMFC? My assertion at the time was that many

of the large system integrators i) did not fully understand

where delays were being introduced into their systems; and

ii) could not precisely determine how a given amount of

communication delay would affect system stability. As a

result the large system integrators were unable to determine

the correct communication and subsystem specifications in

order to reduce the costs for advanced subsystem components

such as the piMFC.

For example, the reason I insisted that the piMFC elec-

tronics should have an ethernet interface is that I wanted

to demonstrate to the large system integrators that there

were better, less expensive high-bandwidth communication

alternatives then the costly and overly complicated De-

viceNet connectors and their corresponding specifications.

The resulting benefits of this choice were obvious, we were

able to easily provide a web-enabled diagnostic interface

while being able to quickly adapt the system to fit the

customers needs.

At the University of Notre Dame I honed my skills as a

mathematician in order tackle this challenging problem. In

order to address this problem I looked to the telemanipulation

community which had to cope with time-delay [3], [4]. I had

a strong bias for the work of [4] because it was explained

in a physically and graphically intuitive manner which res-

onated with my mechanical engineering expertise, whose

skills I mastered at MIT under the direction of Professor

Woodie Flowers. These aforementioned works presented an

architecture in which continuous-time robotic systems and

their corresponding continuous-time controllers were inter-

connected in a passivity preserving manner through the use

of wave variables. The wave variables allowed the system to

tolerate arbitrary fixed-time delay while preserving system-

stability in which initial efforts to handle time-varying delays

are discussed in [4].

The general approach was to send and receive continous-

time wave variables in a manner such that the continuous-

time Lm2 -norm of the received input waves will remain

bounded by the corresponding Lm2 -norm of the sent output

waves in order to maintain an overall passive system archi-

tecture. The following passivity preserving property holds

in general when wave variables are subject to fixed-delays;

however, for time varying delays careful processing of the

received input waves is required. As a result of applying this

approach, novel compression and decompression algorithms

emerged as discussed in [5]–[7]. However, our primary

concern was to develop a framework which explicitly allowed

for digital controllers to be interconnected to non-linear

continuous-time systems.
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Therefore, we initially evaluated a similar lossy data re-

duction algorithm as compared to the Compressor/Expander

formulation presented in [5] for the discrete-time case as

discussed in [8, Section 4.3.1] which ultimately was not

suitable for our architecture as it introduced significant

distortion in our system response. We found that a much

more effective approach was to execute our controller in an

asynchronous manner which was triggered by the arrival of

discrete wave variable data from the plant. The overall flow

of controller execution was precisely governed by a Passive

Asynchronous Transfer Unit [9]. The framework presented in

[9]; contained a causal passivity preserving set of elements

we refer to as the inner-product equivalent sample and hold

(IPESH).

The IPESH is based on the pioneering work of [10] whose

approach was adopted by [11] and others. A sampler and

zero-order hold was presented in a framework which allows

an engineer to interface continuous-time Port Controlled

Hamiltonian Systems (PCHSs) to discrete-time Port Con-

trolled Hamiltonian Systems. PCHSs are a class of passive

systems which provide a relatively general framework to

describe system models whose relationships are governed

by a Dirac structure [12] and are used extensively to model

robotic systems [13]. The PCHSs framework is a generalized

version of the bond-graph formulation pioneered by Henry

Paynter [14] in which the effort and flow components were

treated as scalars and interconnections were constrained to a

Dirac structure in order to describe a system model.

Although PCHs models are quite powerful to describe a

system model, they are a bit difficult to use in a general

control framework. For example a system model can be

described in a graphical form without ever having to denote

the systems inputs or outputs nor is it necessary to formulate

a causal system description until later on in the design

process [15]. Therefore we initially chose to present their

sampler and zero-order hold in a causal manner in which

we chose to refer to it as the IPESH [16, Definition 4]

while correcting an apparent typo in the presentation of [10,

Thorem 1] in which it appears the equation should have read

fd(k + 1) = q(kT )− q((k + 1)T ).
Our causal IPESH definition allowed us to connect the

work of [17], [18] to the work of [10] in which they

proposed a discrete-time (DT) passivity preserving observer

structure for continuous-time (CT) linear time-invariant (LTI)

systems. The resulting observer structure proposed in [17] is

a direct result of applying the IPESH and the preservation of

passivity is a direct result of [16, Theorem 3-I]. The proof

provided in [17] was based on a dissipative systems theory

approach and was extremely involved, we refer the reader to

[19, Appendix E] for additional details.

One advantage of the causal IPESH formulation is that we

could show that the LTI observers [20, Theorem 7] not only

preserved passivity but stronger forms of passivity including

strictly input passive and strictly output passive relationships

[16], [21]. These results allowed us to eventually show that

for the more general case, the interior conic properties [22],

[23] are preserved after the IPESH is applied to a continuous-

time interior conic system in order to derive a discrete-time

input-output mapping [24, Lemma 3]. Similar properties can

be found when applying the bilinear-transform [25] to a

continuous-time filter in order to derive a discrete-time filter;

however, the resulting discrete-time filters derived from the

IPESH appear to warp less in their frequency response as

clearly demonstrated by the bandpass filters derived using

the IPESH-Transform [19, Definition 5].

The IPESH can be realized with an observer in order to

connect a continuous-time LTI systems to a discrete-time

controller. However, it is extremely challenging to implement

an observer in order to precisely satisfy the IPESH for a

non-linear system. The majority of these connections were

primarily being made while I was at the University of Notre

Dame. However, I was invited to apply these techniques

at the Institute for Software Integrated Systems (ISIS) to a

non-linear robotic system, quadrotor aircraft and fixed-wing

aircraft. At ISIS I was part of an advanced CPS research

team of engineers including Heath LeBlanc, Emeka Eyisi,

and Joseph Porter. Our combined research efforts allowed us

to develop five key works with others at ISIS which were

instrumental in allowing us to present the following result

[19], [24], [26]–[28].

