Towards Robust and Efficient Routing in Multi-Radio, Multi-Channel Wireless Mesh Networks: Technical Report

Jonathan Wellons, Yuan Xue

Department of Electrical Engineering and Computer Science, Vanderbilt University Email: {jonathan.wellons, yuan.xue}@vanderbilt.edu

APPENDIX: PROOF OF THEOREM 1.

Now summing both sides over i, we have

Theorem 1: Let
$$\theta(\Phi, D) = \max_{d^k \in D} \theta(\Phi, d^k)$$
. Further let Φ_D^{opt} be the optimal solution to $\min_{\Phi} \theta(\Phi, D)$ and $\theta^{opt}(D)$ be the optimal value. Then for $\forall d' \in D$, $\theta(\Phi_D^{opt}, d') \leq \theta^{opt}(D)$.

Proof: Without loss of generality, assume $\zeta = 1$. When the routing Φ_D is applied to a network under demand d, say the congestion is $\theta_D(d)$. We have

$$\theta_D(d) = \max_{\boldsymbol{c},\boldsymbol{e}} \sum_{a \in I(e)} \sum_{f \in F} d_f \phi_f^c(a)$$

We will prove **Theorem I** by contradiction. Assume there exists a point d^m in the interior of D which has congestion under Φ_D greater than any of the vertices of D.

First, because d_m is interior to D, we can write

$$d^m = \sum_i t_j d^i$$
 for some t_i with $\sum_i t_i = 1$

By the assumption

$$\forall i\theta_D(d^m) > \theta_D(d^i)$$

for some c and e, we have

$$\theta_D(d^m) = \sum_{a \in I(e)} \sum_{f \in F} d_f^m \phi_f^c(a)$$

and for this c and e

$$\theta_D(d^i) \ge \sum_{a \in I(e)} \sum_{f \in F} d^i_f \phi^c_f(a)$$

Thus, we can write,

$$\begin{split} \sum_{a \in I(e)} \sum_{f \in F} d_f^m \phi_f^c(a) &> \sum_{a \in I(e)} \sum_{f \in F} d_f^i \phi_f^c(a) \\ \sum_{f \in F} d_f^m \sum_{a \in I(e)} \phi_f^c(a) &> \sum_{f \in F} d_f^i \sum_{a \in I(e)} \phi_f^c(a) \end{split}$$

Letting $b_f = \sum_{a \in I(e)} \phi_f^c(a)$, we have

$$\sum_{f \in F} d_f^m b_f > \sum_{f \in F} d_f^i b_f$$
$$t_i \sum_{f \in F} d_f^m b_f > t_i \sum_{f \in F} d_f^i b_f$$

$$\sum_{i} t_{i} \sum_{f \in F} d_{f}^{m} b_{f} > \sum_{i} t_{i} \sum_{f \in F} d_{f}^{i} b_{f}$$

$$\sum_{i} t_{i} \left(\sum_{f \in F} d_{f}^{m} b_{f} \right) > \sum_{f \in F} b_{f} \sum_{i} t_{i} d_{f}^{i}$$

$$\sum_{i} t_{i} \left(\sum_{f \in F} d_{f}^{m} b_{f} \right) > \sum_{f \in F} b_{f} d_{f}^{m}$$

$$\sum_{i} t_{i} > 1$$

Which is a contradiction.