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Abstract. Model transformations are a key element of model-based software de-
velopment processes. Despite their importance, existing model transformation
tools and processes have limited support for reuse, particularly, in the context of
product line development that must handle variability among product variants.
This forces developers to reinvent the transformation rules thereby adversely im-
pacting their productivity and increasing maintenance costs. This paper presents
MTS (Model-transformation Templatization and Specialization), which overcomes
these limitations by enabling developers to write reusable, templatized model
transformations. MTS defines two higher order transformations to capture the
variability and to specialize the transformations across variants of an applica-
tion family. MTS can be realized within existing model transformation tools with
minimal modifications. A qualitative evaluation of MTS is presented describing
the reduction in efforts to define model transformation rules as new variants are
added to the product line.
Keywords: Model transformations, visual rules, templates, reuse.

1 Introduction
Model transformations are key to the success of model-based software development [1].
Model transformations have been applied in significantly diverse use cases as in (a)
transforming XML documents from an XSLT representation into an XQuery represen-
tation [2], (b) middleware quality of service (QoS) configuration [3], which involves au-
tomatically mapping application-specific QoS requirements onto the correct QoS con-
figuration options for the middleware platform, (c) transforming Simulink/Stateflow
models into their hybrid automata representation for formal verification [4], and (d)
synthesizing dialogs for communication endpoints (e.g., hardware devices/software ap-
plications for communications, such as cellphone, instant messenger (IM), pager) in
enterprise workflows for rapid decision making [5].

Despite the diversity in application, a noticeable trait is the commonality among
model transformations from a similar domain or product line. For example, in the QoS
configuration use case, many middleware configurations are the same across a class of
applications that are related to each other due to similarities in their QoS requirements
and the implementation platform. Similarly, in the dialog use case, despite differences
in the communication endpoints, a number of dialog properties remain common.

Our study of the advances in model transformations suggests that despite the strong
evidence of recurring patterns in the transformations, model transformation tools and
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techniques [6–9] lack support for reusability, modularization and extensibility of the
model transformation rules and algorithms. These shortcomings force the transforma-
tion developers to reinvent the transformation steps and the translation logic leading to
significant code duplication in the transformations, and increased effort in code main-
tenance and evolution activities.

Recent research efforts [10–12] have demonstrated the use of model transformations
to families of applications or product lines [13]. Yet, the following questions remain to
be resolved: (a) Invariants: How can the commonalities in the transformation process
be factored out such that they can be reused by the entire application family? (b) Vari-
ability: How can the variabilities be decoupled from the model transformation rules
while maximizing the flexibility of the transformation process? (c) Extensibility: How
can the model transformation process for an application family be extended with new
variants, with minimally invasive changes to the transformation rules? (d) Minimal In-
trusiveness: How can all of these capabilities be achieved with minimal changes, if any,
to existing model transformation tools?

In this paper we present MTS (Model-transformation Templatization and Specializa-
tion) to address these questions in the context of graphical model transformation tools.
MTS provides transformation developers with a simple specification language to define
variabilities in their application family such that the variabilities are factored out and
are decoupled from the transformation rules. MTS provides a higher order transforma-
tion (HOT) [14] 3 algorithm that automates the synthesis of a family-specific variability
metamodel, which is used by transformation developers to capture the variability across
the variants of an application family. Another HOT algorithm defined in MTS gener-
ates the specialized instances of the application family variants. MTS requires minimal
changes to the underlying model transformation engine.

The rest of the paper is organized as follows: Section 2 discusses a representative
case study to concretely motivate the problem and elicit the challenges; Section 3 de-
scribes the MTS solution; Section 4 evaluates our approach in terms of efforts saved;
Section 5 compares our work with the existing literature; and Section 6 provides con-
cluding remarks.

2 Need for Reusable Model Transformations
This section highlights the need for a reusable model transformation capability by pre-
senting challenges within a small example. Although our representative example uses
exogeneous model transformations (i.e., source and target modeling languages are dif-
ferent) [15], the challenges outlined are valid even in endogeneous model transforma-
tions (i.e., source and target modeling languages are same).