II. INTRODUCTION

In this paper, we generalize the triangular system formula-

tion – which is amenable to backstepping control techniques

– by introducing the notion of m-triangular systems. We then

show how a general backstepping controller can be integrated

into the m-triangular system model. Our formulation of the

backstepping control architecture enables us to prove that the

augmented system is strictly output passive. This important

property allows for the backstepping control architecture to

be integrated into the networked control architecture given

in [24]. This framework is applicable to the control of many

classes of systems, including robotic systems [5], ground

vehicles [29] and certain classes of chemical processes [30]–

[32]. We illustrate how the backstepping control architecture

can be applied in practice by demonstrating how to formulate

the problem on a quadrotor aerial vehicle [27]. Finally, we

show how to incorporate the backstepping control framework

into our networked control architecture through simulations

of a model of the Hummingbird quadrotor [33], [34].

The paper is organized as follows. Section IV introduces

the m-triangular system model, while Section V describes

the backstepping control framework for m-triangular sys-

tems. We analyze the strictly output passive input-output

mapping resulting from the backstepping control architecture

in Section VI. We recall the quadrotor model from [27] in

Section VII, and then illustrate how to model it as a 3-

triangular system in Section VIII. The networked control

architecture from [24] is described in Section IX, along

with results proving that the overall closed-loop system is

strictly output passive and Lm2 -stable [26]. Simulations of a

quadrotor model are given in Section X. Finally, conclusions

are stated in Section XI.
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III. PRELIMINARIES

As presented in [24] and inspired by [22], [23], [35]

we shall consider the following class of causal non-linear

finite-dimensional continuous-time (discrete-time) systems

H : u→ y which are affine in control:

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0 = 0, t ≥ 0 (1)

y(t) = h(x(t)) + J(x(t))u(t)

for the continuous-time case in which the functions indicated

in (1) are sufficiently smooth to make the system well defined

[36], and

x(j + 1) = f(x(j)) +G(x(j))u(j), x(0) = x0 = 0 (2)

y(j) = h(x(j)) + J(x(j))u(j)

for the discrete time case (j = {0, 1, . . . }) in which x ∈ R
n,

u, y ∈ R
m in which n and m are positive integers. We

shall consider the following interior conic-dissipative supply

function s(u, y) as it relates to conic-dissipative systems

which are inside the sector [a, b] (a < b) [37]–[39]:

s(u, y) =

{

−yTy + (a+ b)yTu− abuTu, |a|, |b| <∞
yTu− auTu, |a| <∞, b = ∞.

(3)

Definition 1: The continuous-time system H : u → y,

x0 = x(0) = 0 whose dynamics are determined by (1) is

a continuous-conic-dissipative system inside the sector [a, b]
with respect to the supply (3) if:

∫ T

0

s(u, y)dt ≥ 0, ∀T ≥ 0. (4)

Analogously the discrete-time system H : u → y, x0 =
x(0) = 0 whose dynamics are determined by (2) is a

discrete-conic-dissipative system inside the sector [a, b] with

respect to the supply (3) if:

N−1
∑

j=0

s(u, y) ≥ 0, ∀N ∈ {1, 2, . . . }. (5)

NB. the smoothness condition required by [36] appears

to limit the discussion to systems which have finite-state-

space descriptions and the resulting control system we will

examine will be subject to time-delays which result in an

infinite state-space. Therefore, if functions indicated in (1)

are not sufficiently smooth but (4) is satisfied then the system

H : u → y is a continuous-conic system inside the sector

[a, b]. Finally the following notation will be used in order to

represent time integrals, sums and norms:

〈y, u〉T =

∫ T

0

yT(t)u(t)dt

‖(y)T ‖22 = 〈y, y〉T , T ∈ R ≥ 0

‖y(t)‖22 = lim
T→∞

‖(y)T ‖22

〈y, u〉N =

N−1
∑

j=0

yT(j)u(j)

‖(y)N‖22 = 〈y, y〉N , N ∈ {1, 2, . . . }
‖y(j)‖22 = lim

N→∞

‖(y)N‖22.

If the continuous-time or discrete-time two-norm can be

distinguished from the discussion we will simply use the

‖y‖22 nomenclature.

From [36], [39] in regards to Lyapunov stability and

from [22], [23], [40] in regards to Lm2 (lm2 ) stability conic-

dissipative systems have the following important properties:

Property 1: There exists a storage function V (x) ≥ 0
∀x 6= 0, V (0) = 0 such that:

V̇ (x) ≤ s(u, y)

for a continuous-conic-dissipative system and

V (x(j + 1))− V (x(j)) ≤ s(u(j), y(j))

for a discrete-time-conic-dissipative system. If in addition

h(x0) = J(x)0 = 0 and h(x) 6= 0 when x 6= 0 so that

H : u → y is zero-state detectable then V (x) > 0 ∀x 6= 0.

Therefore if H : u→ y is inside the sector [a, b]:

i) and zero-state detectable and |a| < ∞, b = ∞ it is

Lyapunov stable.

ii) and zero-state detectable and |a|, |b| < ∞ it is asymp-

totically stable.

iii) and |a|, |b| < ∞ then it is inside the sector [−γ, γ] in

which γ = max{|a|, |b|}. Therefore, it is Lm2 (lm2 )-stable

in which:

‖y‖2 ≤ γ‖u‖2. (6)

iv) and k ≥ 0 then kH is inside the sector [ka, kb]; −kH
is inside the sector [−kb,−ka].

v) (Sum Rule) if in addition H1 : u1 → y1 is inside the

sector [a1, b1] then (H +H1) : u → (y + y1) is inside

the sector [a+ a1, b+ b1].
Therefore it is a simple exercise to show that a conic

dissipative system which is inside the sector [0, b] is also a

strictly output passive system with storage function V (x) ≥
0 ∀x 6= 0, V (0) = 0 such that:

V̇ (x) ≤ −ǫbyTy + yTu (7)

in which ǫb =
1
b
. In Section IV we shall proceed to present a

new class of causal non-linear finite-dimensional continuous-

time systems which are affine in control input as described by

(1). We refer to these systems as m-Triangular Systems. Two

important properties of this new class of systems is i) they

allow us to accurately describe complex non-linear systems

such as quadrotor aircraft, fixed-wing aircraft and ground

vehicles, ii) allow us to present an advanced backstepping

control framework to derive a strictly output passive mapping

in order to integrate into our digital control architecture.

