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Abstract— This paper provides a passivity based framework
to synthesize l

m
2 -stable digital control networks in which m

strictly-output passive controllers can control n−m strictly-output
passive plants. The communication between the plants and
controllers can tolerate time varying delay and data dropouts.
In particular, we introduce a power junction which allows
even a single controller (typically designed to control a single
plant) to accurately control the output of multiple plants even
if the corresponding dynamics of each plant is different. In
addition to the power-junction we also introduce a passive
downsampler (PDS) and passive upsampler (PUS) in order to
further reduce networking traffic. A detailed (soft real-time) set
of examples shows the tracking performance of the networked
control system.

I. INTRODUCTION

The primary goal of our research is to develop reliable

wireless control networks [1]

[2]. In the past we have shown numerous results related to

the control of a single plant with a single controller over

a network. In particular we have shown how to create a

lm2 -stable control network for a continuous passive plant [3,

Theorem 4]. The key is to transmit control and sensor data

in the form of wave variables over networks similar to those

depicted in [3, Fig. 2]. The use of wave variables allows

the network to remain lm2 -stable when subject to both fixed

time delays and data dropouts [3, Lemma 2]. In addition,

if duplicate wave variable transmissions are dropped, then

the network will remain lm2 -stable in spite of time varying

delays [3, Lemma 3]. It is not immediately clear how to apply

these results to the control of multiple plants with (possibly

multiple) controller(s).

The main research challenge is to develop a formal way

to construct a control network in which multiple plants and

controllers can be interconnected such that the overall system

remains stable and can change how the plants behave. This

stability should be guaranteed in spite random time delays

and data dropouts which are inherent to wireless networks.

Furthermore we would like our statement on stability to

have a deterministic characteristic such as either Lm
2 or lm2

stability (see [4] in regards to how lm2 stability and [5] in

regards to how Lm
2 stability can be achieved in spite of

random time delays and data dropouts for a single-plant-

single-controller architecture). In regards to changing the

plants behavior we would like to show that the plants can

tolerate disturbances and track a desired set-point as quickly

and as closely as possible. This paper shows how a power-

junction-network can address this problem.

The power-junction-network is a networking abstraction

to interconnect wave variables from multiple controllers

and plants such that the total wave-power-input is always

greater than or equal to the total wave-power-output. Inter-

connecting wave variables in a ’power preserving’ manner

has appeared in the telemanipulation literature to augment
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potential position drift by modifying one of the waves

um in a passive manner [6, Fig. 9]. Other abstractions

to interconnect wave variables have also appeared in the

wave digital filtering literature which is primarily-concerned

with structural synthesis rules to take a continuous-time

reference filter in order to construct a discrete-time digital

filter which possesses good properties concerning coeffi-

cient accuracy requirements, dynamic range, and stability

properties in regards to finite-arithmetic [7]. In [7] it is

shown how through applying the bilinear-transform to a

small set of continuous-time LTI system models (inductor,

capacitor, resistor) that various stable-wave-digital-filters can

be realized via networks involving wave ports. For example,

in [3, Fig. 2] the waves uop ∈ R
m and uoc ∈ R

m are

each computed in a manner similar to a voltage incident

wave (a), and the waves vop ∈ R
m and voc ∈ R

m are

each computed in a manner similar to a voltage reflective

wave (b) [7]. For wave digital filters a voltage incident

waves can be thought of as a wave traveling into a two

port junction, likewise a reflective wave travels out of a two

port junction. When interconnecting two port elements for

a wave digital filter, a voltage incident wave should connect

to a voltage reflective wave or vice-versa [7, Section IV-

A-2)]. If we denote uop and voc as reflective waves (with

outgoing arrows) and denote uoc and vop as incident waves

(with incoming arrows), then the interconnection rules appear

to be in agreement. In [7, Section IX-H] it is noted that the

use of power-waves for linear wave-digital-filter synthesis

is equivalent to using voltage waves. However, the use of

voltage waves does not allow one to study the interconnec-

tion of non-linear passive systems, which this work does

address. It should be appreciated that unlike wave-digital-

filtering literature, we do not attempt to study special cases

involving constructive rules to realize a high-Q filter, for

example. On the contrary, we are concerned with how passive

(non) linear discrete plants can be interconnected to passive

(non) linear discrete controllers while guaranteeing tracking

and stability in-spite of time-(varying-)delays and data loss.