2.1 Representative Motivational Example: QoS Configuration Mapping
The following example requires an exogenous transformation which translates domain-
specified QoS requirements into the underlying middleware platform-specific QoS con-
figuration options. Figure 1 shows the UML representation of both the source and the
target metamodels used in the QoS configuration case study. As shown, the source

3 Since the transformation(s) themselves become the input and/or output, we refer to the trans-
formation process in MTS as higher order transformations (HOTs).



metamodel contains the following Booleans for server components: (1) fixed_pr-
iority_service_execution that indicates whether the component changes the
priority of client service invocations, and (2) multi_service_levels to indicate
whether the component provides multiple service levels to its clients.

Source metamodel

Target metamodel

RealTimeConfiguration

-cmd_line_options : string
-service_conf : string

EnvironmentConf -low_range : long
-high_range : long

BandedConnections

-stacksize : long
-allow_borrowing : bool
-allow_buffering : bool
-max_buffered_requests : long
-max_buffer_size : long

ThreadPool
-static_threads : int
-lane_priority : int
-dynamic_threads : int

Lane
-priority_model : Policy
-default_priority : long

PriorityModelPolicy

+SERVER_DECLARED
+CLIENT_PROPAGATED

«enumeration»
Policy

1

0..*
10..1

1
0..1

1

0..*

1

0..1

1..*

-configuredBy 1 1

-honors 1

-fixed_priority_service_execution : bool
-multi_service_levels : bool

RTRequirement

Fig. 1: A UML Representation of Middleware QoS Configuration Metamodels.
The target metamodel defines a language to represent real-time CORBA [16] mid-

dleware configurations and defines the following elements: (1) Lane, which is a log-
ical set of threads, each one of which runs at lane_priority priority level. It is
possible to configure static threads (i.e., those that remain active until the system is
running) and dynamic threads (i.e., those threads that are created and destroyed as re-
quired); (2) ThreadPool, which controls different settings of Lane elements, such
as, stacksize of threads, whether borrowing of threads across lanes is allowed to
minimize priority inversions, and maximum resources assigned to buffer requests that
cannot be immediately serviced; (3) PriorityModelPolicy, which controls the
ThreadPool policy model (i.e., whether to serve the request at the client-specified
or server-declared priority); and (4) BandedConnections, which defines separate
connections for individual (client) service invocations to minimize priority inversions.

Transformations for middleware QoS configuration are applicable across a number
of application domains. The individual configurations generated using the model trans-
formation should be easily customizable for slight variations in QoS requirements for
these domains. Thus, the case study has the following requirements for the generated
middleware QoS configurations: (1) the PriorityModelPolicy object along with
its attributes are transformed from the fixed_priority_service_execution
source attribute; (2) Threadpool and Lane objects, and their attributes are trans-
formed from the multi_service_levels source attribute. Multiple levels of ser-
vice indicate multiple priorities that must be handled, which means that a Threadpool
has multiple Lane objects, and that the cardinality and the exact values of their at-
tributes will vary based on QoS requirements. For example, borrowing makes sense for
ThreadPool only if multiple lanes exist within a thread pool; and (3) whether to con-
figure BandedConnections or not may be determined by the developer based on
multi_service_levels source attribute.



2.2 Impediments to Reusability in Contemporary Model Transformations

This paper focuses on the model transformations that are carried out using model trans-
formation tools, such as ATL [14] and GReAT [9]. These tools conform to a transfor-
mation process where the model-to-model transformations are described using trans-
formation rules in either a textual or visual language. These rules relate elements of
a source modeling language defined by one metamodel with elements of a destination
modeling language corresponding to a different metamodel. The actual transformations
are carried out on model instances of the source modeling language, which transform it
into model instances belonging to the destination language.