IV. m-TRIANGULAR SYSTEMS

An m-triangular system is a dynamic model comprised of

m 1-triangular subsystems. The subsystems are allowed to

be coupled together by a concatenated state vector x, which

consists of all of the 1-triangular system states x(j,i), in

which j ∈ {1, . . . ,m} and i ∈ {1, . . . , nj}. Additionally,

each system has a given actuator input term uj ∈ R
mj ,

mj ∈ N. It is a more generalized model than that considered
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in [41], which considers a 1-triangular system (j = 1).

Precisely, the system is described by
∑m

j=1 nj differential

equations of the following form:

ẋ(j,i) =f(j,i)(x) + g(j,i)(x)x(j,i+1)

ẋ(j,nj) =f(j,nj)(x) + g(j,nj)(x)uj ,

where x(j,i) ∈ R
n(j,i) , n(j,i) ∈ N, are the state vectors,

f(j,i)(x) = f(j,i) ∈ R
n(j,i) are x-dependent vector functions,

and it is assumed that g(j,i)(x) = g(j,i) ∈ R
n(j,i)×n(j,i+1)

(n(j,i) ≤ n(j,i+1)) are x-dependent, full row rank matrices,

in which n(j,nj+1) = mj . In the sequel, the matrix g−1
(j,i)

denotes the right inverse of g(j,i)(x).

V. BACKSTEPPING CONTROL FRAMEWORK

The overall goal of our control architecture will be to

derive a strictly output passive mapping between the virtual

desired input ū(j,1) ∈ R
n(j,1) and an augmented output v(j,1),

which includes x(j,1). This can be accomplished by choosing

the virtual control inputs, α(j,i), as follows:

α(j,1) =g
−1
(j,1)

[

ẋ(j,1),c − k(j,1)x̃(j,1) − f(j,1) + ū(j,1)
]

,

α(j,i) =g
−1
(j,i)

[

ẋ(j,i),c−k(j,i)x̃(j,i)−f(j,i)−gT(j,i−1)v(j,i−1)

]

,

uj =α(j,nj).

The filtered control reference and its corresponding derivative

are denoted x(j,i),c and ẋ(j,i),c ∈ R
n(j,i) , respectively. In ad-

dition, the feedback error is denoted x̃(j,i) = x(j,i)−x(j,i),c,
which is multiplied by the symmetric positive-definite matrix

k(j,i) > 0. The filtered control references are computed as

follows (x(j,1),c = ẋ(j,1),c = 0):

q̇1(j,i) = q2(j,i),

q̇2(j,i) = aji

[

SR(j,i)

(

bji

[

SM(j,i)(α(j,i))− q1(j,i)

])

− q2(j,i)

]

,

x(j,i+1),c = q1(j,i),

ẋ(j,i+1),c = q2(j,i), where i ∈ {1, . . . , nj − 1},

in which aji = 2ζ(j,i)ωn(j,i) and bji =
ωn(j,i)

2ζ(j,i)
, where ωn(j,i)

and ζ(j,i) are positive real coefficients (ζ(j,i) ∈ (0, 1]). In

addition, SM(j,i)(·) and SR(j,i)(·) are the respective controller

state reference magnitude and rate limiters, such that for l ∈
{1, . . . , n(j,(i+1))}:

SM(j,i)(α(j,i))l =











xL(j,i+1)l if α(j,i)l < xL(j,i+1)l
,

xU(j,i+1)l if α(j,i)l > xU(j,i+1)l,

α(j,i)−l otherwise

and

SR(j,i)(α̇(j,i))l =











ẋL(j,i+1)l if α̇(j,i)l < ẋL(j,i+1)l,

ẋU(j,i+1)l if α̇(j,i)l > ẋU(j,i+1)l,

α̇(j,i)l otherwise.

The limits xL(j,i+1)l (ẋL(j,i+1)l) and xU(j,i+1)l (ẋU(j,i+1)l) are

constants corresponding to the desired lower and upper

operating magnitude and rate limits, respectively, and are

associated with the lth component of each subsystem’s state

Fig. 1. Computation of x(j,i+1),c and ẋ(j,i+1),c.

vector x(j,i+1). The block diagram illustrating the computa-

tion of x(j,i+1),c and ẋ(j,i+1),c is shown in Fig. 1.

Finally, we define the augmented output as v(j,i) = x̃(j,i)−
ξ(j,i). The term ξ(j,i) is computed as follows (ξ(j,nj) =

ξ̇(j,nj) = 0, i ∈ {1, . . . , (nj − 1)}):

ξ̇(j,i) = g(j,i)
[

(x(j,i+1),c−α(j,i))+ξ(j,i+1)

]

−k(j,i)ξ(j,i).
It is obvious that our proposed formulation differs from

that proposed by [41] in that we consider a novel m-

triangular system formulation. However, there are small yet

significant differences in our formulation that allow us to

prove in Section VI that our proposed framework creates

a strictly output passive mapping between the controller

input ū = [ūT(1,1), . . . , ū
T
(m,1)]

T and an augmented output

v̄ = [vT(1,1), . . . , v
T
(m,1)]

T. The choice to include the vector ū

into our formulation is inspired by the earlier work presented

in [42], which included a real term ηs in order to improve

robustness for a given adaptive backstepping control law. In

[42] if the adaptive approximation error ǭs = 0, then a strictly

output mapping between an augmented scalar state variable

x̄s and input robustness term ηs would result.