Some work has appeared as it relates to Lyapunov stability

in regards to consensus networks involving wave variables,

continuous-time feed back among passive continuous-time

plants [8]. To the best of our knowledge, this is the first

work of its kind as it pertains to interconnecting digital

controllers to multiple discrete time plants over a wave-

variable network in a negative feed-back manner in which

weak time varying delay conditions are only needed in order

to guarantee lm2 -stability in-spite of data-loss, in addition,

tracking performance for LTI systems is verified. In this pa-

per we show how power-junction-networks make it possible

to allow m controllers to control up to n − m plants. We

prove that such a network can be shown to be lm2 -stable if all

the interconnected plants and controllers are strictly-output

passive. This paper is a significant refinement of our earlier

work in which we initially presented the power-junction-

network [9]. In particular, Definition 2 is formally stated

to handle the interconnection of ms-dimensional waves. We

also present the averaging-power-junction-network (Defini-

tion 3) and formally show how it satisfies the conditions
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required to be a power-junction-network (Lemma 2). Such

a presentation is done to encourage others to create their

own specific power-junction-network implementation and

show how it satisfies Definition 2. In addition, this paper

further introduce a passive upsampler (PUS) and passive

downsampler (PDS) in order to further reduce the amount

of digital control traffic, while maintaining a stable system.

In order to simplify discussion with this particular paper, we

will focus our presentation to the discrete form of stability

(lm2 -stability). However, remarks will be made which show

how continuous time plants can be integrated into a power-

junction-control-network using a passive sampler (PS) and

passive hold (PH) which is Lm
2 -stable [5].

Other refinements of this paper include a detailed set of

soft real-time experimental results. In which multiple discrete

time passive plants are controlled by a single controller

over an ad-hoc wireless network. In particular, each plant

is the passive-discrete-time equivalent of a simple mass (of

different weight) which was transformed from the continuous

time model using the IPESH-Transform (Definition 5) which

consists of using an inner-product equivelant sampler (IPES)

and zero-order hold (ZOH) [3, Definition 4]. The timing

for each discrete time plant is maintained by a (soft) real

time timer which is part of an advanced passivity based

control library which runs on MATLAB/Simulink [10], [11].

Each plant can be thought of as a client which connects to

the power-junction-network-server. The overall client server

architecture used the UDP protocol because of its con-

nectionless nature so that plants could easily connect and

disconnect without ’stopping’ the system. This convenient

architecture was easily adapted to use a secure shell ssh-

tunneling mechanism [12], such that we could evaluate

running the system in which the plants and controller were

located in different areas throughout the world. Finally,

we evaluated the system when subject to network attacks.

Although multiple controllers can be used in this frame-

work we chose not to focus on this case so as to establish a

more complete simulation, the interested reader is referred to

[9] and [13] for additional results related to interconnecting

multiple controllers over either an averaging-power-junction-

network or resilient-power-junction-network respectively.

The rest of the paper is organized as follows: i) Sec-

tion II presents all that is required to design network control

systems for multiple-plants and multiple-controllers over a

power-junction-network (Section II-A) and the PUS and

PDS (Section II-B) which are lm2 stable (Section II-C), ii)

Section III presents a detailed experiment in which two ’soft-

real-time’ simulated plants are controlled over an ad-hoc

wireless network by a single controller which is connected

over an averaging-power-junction-network, iii) Section IV

provides our conclusions and a more specific summary of our

contributions, iv) Appendix provides a review on passivity

while Appendix provides detailed proofs for many of the

results presented in this paper.

Fig. 1. An io-wave-variable-network of m = 2 pairs of power-output-

waves and n−m = 4− 2 = 2 pairs of power-input-waves depicted by the
symbol PJ indicating it satisfies (4) in order to be a power-junction-network.