To highlight the impediments to reusability in model transformations and to demon-
strate our solution approach, we have chosen the Graph Rewriting And Transformation
(GReAT) [9] framework shown in Figure 2. GReAT was developed using the Generic
Modeling Environment (GME) [17], which provides a general-purpose editing engine
and a separate model-view-controller GUI. GME is metaprogrammable in that the same
environment used to define modeling languages is also used to build models, which are
instances of the metamodels.
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G G’ G G’ G G’

G G’

G G’

G G’

GR-Engine

2

3

1

4

Fig. 2: Model Transformation Process in GReAT (details of the models are not im-
portant for this figure).

Transformation rules are defined using the GReAT visual language. Figure 2 shows
the high-level steps involved in developing transformation algorithms using the GReAT
tool chain. In Step 1, the source and target domain-specific modeling languages (DSMLs)
for the transformation tool chain are defined. In Step 2, transformation developers use
the GReAT transformation language to define various translation rules in terms of pat-
terns4 of source and target modeling objects. In Step 3, a source model instance is
provided to the GReAT framework. Finally, in Step 4, developers execute the GReAT
engine (called the GR-engine) that translates the source model using rules specified in
Step 2 into the target model.

4 Here, pattern refers to a valid structural composition using model objects in the source (target)
DSML.



Figure 3 illustrates a sample transformation project in our QoS configuration case
study. Notice how the entire transformation is composed of a sequence of transforma-
tion rule blocks, which can be nested. At the lowest level, a rule block comprises a
pattern that describes how one or more elements from the source metamodel must be
mapped to one or more elements of the target metamodel. Ports are used to pass objects
from one rule block to another block. Rules that cannnot be captured in visual form can
be embedded as C++ code in an AttributeMapping block.

Transformation rule 
block (part of a 

sequence of rules)

Metamodel sheet for 
transformation rules 

(currently active)

Target Metamodel 
sheet for QoS 
Configuration

Source Metamodel 
sheet for QoS 
Configuration

Palette of objects 
supported by GReAT 

language

GME Metamodeling 
Editor

Attribute mapping 
block with capabilities 
to embed C++ code

Internals of a transformation rule 
block. Topmost element is from 
source DSML metamodel while 

bottom two belong to target 
DSML metamodel

GReAT Engine 
plugins

fixed_priority_service: Boolean=false
multi_service_levels: Boolean=true

low: Integer=0
high: Integer=0

Ports are 
used to pass 
objects from 
one rule to 

another

Fig. 3: Sample Model Transformation for QoS Configurations using GReAT.

In our case study, different transformations are possible depending on the QoS re-
quirements. For example, the element BandedConnections may be present or ab-
sent, and the number of Lane objects and the priority levels they handle can vary,
among other artifacts. However, there exist other transformations that remain invariant.
For example, a Threadpool object must always be available and by default implicitly
always contains one Lane.

Due to limited to no support for reuse in contemporary transformation tools, devel-
opers are forced to define a complex set of transformation rules (e.g., sequence of rule
blocks in Figure 3) for each variant and follow all the transformation steps imposed by
the tool. These limitations make a compelling case for reusable model transformations.

3 Templatized Model Transformations
This section presents MTS (Model-transformation Templatization and Specialization).
The core idea of MTS is shown in Figure 4. MTS realizes reusable model transfor-



mations in graphical model transformation frameworks using the following four-step
approach:
1. Decoupling the variabilities from commonalities: In Step 1 of Figure 4, develop-
ers capture the variabilities in transformations in terms of a simple constraint notation
specification (see Section 3.1). This step decouples the transformation algorithm from
its variabilities that can change in an instance-specific manner.
2. Generating variability metamodel: In this step, developers use a higher order trans-
formation (HOT) (i.e., those model transformations that work on meta metamodels to
translate source metamodel(s) to target metamodel(s)) defined in MTS to automati-
cally generate the variability metamodel (VMM) for their application family (see Sec-
tion 3.2). A VMM modularizes the variability in the form of a metamodel, which is the
level of abstraction required by the underlying model transformation tool.
3. Synthesizing specialization repository: Next, developers create VMM models, where
each VMM model corresponds to an instantiation of the variability for individial fam-
ily members captured in Step 1. A collection of all the VMM models is termed as a
specialization repository for that family (see Section 3.3).
4. Specializing the application instances: Finally, as shown in Step 4, developers
use another HOT defined in MTS to create transformation variants (see Section 3.4).
This step is similar to instantiating a C++ template where the compiler generates type-
specific code based on the type of the argument passed.