Finally, the overall control structure involving the virtual

control signals α(j,i) and augmented terms v(j,i) mirrors the

formulation presented in [43], except that we i) consider

the rate and magnitude limitation functions included in the

trajectory filters presented in [41], ii) include the strictly

output passive term ū, and iii) derive the strictly output

passive mapping between v̄ and ū such that if ξ̇(j,1) =
ξ(j,2) = 0, and (x(j,2),c − α(j,1)) = 0 then v̄ = x̄ =
[xT(1,1), . . . , x

T
(m,1)]

T. As will be presented in Section VII

the inertial position with respect to the North-East-Down

reference frame for a quadrotor aircraft is denoted ζ =
[ζN , ζE , ζD]

T in addition its corresponding yaw is denoted as

ψ. Property iii) is therefore important as it allows us to relate

inertial and attitude set points ū = [ζNs, ζEs, ζDs, ψs]
T to

their corresponding outputs x̄ = [ζN , ζE , ζD, ψ]
T when the

desired control references and virtual control parameters are

equal.

VI. BACKSTEPPING CONTROL ANALYSIS

The proof required to derive a strictly output mapping

between the input ū and output v̄ follows in a similar manner

as that given for: i) [43, Theorem 1], which considered

a scalar 1-triangular system, in that we chose a similar

Lyapunov function; and ii) [28, Theorem 1], in that we

take advantage of the resulting skew-symmetric property

that results from the feedback terms involving ξ(j,i). We

noticed these skew-symmetric structures arising from these

backstepping control laws for adaptive controllers presented

in [41], which relied on a recursive argument for their proofs.
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In stating the following result, we use the compact notation

to describe the vector v such that v(j,) = [vT(j,1), . . . , v
T
(j,nj)

]T

and v = [vT(1,), . . . , v
T
(m,)]

T.

Lemma 1: The continuous-time system considered in Sec-

tion IV subject to the backstepping control framework pre-

sented in Section V results in a strictly output passive system

with input ū and output v̄. Specifically, the following Lya-

punov function, V (v) = 1
2v

Tv, satisfies V̇ (v) ≤ −ǫbv̄Tv̄ +
v̄Tū, in which ǫb = λmin(diag{k(1,1), . . . , k(m,1)}) is a

positive real number resulting from the minimum eigenvalue

of the diagonalized block matrix consisting of the feedback

matrices k(j,1), j = 1, . . . ,m.

Proof: First we take the expression for the virtual

control inputs α(j,i) and solve for ẋ(j,i),c such that

ẋ(j,1),c =g(j,1)α(j,1) + k(j,1)x̃(j,1) + f(j,1) − ū(j,1)

ẋ(j,i),c =g(j,i)α(j,i) + k(j,i)x̃(j,i) + f(j,i) + gT(j,i−1)v(j,i−1).

Subtracting the above expressions from the dynamic equa-

tions for the subsystems, in order to obtain ˙̃x, yields

˙̃x(j,1) =g(j,1)
(

x̃(j,2)+x(j,2),c−α(j,1)

)

−k(j,1)x̃(j,1)+ū(j,1)
˙̃x(j,i) =g(j,i)

(

x̃(j,i+1)+x(j,i+1),c−α(j,i)

)

−k(j,i)x̃(j,i)−gT(j,i−1)v(j,i−1)

˙̃x(j,nj) =− k(j,nj)x̃(j,nj) − gT(j,nj−1)v(j,nj−1).

The final equation is a result of direct substitution of uj =
α(j,nj). Next, we take the above set of expressions and solve

for v̇(j,i) = ˙̃x(j,i) − ξ̇(j,i) such that

v̇(j,1) = −k(j,1)v(j,1) + g(j,1)v(j,2) + ū(j,1)

v̇(j,i) = −k(j,i)v(j,i)−gT(j,i−1)v(j,i−1)+g(j,i)v(j,i+1)

v̇(j,nj) = −k(j,nj)v(j,nj) − gT(j,nj−1)v(j,nj−1).

Denote k(j,) = diag{k(j,1), . . . , k(j,nj)} and n(j,i:k) =
∑k

l=i n(j,l). Define G(j,) ∈ R
n(j,1:nj)

×n(j,1:nj) , which is

given by

G(j,) =

[

011 diag{g(j,1), . . . , g(j,nj−1)}
021 022

]

,

where 011 ∈ R
n(j,1:(nj−1))×n(j,1) , 021 ∈ R

n(j,nj)
×n(j,1) , and

022 ∈ R
n(j,nj)

×n(j,2:nj) are zero matrices. Then, Ḡ(j,) =
(

G(j,) −GT
(j,)

)

is a skew-symmetric matrix. With these def-

initions, the expression above can be written in the compact

form

v̇(j,) = −k(j,)v(j,) + Ḡ(j,)v(j,) +

[

ū(j,1)
0

]

.

The Lyapunov function V (v) can be rewritten as

V (v) =
1

2

m
∑

j=1

vT(j,)v(j,).

Therefore the derivative is:

V̇ (v) =
m
∑

j=1

vT(j,)v̇(j,)

=

m
∑

j=1

−vT(j,)k(j,)v(j,) + vT(j,)Ḡjv(j,) + vT(j,1)ū(j,1)

=
m
∑

j=1

−vT(j,)k(j,)v(j,) + vT(j,1)ū(j,1)

≤− v̄T diag{k(1,1), . . . , k(m,1)}v̄ + v̄Tū

≤− ǫbv̄
Tv̄ + v̄Tū.

Throughout the rest of the paper, we demonstrate how

this result is applicable to the control of a quadrotor air-

craft. From past experience, we know that our proposed

framework is applicable to control of a fixed-wing aircraft.

The dynamics of fixed-wing aircraft can be modeled by a

2-triangular system, such that the velocity control system

is designed separately from the Velocity Flight Path and

Velocity Heading Angle Control system [28]. We assert that

Lemma 1 is applicable to the control of many other classes

of systems, including robotic systems [5], ground vehicles

[29] and certain classes of chemical processes [30]–[32].

Additionally, the m-triangular system formulation allows

further model and control design simplification.

The main apparent limitation of our framework is related

to the requirement that each matrix, g(j,i), has full row

rank. This restriction implies that the system is at least fully

actuated in the sense that the width of the state vectors,

x(j,i) ∈ R
n(j,i) , for a given j and i ∈ {1, . . . , nj} can remain

the same or contract in size as i decreases, so that n(j,i) ≤
n(j,i+1) (recall, uj ∈ R

mj , with mj = n(j,nj+1)). This is

why we suggest limited applicability to the chemical process

control field. Recently, the process control community has

been attempting to address control of underactuated systems

through an emerging technique known as Interconnection

Damping Assignent Passivity Based Control (IDA-PBC),

which may be more suitable than our proposed framework

[44]–[46].