Legend
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Fig. 4: MTS Approach to Reusable Model Transformations.
The remainder of this section provides details of each step, and describes how it

supports the four properties (i.e., Invariants, Variability, Extensibility, and Minimal In-
trusiveness) outlined in Section 1.

3.1 Step I: Defining the Templatized Transformation Rules
Section 2.2 elicits the need for reusable model transformation tools to handle variabil-
ity in model transformations for application families. In programming languages like
C++, mechanisms like parametric polymorphism in the form of templates are provided
to handle variability. A parametrized class and/or function is then specialized for a
concrete type (i.e., a variant). Our solution in MTS is influenced by C++ templates;



specifically, we seek a solution to support templatized transformations and their spe-
cialization. The basic idea is that all the commonalities, which constitute the invari-
ants of an application family, are transformed directly from the input models as family
instance-independent transformation rules using the existing approach of defining the
transformation rules. The variabilities are dissociated from the transformation rules to
allow independent evolution of the transformation and its variabilities.

A noticeable trait in the transformations for the QoS configuration example illus-
trates that variability is incurred in either the type and number of structural elements that
appear in the target model, and/or the values that are assigned to the attributes of these
structural elements. We leverage this observation and define two types of variabilities
for our templatized transformation approach:5

(a) Structural variabilities, where the basic building blocks, i.e., model elements, or
their cardinalities in every family member model are different. Thus, the variation in
family member models emanates from dissimilarities in their structural composition.
(b) Quantitative variabilities, where the family member models may share model el-
ements but the data values of their attributes are different.

Both of these variabilities can be denoted as simple implication relations that can be
characterized by one of the following types of associations between source (s ∈ S) and
target (t ∈ T ) objects where, P1 and P2 denote patterns of source and target objects:

Association Definition
one-to-one injective function: s ∈ S, t ∈ T ∃ f (s) α7−→ f (t) : i f f (s) = f (t) then s = t.

one-to-many s
φ7−→ t, where s ∈ S, and t = {P2(t1, t2, ..., tn) ∣ ti=1..n ∈ T}.

many-to-one s
ϕ7−→ t, where t ∈ T , and s = {P1(s1,s2, ..,sm) ∣ s j=1..m ∈ S}.

many-to-many s
ϕ7−→ t, where s = {P1(s1,s2, ..,sm) ∣ s j=1..m ∈ S}, and t = {P2(t1, t2, ..., tn) ∣ ti=1..n ∈ T}.

How are these implication relations to be used by the developers in the transforma-
tion rules, and how are the rules to be supported in a minimally intrusive manner by the
underlying transformation framework? We address this question by exploiting the C++
code embedding feature provided by GReAT (see CodePoint in Figure 3). In particular,
we use C++ comments as a means to capture variabilty. Because these are comments,
it has no impact on the execution of the GR-engine.

MTS defines a special syntax called the constraint specification notation that is em-
bedded as C++ comments to capture the relations outlined above for the variabilities.
Figure 5 shows an excerpt of the templatized transformation rules for the QoS configu-
ration case study. Notice how the Structural block notation captures the structural vari-
ability in a transformation rule from the source element, i.e., RTRequirement:mu-
lti_service_level, to the target element, i.e., BandedConnection. The tem-
platized rule will not explicitly model a rule for creating a BandedConnection. In-
stead, only the common parts, which includes the Lane and Threadpool (not shown)
are included in the templatized rule.

However, notice that since the attribute values for Lane and Threadpool may
vary, they are captured separately in the form of a Quantitative block notation, which

5 This observation was true for other use cases we studied. Other forms of variability, such as
those based on behavior, are also possible but are not addressed in this paper. They are part of
our future investigations.