Although many backstepping based control architectures

have attempted to address the control of aircraft and ground

vehicles, our observation is that these approaches tend to

force the model into an awkward 1-triangular system for-

mulation. We wrestled with this limitation for quite some

time before realizing the m-triangular system formulation.

A sketch for the proof of our aforementioned assertion

will be made more evident as we recall the model for

a quadrotor aircraft in Section VII and then provide our

resulting realization, which describes the quadrotor aircraft

as a 3-triangular system in Section VIII.

VII. QUADROTOR MODEL

We briefly recall the quadrotor model presented in [27].

In [27], we presented, implemented, and verified a low

complexity, high performance control architecture for the

STARMAC quadrotor aircraft [47]. In order to derive a
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Fig. 2. UAV with depiction of inertial and body frames [27].

working model and control system for the STARMAC in

a very short timeframe, we had to i) rely on the use of

Euler angles in order to relate the aircraft’s body frame to

the inertial frame, and ii) rely on a constructive approach

in which we approximated the system model as consisting

of a cascade of four passive systems. The cascaded passive

system model is not an unreasonable one since the inertial

dynamics are indeed passive, as is the relationship between

the control torque and the corresponding product of the

inertia matrix and body angular velocities. Unfortunately,

there still remains non-passive effects due to the use of Euler

angles in relating the angular velocity to its corresponding

attitude. These effects are most noticeable in low inertia

quadrotor aircraft, such as the Hummingbird quadrotor air-

craft [33], [34], and can be addressed with our proposed

framework.

Let I = {eN , eE , eD} (North-East-Down) denote the

inertial frame, and A = {ex, ey, ez} denote a frame rigidly

attached to the aircraft, as depicted in Fig. 2. Let ζ =
[ζN , ζE , ζD]

T denote inertial position, vI = [vN , vE , vD]
T

denote the inertial velocity, and η = [φ, θ, ψ]T denote the

vector of Euler angles, in which φ is the roll, θ is the pitch,

and ψ is the yaw. Let R(η) ∈ SO(3) be the orthogonal

rotation matrix (RTR = I) that transforms the inertial

coordinates to the body coordinates, as is the convention

used in [48], [49]. The rotation matrix relates coordinates

in the inertial frame, such as inertial angular velocity ωI , to

coordinates in the body frame, such as the angular velocity

ω = [p, q, r]T, as follows

ωI = RT(η)ω.

The standard equations of motion are given by

ζ̇ = vI ,

mv̇I = fI = mgeD − TRT(η)ez, (8)

Ibω̇ = −ω × Ibω + Γ, (9)

η̇ = J(η)ω. (10)

These kinematic equations result in a cascaded structure,

where the inertial force (fI ) depends on the orientation,

as described by the Euler angles, η. Specifically, using the

shorthand notation cx = cosx and sx = sinx, the rotation

matrix R(η) is related to the Euler angles as follows [48,

Section 5.6.2]:

R(η) =





cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ cθsφ
cφsθcψ + sφsψ cφsθsψ − sφcψ cθcφ.



 (11)

Also in (8), m is the mass of the quadrotor and T ∈ R is

the sum of the thrust of the four rotors.

Next, Ib = diag{Ixx, Iyy, Izz} in (9) is the inertia matrix

with respect to the body frame, in which we neglect the

non-diagonal terms due to the symmetry of the quadrotor

aircraft (this is typically not the case for fixed-wing aircraft

control). The cross product, denoted by the operator (ω×),
can be represented by the following skew-symmetric matrix

(−(ω×) = (ω×)T):

(ω×) =





0 −r q

r 0 −p
−q p 0



 .

Finally, the body control torques are given by ΓT =
[γx, γy, γz]

T, where each control torque is applied about each

corresponding principal axis, and positive torque follows the

right hand rule.

In (10), J(η) relates the body angular velocity, ω, to the

rate of change of the Euler angles η̇. The matrix J(η) is

the inverse of the Euler angle rates matrix [E′

123(η)]
−1 [48,

Section 5.6.4], and is given by

J(η) =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



 . (12)

Completing our discussion on the UAV dynamics, we note

that the relationship between inertial acceleration, control

thrusts, and the Euler angles is given by

mv̇I =





0
0
mg



+fIc, fIc = −T





cφsθcψ + sφsψ
cφsθsψ − sφcψ

cθcφ



 , (13)

where fIc denotes the inertial control force and T =
∑4
i=1 Ti

is the total thrust applied by the four rotors. Ignoring blade

flapping effects, the control torques Γ and total thrust T have

the following relationship:








γx
γy
γz
T









=









0 −δ 0 δ

δ 0 −δ 0
−Kt Kt −Kt Kt

1 1 1 1

















T1
T2
T3
T4









, (14)

where δ is the distance from the center of gravity of the

quadrotor for each rotor of the UAV along the x and y body

frame axes, and Kt captures the relationship between the

rotor velocity and the corresponding torques applied about
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the z-axis (see Fig. 2). It is assumed that δKt 6= 0, so that

the above matrix is invertible in order to relate the resulting

thrust T and control torque Γ to the corresponding motor

thrusts Ti.

Finally, there is a non-ideal lag between the resulting mo-

tor thrusts Ti and the desired thrust commands Tid associated

with each rotor such that

Ti(s) =
Tid(s)

τs+ 1
, (15)

in which τ ≈ .1 seconds represents the thrust lag to each

rotor, and cannot be neglected in designing the controller.

VIII. QUADROTOR MODEL REALIZATION

In this section, we describe the realization of the quadrotor

model described in Section VII as a 3-triangular system.

The first triangular system (j = 1) has system cascade

length, n1 = 5, and each of the states, x(1,i), have the same

dimension, n(1,i) = 2. The remaining two triangular systems

(j ∈ {2, 3}) are described using the scalar states x(2,i)
and x(3,i) (n(2,i) = n(3,i) = 1), and have the same cascade

length, n2 = n3 = 3. This implies that the remaining two

models can be concatenated; however, it is much easier to

understand these models when presented separately.

A. Triangular subsystem 1

The first triangular system relates the desired control

torques applied about the x and y axes in the body coor-

dinates to the inertial position of the quadrotor, in terms of

north and east. The triangular system has a cascade length,

n1 = 5, where the input u1 and the states x(1,i) are given

by

u1=

[

γxd
γyd

]

, x(1,1)=

[

ζN
ζE

]

, x(1,2)=

[

vN
vE

]

,

x(1,3)=

[

φ

θ

]

, x(1,4)=

[

p

q

]

, x(1,5)=

[

γx
γy

]

.

Now, the input u1 can be related to the state x(1,5) by

assuming that γxd and γyd are related to the Tid, i ∈
{1, 2, 3, 4}, in the same manner that γx and γy are related

to the Tid in (14). Combining this with the non-ideal lag

described in (15) yields

[

γ̇x
γ̇y

]

= −1

τ

[

γx
γy

]

+
1

τ

[

γxd
γyd

]

.

Next, x(1,5) is related to x(1,4) through (9) by

[

ṗ

q̇

]

=







Iyy−Izz
Ixx

rq

Izz−Ixx

Iyy
rp






+





1
Ixx

0

0 1
Iyy





[

γx
γy

]

.

Using (10) and (12), we can relate x(1,4) to x(1,3) by

[

φ̇

θ̇

]

=

[

r cosφ tan θ
−r sinφ

]

+

[

1 sinφ tan θ
0 cosφ

] [

p

q

]

.

By making a small angle approximation (sin(φ) = φ and

sin(θ) = θ) in (13), we can relate x(1,3) to x(1,2) as follows:
[

v̇N
v̇E

]

=

(

− T

m

)[

sinψ cosφ cosψ
− cosψ cosφ sinψ

] [

φ

θ

]

.

Finally, x(1,2) is related to x(1,1) by

[

ζ̇N
ζ̇E

]

=

[

vN
vE

]

.

In summary, the triangular system is parameterized by

f(1,1)=0, g(1,1)=I,

f(1,2)=0, g(1,2)=− T
m

[

sψ cφcψ
−cψ cφsψ

]

,

f(1,3)=

[

rcφtθ
−rsφ

]

, g(1,3)=

[

1 sφtθ
0 cφ

]

,

f(1,4)=







Iyy−Izz
Ixx

rq

Izz−Ixx

Iyy
rp






, g(1,4)=





1
Ixx

0

0 1
Iyy



 ,

f(1,5)=− 1
τ

[

γx
γy

]

, g(1,5) =
1
τ
,

where we have used the shorthand notation tanx = tx,

cosx = cx, and sinx = sx.

B. Triangular Subsystem 2

The second triangular system relates the desired total

thrust Td to the altitude of the quadrotor, |ζD|. The triangular

system has a cascade length, n2 = 3, where the input u2 and

the states x(2,i) are given by

u2 = Td, x(2,1) = ζD,

x(2,2) = vD, x(2,3) = T.

The altitude system dynamics can be represented by the

following set of equations:

Ṫ = −1

τ
T+

1

τ
Td,

v̇D = g− T

m
cosφ cos θ,

ζ̇D = vD.

Thus, the triangular system is parameterized by

f(2,1)=0, f(2,2)=g, f(2,3)=− 1
τ
T,

g(2,1)=1, g(2,2)=− cφcθ
m
, g(2,3)=

1
τ
.

C. Triangular subsystem 3

The third triangular system relates the desired control

torque applied about the z axis, γz , to the yaw angle of the

quadrotor, ψ. The triangular system has a cascade length,

n3 = 3, where the input u3 and the states x(3,i) are

u3 = γzd, x(3,1) = ψ,

x(3,2) = r, x(3,3) = γz.
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The yaw system dynamics are described by the following set

of equations:

γ̇z = −1

τ
γz +

1

τ
γzd,

ṙ =
Ixx − Iyy

Izz
pq +

1

Izz
γz,

ψ̇ = qφ+ r.

The triangular system is then parameterized by

f(3,1)=qφ, f(3,2)=
Ixx−Iyy

Izz
pq, f(3,3)=− 1

τ
γz,

g(3,1)=1, g(3,2)=
1
Izz
, g(3,3)=

1
τ
.

The advantage of our 3-Triangular System formulation for

our quadrotor aircraft will be come readily apparent when

comparing to the pioneering work of [50], [51] and quite

recently the work of [52], [53]. There may be similar works

derived from the pioneering work of [50]; however, to the

best of our knowledge this represents state of the art for

modeling quadrotor aircraft.

N.B. none of the aforementioned works had connected the

pioneering work of [41], [54] as it related to a systematic

procedure to derive an adaptive back-stepping control law

which could also account for actuator limitations such

as saturation while also allowing for the operating state-

constraints to be addressed. So although Madani and Be-

nalleque had begun to formulate a procedure to derive a

backstepping control law based on a model similar to our

m−Triangular system formulation it was not quite made

precise and the resulting control laws which were derived

were not done in a systematic or precise way. Interestingly

[43] had noted the work of [51] yet was critical of their

approximate approach in generating derivatives, which we

concur. Typically the authors who resorted to techniques

pioneered by [51] involved deriving auxiliary variables in

order to obtain a 1−Triangular system formulation.

IX. NETWORKED CONTROL OF m-TRIANGULAR

SYSTEMS

In this section, we shall demonstrate how to integrate a

strictly-output passive discrete-time lag-compensator in order

to implement a discrete-time inertial navigation system for a

vehicle (which can be described as an m-Triangular System)

which can also explicitly control a subset of the vehicles

reference frame. As suggested earlier in our discussions,

such vehicles include quadrotor, fixed-wing aircraft, ground

vehicles and robotic systems. For the quadrotor example we

have presented it shall be made clear that we can control the

inertial position and its corresponding yaw over a discrete-

time network which can be subject to time-varying delays

and data loss. In order to do so, we shall build on our

previous work in [24], [26] in order to derive a networked

control architecture that is robust to time-varying delays and

data loss. This networked control architecture is depicted in

Fig. 3.