/* 
Quantitative { 
  RTRequirement:
       multi_service_levels::
  Lane:static_threads,        
  Lane:dynamic_threads,
  Lane:lane_priority;
  ThreadPool:max_buffer_size,
  ThreadPool:
        max_buffered_requests,
  ThreadPool:allow_buffering,
  ThreadPool:allow_borrowing
}
*/

/* variability specified as comments 
in embedded C++ code

Structural {
  RTRequirement:
     multi_service_levels::
  BandedConnections
}  */

Fig. 5: Templatized Transformation Rule in QoS Configuration Case Study.

indicates what all attributes and their values can vary. Since this is a templatization
step, the concrete values for these attributes are not mentioned in this step. Section 3.3
explains how this is accomplished.

3.2 Step II: Generating Variability Metamodels from Constraint Specifications

Although the constraint specifications discussed in Step I capture the variability in the
transformations, the notation used in the form of C++ comments is oblivious to the
model transformation tool. Therefore, it is necessary to make these specifications avail-
able at the same level of abstraction as the transformation rules. Because transformation
rules associate elements of the source metamodel with that of the target metamodel,
MTS defines a HOT to convert the constraint specification into what we call a Variabil-
ity Meta Model (VMM). A VMM essentially modularizes the variabilities and decou-
ples them from the model transformation rules to promote independent evolution.

Algorithm 1 depicts the HOT for generating the VMM. The basic idea behind the al-
gorithm is as follows. Recall from Section 3.1 that the structural variability is concerned
only with capturing the (source and target) model objects (or their cardinalities) used in
composition of family variants. For every structural variability block, the algorithm cre-
ates the corresponding model objects in the VMM. The quantitative variability, on the
other hand, captures the dissimilarities in values of model object attributes. Therefore,
for these variabilities the algorithm creates model objects and their attributes as well.

The function initializeV MM(V ) on Line 3 creates a new VMM, V , and initializes
its internal variables. This is necessary so that in the following rules the syntax and se-
mantics of V can be defined in GME. Line 11 reads the source patterns that correspond
to every structural variability in the templatized transformation R. Next, the types of
each modeling object for the pattern read in the previous rule are deduced by parsing
the modeling language as shown in Line 13. This type information is used to create ap-
propriate modeling objects corresponding to the specified source patterns. Similar logic
is carried out for patterns in the target language.



After the source and target objects are created in the VMM, in Line 16 the function
composeVariabilityAssociation(V) creates a simple connection between these objects to
denote their association. In a similar fashion, VMM modeling objects are generated for
quantitative variabilities in R. Additionally, for quantitative variabilities, attributes of
the corresponding modeling objects are also created. The final rule creates a new model
object that contains each of these source and target objects created in earlier rules, as
shown on Line 20.

Algorithm 1: Generating VMM from Constraint Specifications.
Input: source modeling language S, target modeling language T , templatized transformation (set of its rules) R// i.e.,

the C++ comments encoding the constraint specification
Output: variability metamodel V
begin1

transformation rule r; constraint notation block cnb; set of constraint notation blocks CNB; structural variability2
cm;set of structural variabilities CM; quantitative variability qm;set of quantitative variabilities QM; pattern p;
modeling object ob; attribute at; modeling object type type;attribute type atttype; integer c;
initializeV MM(V );3
foreach r ∈ R do4

if r.cnb() ∕= /0 then5
CNB← r.cnb(); // populate all constraints specifications for that rule6

foreach cnb ∈CNB do7
if cnb.structuralVariabilities() ∕= /0 then8

CM← cnb.structuralVariabilities();9
foreach cm ∈CM do10

p← cm.SRC();11
foreach ob ∈ p do12

parseLanguage(S,ob, type); createSRCOb ject(V,ob, type);13
end14
/* Do similar steps for patterns in target */15
composeVariabilityAssociation(V ); /* creates a connection between source and target16