Assumption 1: Initially we shall assume i) that the

continuous-time system Hp : ep → yp depicted in Fig. 3

is a continuous-conic system inside the sector [ap, bp] as

described in Section III (a slightly more general version

of the continuous-conic-dissipative systems Definition 1); ii)

that the discrete-time controller Hc : ec → yc depicted

in Fig. 3 is a discrete-conic-dissipative system inside the

sector [ac, bc] (Definition 1); iii) the scattering gain ǫ satisfies

the following bounds: a) 0 < ǫ < ∞, if ap ≥ 0 or b)

0 < ǫ < − 1
2

(

1
ap

+ 1
bp

)

if ap < 0; finally iv) the networked

control system is constructed such that it is well posed [23].

We recall from [24] how the wave variable transform is

implemented in terms of the positive real term ǫ. Specifically,

the signals up(t) and vp(t) (uc(j) and vc(j)) depicted in

Fig. 3 are continuous-time (discrete-time) wave variables in

which their relationships are determined by a special type

of scattering transforms [3] known as the wave variable

transform [4]. Denote I ∈ R
m×m as the identity matrix.

When implementing the wave variable transformation the

continuous time plant “outputs” (up(t), ydc(t)) are related to

the corresponding “inputs” (vp(t), yp(t)) as follows (Fig. 3):

[

up(t)
ydc(t)

]

=

[

−I
√
2ǫI

−
√
2ǫI ǫI

] [

vp(t)
yp(t)

]

(16)

Next, the discrete time controller “outputs” (vc(j), ydp(j))
are related to the corresponding “inputs” (uc(j), yc(j)) as

follows (Fig. 3):

[

vc(j)
ydp(j)

]

=





I −
√

2
ǫ
I

√

2
ǫ
I − 1

ǫ
I





[

uc(j)
yc(j)

]

(17)

The wave variable from the plant, up, is sampled in the

wave domain using the multi-rate passive sampler (PS) and

passive hold (PH). The PS implements an anti-aliasing filter

in order to remove band-limited noise without adversely

affecting system stability. As a result this significantly allows

one to improve system noise rejection performance [24].

Fig. 4 depicts the multi-rate PS and PH and their corre-

sponding implementation equations. N.B. In order to simplify

discussion the multi-rate PS and PH are depicted for the

scalar case. However, without any loss in generality, the

multi-rate PS and PH can be implemented in an identical

manner as it relates to each individual element associated

with its corresponding wave variables up(t) and vc(j). With

Assumption 1 and our multi-rate networked control archi-

tecture clearly presented we shall now present the following

Lemma.

Lemma 2: Consider the digital control network depicted

in Fig. 3 in which the plant, Hp : ep → yp and controller Hc :
ec → yc satisfy the conditions of Assumption 1. If the plant

and controller satisfy any one of the following combined set

of conditions:

I. Hp is inside the sector [0, bp] and Hc is inside the sector

[0, bc];
II. Hp is inside the sector [0,∞] and Hc is inside the sector

[ac, bc] such that 0 < ac < bc <∞ (or vice-versa);

III. Hp is inside the sector [ap,∞] in which ap < 0 and Hc

is inside the sector [ac, bc] such that −ǫ2ap < ac, bc <

− 1
ap

;
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then the digital control network is Lm2 -stable.

Proof: (Sketch)

I. Lemma 2-I can be derived from [26, Corollary 1] in

that Hp and Hc are strictly output passive systems.

II. Lemma 2-II can be derived from [24, Theorem 3] and

[24, Corollary 1-1].

III. Lemma 2-III can be derived from [24, Theorem 3] and

[24, Corollary 1-2].

It should be clear that there are a broad range of conditions

on the discrete-time controllers which can be exploited

in order to control a continuous-time plant which can be

confined to a given sector. Lemma 2-I may appear to be a

bit conservative at first; however, it essentially allows an en-

gineer to integrate a discrete-time proportional-integral (PI)

compensator in order to force all the outputs of the system

to follow a desired discrete-time trajectory. A discrete-time

PI (or lag) compensator can be designed to be inside the

sector [0,∞] by applying either the bilinear-transform [25]

or the IPESH-Transform [19, Definition 5] by diagonalizing

the following analog controller Hc(s) = KP + KI

(

s+ωI

s

)

as demonstrated in [55].

The aforementioned control law derived can be rendered

strictly output passive by simply closing the loop in terms

of the real coefficient 0 < ǫb = 1
bc

<< 1 such that it is

constrained to be inside the sector [0, bc] as it approaches

the ideal case [0,∞] in the limit as ǫb → 0+ in which the

strictly output passive controller is of the following form

Hsop(s) =
Hc(s)

1+ǫbHc(s)
. A more general multivariable discrete-

time lag-type control law can be implemented as detailed in

[26, Section D]. Finally, one side-effect of designing discrete-

time controllers which are passive is that algebraic loops are

introduced if they are implemented with the wave variables,

however this can be handled precisely for the LTI case as

detailed in [26, Section D].

This is why we added the condition that the system is well

posed as our approach applies to non-linear systems. A well

posed system is a system in which the instantaneous loop

gains are less than one. This allows a feasible control law to

be implemented. In practice we have developed techniques to

run MATLABs variable step solvers in a real-time manner

as it is related to control of a robotic arm. Therefore we

believe that this is an emerging area for research to develop

techniques to solve well posed algebraic loops for non-linear

systems in a real-time manner. The other way we have been

able to implement our proposed framework is to oversample

the continuous-time system and introduce a single delay

which allows us to achieve a well-posed system; however,

we have to weaken our controller to be a discrete-time

feed-forward lag type compensator derived from an analog

controller of the following form Hff−lag(s) = ac +Hsop(s)
such that ac and bc satisfy the conditions in Lemma 2-III.

In order to present our final result as it relates to the

control of m-Triangular Systems we need the a slightly less

restrictive assumption.

Assumption 2: Assume we have a continuous-time system

Hpm : u→ y = x which can be realized as an m-Triangular

System as described in Section IV.

Fig. 3. Digital control network for continuous-time system [24].

Fig. 4. Multi-rate passive sampler, passive hold [24].

Theorem 1: Consider the continuous-time system Hpm :
u→ y = x as described by Assumption 2 which is subject to

the back-stepping control framework described in Section V.

The resulting closed-loop system Hcl : ū → v̄ is then

integrated into the digital control network depicted in Fig. 3

such that plant Hp = Hcl in which ep = ū and yp = v̄.

Therefore, if the digital controller Hc is inside the sector

[0, bc] then the resulting digital control network is Lm2 -stable.

Proof: From Lemma 1 we know that the back-stepping

control framework allows for the plant Hpm : u→ y = x to

be rendered strictly output passive such that Hp : ep → yp
is inside the sector [0, bp]. Therefore from Lemma 2-I the

resulting digital control network is Lm2 -stable.

It is left as an exercise for the reader to show that the

quadrotor aircraft described in Section VII and Section VIII

can be integrated into our proposed framework such that an

overall Lm2 -stable network can be constructed. It remains

an unproven assertion that the backstepping framework can

be extended to continuous-time backstepping control frame-

works in particular as it relates to multiparameter systems in

order to derive much stronger stability results for the non-

scalar case [43].

X. REMOTE NAVIGATION OF QUADROTOR AIRCRAFT

Throughout the years we have constructed and tested high-

performance controllers for quadrotor aircraft [27] and fixed-

wing aircraft [28]. In [27] we constructed low-complexity,

high-performance controllers by simply approximating the

quadrotor aircraft as a cascade of four passive systems, a

special subclass of 1-Triangular Systems. We relied on [27,

Corollary 2] to justify our initial designs in that it provided

a sufficient condition for the limits of each nested feedback

loop gains to satisfy Lm2 -stability. In [28] we discovered

that unlike a quadrotor aircraft, a fixed-wing aircraft depends
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on the wind velocity vector which results in system model

formulation which can not be reasonably approximated as

a cascade of passive systems. We, initially relied on the

1-Triangular system formulation and chose two simplified

non-adaptive backstepping control laws inspired from the

earlier work of [41] in which the 1-Triangular system model

was an improvement but not precisely correct. As we have

demonstrated, a quadrotor aircraft can be more appropriately

described by a 3-Triangular Systems model. In addition

we assert that at least a 2-Triangular Systems model is

necessary to design a high performance discrete-time aircraft

navigation system.

Therefore, it is a straightforward exercise to develop an

advanced simulation involving a ground control station pro-

viding inertial navigation for both unmanned quadrotor air-

craft and fixed-wing aircraft in a shared NEXTGEN airspace

[56]. The quadrotor aircraft as described in Section VII and

modeled in Section VIII can be rendered to be strictly output

passive using the backstepping control framework described

in Section V. Finally, the aircraft and its corresponding

backstepping controller can be integrated into the advanced

digital control framework depicted in Fig. 3 in which the

ground control station can consist of a dedicated lag-digital

controller Hc to maintain a an appropriately scaled desired

continuous-time trajectory rct(t) which can be pre-computed

by the non-causal formulation of the inner-product equivalent

sampler (IPES) [26, Section E]. The IPES is primarily used

for analysis in order to satisfy Lm2 -stability.

It is quite difficult to precisely guarantee continuous-

time stability of non-linear systems which are subject to

discrete-time control. Therefore, we encourage the engineer

not to get overly distracted by the formulation of the IPES

and to focus on understanding how the discrete-time rc(j)
references relate to the corresponding outputs yp(t). The

engineer should simply study [26, Lemma 4] in order to

understand how rc(j) relates to yp(t) in the limit as the

steady-state controller gain kc → ∞ (Hsop(s) ≈ Hc(s) as

ǫb → 0+).

Finally we would like to emphasize that the multi-rate

passive sampler and passive hold devices will allow for

high-performance discrete-time navigation of the aircraft.

Precisely these devices can be engineered to adapt their data-

rates in order to match channel capacity. In addition if bursty-

like communication properties arrise due to poor weather

conditions, then system stability can still be guaranteed in

spite of random time-varying delays and data loss.

XI. CONCLUSION

In summary:

1) In Section IV we presented a new formulation to model

non-linear systems which are affine in their input which

we call m-Triangular Systems.

2) Using the m-Triangular Systems model, in Section V

we presented a backstepping control framework which

can render an m-Triangular System to be strictly output

passive as stated in Lemma 1 and proven in Section VI.

3) In Section VIII we demonstrated how a quadrotor

aircraft (Section VII) can be modeled as a 3-Triangular

System.

4) In Section IX we presented our advanced networked

digital control framework as depicted in Fig. 3.

Lemma 2 presents a set of three unique conditions, each

of which can be independently applied to a continuous-

conic system which is inside the sector [ap, bp] and

its corresponding digital controller which is inside the

sector [ac, bc] such that the digital control framework is

Lm2 -stable.

5) Finally, we present Theorem 1 in order to demonstrate

how Lemma 1 and Lemma 2 can be used to show how

an m-Triangular System can be rendered strictly output

passive and integrated into our advanced networked

digital control framework such that the overall system

is Lm2 -stable.

We left it as an exercise for the reader to prove that a

quadrotor aerial vehicle, modeled as a 3-Triangular System

can be integrated into our framework such that a digital lag

compensator could be used to maintain a desired course

trajectory for an unmanned aerial vehicle subject to actu-

ator limitations such as actuator saturation in a Lm2 -stable

manner. Furthermore, in Section X we described how the

inertial position of a quadrotor aircraft can be maintained

by a ground-control station over a wireless communication

network in a Lm2 -stable manner in spite of random time-

varying delays and data-loss. It is left as an assertion that this

overall framework is applicable to the control of many other

classes of systems, including robotic systems [5], ground

vehicles [29] and certain classes of chemical processes [30]–

[32].
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