objects created earlier */
end17

if cnb.quantitativeVariabilities() ∕= /0 then18
/* Similarly, create model objects for quantitative variabilities. */19

createContainingOb ject(V ); /* name of the containing object is a combination of rule name, and20
constraint block name, each of which must be unique */

end21
CNB← /0; /* constraint blocks from previous loop are deleted, s.t. those from the next rule can be read */22

end23
end24

We applied Algorithm 1 to the templatized model transformation of our QoS con-
figuration case study to automatically generate a VMM. Figure 6 shows a screenshot
of the generated VMM in GME. The variabilities are modeled as pairs of Source-
Pattern and TargetPattern, and annotated by whether they are Structural
or Quantitative using Boolean attributes. The figure corresponds to the Quanti-
tative variability rule of Figure 5 in that the attributes of a Lane are dependent on
the multi_service_levels attribute of RTRequirement. The ThreadPool
attribute values can vary among each configuration and are generated in the VMM.
The BandedConnection element corresponding to the structural variability will be
introduced in the VMM in a similar manner using Algorithm 1.

3.3 Step III: Synthesizing a Specialization Repository

In the next step, transformation developers use the generated VMM to create VMM
model instances, where each VMM model corresponds to a family member (or more
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Fig. 6: Excerpt of Generated VMM for QoS Configuration Study.

appropriately, variabilities of a family member). A collection of such VMM models
for a family is called a specialization repository. This step is akin to the process of
providing functors in C++ templates. For example, in a parametrized C++ sort function,
programmers are required to supply explicit instantiation of the ≤ operator for all the
user-defined types for which the sort function is specialized.

Figure 7 shows a sample VMM model that instantiates the quantitative variability in
terms of exact values of the RTRequirement and Lane attributes. Note that because
the exact values are now specified as models rather than being encoded in terms of
transformation rules, it is considerably easier to modify these values. Additionally, none
of the rules are modified to change an existing mapping, and hence the transformation
logic need not be re-compiled and linked. This step enables creating as many model
instances as the quantitative variability permits without having to modify the rules.

Exact values of attributes of 
RTRequirement and Lane 

elements can now be modified 
in VMM models. Variability is 
thus in models and not in the 

transformation rules

Fig. 7: A Sample VMM model for a Variant of QoS Configuration Case Study.



3.4 Step IV: Specializing the Transformation Instances

To realize the actual transformation for a family variant, transformation tools like GReAT
must combine the VMM models developed in Step III along with the (original) templa-
tized model transformation rules and the invariant rules. This is akin to a C++ compiler
using the programmer-supplied implementation of the ≤ operator for a user-defined
type and instantiating the remaining parametrized class with the given type. The tem-
platized transformations, however, do not contain any transformation rules for the vari-
ability in the visual language. How is it then that the instantiated variability in the form
of a VMM model can be recognized by the templatized transformation rules? To address
this question, MTS provides a second HOT that (1) reads the input VMM model for a
family member, and (2) adds temporary objects at appropriate points in the templatized
transformation rules, which serve as placeholders to insert the instantiated variability of
a family member (corresponding to the current VMM model).

Algorithm 2 defines the translation rules for a transformation from a VMM model.
Lines 3–5 create a new model transformation instance R′ from the input templatized
transformation R, read the containing model objects in VMM V , and for every model
object ob search the corresponding rule in the transformation R′.6 This rule denotes the
location where the variabilities contained in ob were specified in Section 3.1.

Algorithm 2: Specializing the Model Transformation from a VMM model.
Input: variability metamodel V , templatized transformation R
Output: specialized instance of input templatized transformation R′

begin1
transformation rule r; set of model objects OB,IO; pattern p; modeling object ob,io,tmp; attribute at; modeling2
object type type;attribute type atttype;
R′← R; OB← containingModelOb ject(V );3
foreach ob ∈ OB do4

r← searchRule(R′,ob jName(ob)); createTempOb ject(tmp,r); deleteCNB(r);5
IO← parseSRCPattern(ob);6
foreach io ∈ IO do7

createOb jectRe f s(io, tmp); assignCardinalities(io, tmp);8
createAttribs(io, tmp); assignValues(io, tmp);9

end10
/* do similar steps for target pattern */11

end12
end13

Once rule r is known, the constraint block is deleted from this rule in function
deleteCNB(r). The function createTempOb ject(tmp,r) creates a temporary object tmp
inside this rule. For every Structural variability in the source pattern in ob, object
references are read from V , and created in tmp and in addition, their cardinalities are as-
signed as shown in Line 8. Similarly, attributes in VMM that capture Quantitative
variabilities are read from V , and created and assigned values in tmp in Line 9. The
same rule is also repeated for all target patterns in ob.

We applied Algorithm 2 to our QoS configuration example. One of the rules in this
case study assigns specific data values to the attributes of Lane (target) depending on
whether or not the multi_service_levels (source) value is set to TRUE. Further,

6 For creating application family instances, it is not necessary to create a new instance R′, but is
done only for Algorithm 2 to avoid modification of the original templatized transformation R.



as identified earlier in Section 3.1, there is a quantitative variability involving these two
elements. The same variability is also given in Figure 8 for reference. The attributes in
tempObject are assigned values from the values of the corresponding attribute in the
VMM model. Similarly, for the structural variability, the model object references are
also created by parsing and reading the VMM model.

  bool multi =     
  tempObject.multi_service_levels ();
  int static tempObject.static_threads ();
  int dyna  = tempObject.dynamic_threads ();
  int prio tempObject.lane_priority ();
  if (multi ==  RTRequirement.
           multi_service_levels ()) {
    Lane.static_threads () = static;
    Lane.dynamic_threads () = dyna;
    Lane.lane_priority () = prio;
  }

Temporary object created by 
Algorithm 2; attributes/model 
objects contained correspond 
to the constraint specification 
in cnb_service_levels of this 
rule

Source and target attributes 
are read (and assigned) from 
the attributes of tempObject 
that are read from VMM 
model. Thus, the rule need 
not change for changing 
values of attributes

Fig. 8: Specialization of a QoS configuration rule using MTS.
Thus, the rule service_levels_attribute_mapping (and in effect, the

model transformation itself) need not change, when some of these data values/model
object cardinalities have to be altered. This is because the modifications can now be
done simply by modifying the appropriate VMM model.

4 Evaluating the Efforts Saved using MTS
Because MTS was developed to enhance reusability, this section describes its merits in
terms of the reduction in effort to write the transformation rules. The prototype imple-
mentation of MTS is part of the CoSMIC7 tool suite. All of our experiments are based
on CoSMIC version 0.5.7, with GME version 6.11.9 and GReAT version 1.6.0.

Recall from Section 3 that to create a target model from a source model using
GReAT, developers need to execute the GR-engine that executes all the translation
rules of that model transformation. More specifically, developers must first specify all
the rules that transform the elements of the source model to the target model. There-
after, the GR-engine execution involves the following steps: (1) executing the master
interpreter that generates the necessary intermediate files containing all the rules in the
current transformation, (2) compile these intermediate files, if not done already, and
(3) run the generated executable. Steps 1 and 2 must be executed each time the model
transformation rules are modified – which is the case with variants of a family.

Without MTS, model transformations for each variant of an application family must
expend effort in all of the above steps. Our goal is to evaluate MTS in terms of effort
saved. We focus on two specific cases discussed below.
Case 1: Newly added variant is subsumed by existing constraint specifications: The
existing constraint specification for the application family may be sufficient to capture

7 CoSMIC is a MDE toolsuite used in the design and deployment of applications for QoS-
enabled middleware. It is available from http://www.dre.vanderbilt.edu/cosmic/.



all the variabilities of a new family variant. Thus, the developers can create a new variant
simply by re-executing the same model transformation with the VMM model of the
variant as one of the inputs to the transformation. Note that the first two steps have to be
performed only once when the model transformation is being executed for the first time.
Because all the instance-specific customizations/changes are done in the corresponding
VMM model, developers only need to execute Step 3 after each change to produce
output of the transformation (i.e., a new family instance).

In contrast, the traditional approach of one model transformation per single (subset
of) family instance(s) will require maintenance of I ∗Rn rules, where I is the number
of family instances, and Rn is the average number of rules per instance. With MTS,
assuming that the average number of rules do not change, the total number of rules to
be maintained reduces by a fraction of I−1

I .
Case 2: New variant requiring additional constraint specifications: If the variabili-
ties of a new family variant are not completely captured using existing constraint spec-
ification for the application family, MTS requires enhancements to the constraint spec-
ification itself. Such a change necessitates executing the first two steps above once to
produce a new VMM which can be used to model variabilities in the new variant. Note
that despite this change, the VMM models corresponding to the existing variants will
still be valid provided the changes in constraint specification (because of a new family
variant) are orthogonal to the existing variabilities.

5 Related Work

Existing model transformation tools [7, 14, 18] support some form of HOTs. PROGRES
and ATL allow specification of type parameters while VIATRA allows development of
meta transformations, i.e., HOTs that can manipulate transformation rules and hence
model transformations. Unlike MTS, however, these tools do not provide mechanisms
for separation of variabilities from model transformations to facilitate automated devel-
opment of application families.

A recent work synergistic to MTS appears in [12]. In this work the authors propose
(1) transformation factorization to extract common parts of two or more transformation
definitions into a reusable, base transformation, and (2) composing transformation def-
initions mapping from a single source metamodel to multiple target metamodels, each
representing a specific concern in the system being transformed. MTS differs from [12]
in that we focus on composing the common (base) transformation by using the con-
straint notation (as opposed to factoring out commonalities from existing transforma-
tions), and automating the entire process of transformation specialization (i.e., creating
instances of transformations).

Reflective model-driven engineering (MDE) [14] proposes a two-dimensional MDE
process by expressing model transformations in a tool- or platform-independent way
and transforming expressions into actual tool- or platform-specific model transforma-
tion expressions. Although reflective MDE focuses on having durable transformation
expressions that naturally facilitate technological evolution and development of tool-
agnostic transformation projects, mappings still have to be evolved with a change in
platform-specific technologies. MTS, however, is concerned with managing and evolv-
ing model transformation variability in systems developed using MDE.



Asset variation points discussed in [19] deal with expressing variability in models
of product lines [13]. A variation point is identified by several characteristics (e.g., point
reference, and context, use and rationale of the variation point) that uniquely identify
that point in the product lines. These asset variation points capture variation rules of
implementation components of a product line member.

An aspect-oriented approach to managing transformation variability is discussed
in [10] that relies on capturing variability in terms of models and code generators. An-
other approach is model weaving [20], which is used in the composition of separate
models that together define the system as a whole. Using the aspect-oriented approach
requires developers to learn a new modeling language for creating aspect models for
their product line. In contrast, the VMM models generated by MTS use modeling ob-
jects that are part of the source (or target) modeling languages requiring no additional
learning curve.

6 Conclusions
This paper presented MTS (Model-transformation Templatization and Specialization),
which is an enabling technology that seamlessly integrates with existing model transfor-
mation tools to support reusable model transformations for application families. MTS
defines templatized transformations to factor out the commonalities, and uses the notion
of a generated variability metamodel to capture the variabilities in the transformation
process across variants of an application family. MTS defines two higher order transfor-
mations to specialize the transformations for different variants. Although our existing
prototype is implemented in GReAT, it can be extended to other model transformation
toolchains if the variabilities can be captured in a non-invasive way as we did in GReAT.
The results of evaluating MTS indicate that developer efforts are minimized when new
variants are added to the application family, which otherwise require transformation
rules to be reinvented in traditional approaches.

Our future work will involve extensive user studies using MTS and quantitatively
evaluating efforts saved, as well as measuring the performance overhead of executing
the HOTs. MTS is available in open source as part of the CoSMIC MDE tool suite from
www.dre.vanderbilt.edu/cosmic.
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