Fig. 2. An example of a power-junction-control-network.

II. NETWORKED CONTROL DESIGN

A. Power-Junction-Networks

Networks of a passive plant and controller are typically

interconnected using power variables. Power variables are

generally denoted with an effort and flow pair (e∗,f∗) whose

product is power. They are typically used to show the

exchange of energy between two systems using bond graphs

[14], [15]. However, when these power variables are subject

to communication delays the communication channel ceases

to be passive which leads to network instabilities. Wave

variables allow effort and flow variables to be transmitted

over a network while remaining passive when subject to

arbitrary fixed time delays and data dropouts [6].

upk(i) =
1√
2b

(bfopk(i) + edock(i)), k ∈ {m + 1, . . . , n}
(1)

vcj(i) =
1√
2b

(bfopdj(i) − eocj(i)), j ∈ {1, . . . ,m} (2)

(1) can be thought of as each sensor output in a wave

variable form for each plant Gpk, k ∈ {m + 1, . . . , n}
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depicted in Figure 2. Likewise, (2) can be thought of as each

command output in a wave variable form for each controller

Gcj , j ∈ {1, . . . ,m} depicted in Figure 2. The symbol

i ∈ {0, 1, . . . } depicts discrete time. Denote I ∈ R
ms×ms

as the identity matrix. When actually implementing the wave

variable transformation the “outputs” (upk, edock) are related

to the corresponding “inputs” (vpk, fopk) as follows (see [16,

Figure 2.2]):
[

upk(i)
edock(i)

]

=

[

−I
√

2bI

−
√

2bI bI

] [

vpk(i)
fopk(i)

]

(3)

likewise the “outputs” (vcj , fopdj) are related to the corre-

sponding “inputs” (ucj , eocj) as follows:

[

vcj(i)
fopdj(i)

]

=





I −
√

2
b
I

√

2
b
I − 1

b
I





[

ucj(i)
eocj(i)

]

The power-junction-network, a special type of io-wave-

variable-network, indicated in Figure 1 and Figure 2 by the

symbol PJ has waves both entering and leaving the power-

junction-network as indicated by the arrows. Waves leaving

the controllers vcj and entering the power-junction-network

vj in which j ∈ {1, . . . ,m} have the following relationship

vj(i) = vcj(i − pj(i))

in which pj(i) denotes the time varying delay in transmitting

the control wave from ’controller-j’ to the power-junction-

network. Next, the input wave to the plant vpk is a delayed

version of the outgoing wave from the power-junction-

network vk, k ∈ {m + 1, . . . , n} such that

vpk(i) = vk(i − pk(i)), k ∈ {m + 1, . . . , n}

in which pk(i) denotes the discrete time varying delay in

transmitting the outgoing wave to ’plant-k’. In Figure 2 the

delays are represented as fixed for the discrete time case

(i.e. z−pk). Next, the outgoing wave from each plant upk

is related to the wave entering the power-junction-network

uk, k ∈ {m + 1, . . . , n} as follows:

uk(i) = upk(i − ck(i)), k ∈ {m + 1, . . . , n}

in which ck(i) denotes the discrete time varying delay in

transmitting the wave from ’plant-k’ to the power-junction-

network. Last, the input wave to the controller ucj is a

delayed version of the outgoing wave from the power-

junction-network uj , j ∈ {1, . . . ,m} such that

ucj(i) = uj(i − cj(i)), j ∈ {1, . . . ,m}

in which cj(i) denotes the discrete time varying delay in

transmitting the wave from the power-junction-network to

’controller-j’. In Figure 2 the delays are represented as

fixed for the discrete time case (i.e. z−cj). Before, provid-

ing a formal definition for a power-junction-network, we

define input-output-wave-variable-networks, a special class

of wave-variable-networks.

Definition 1: An input-output-wave-variable-network (io-

wave-variable-network) is any network (such as the net-

work depicted in Figure 1) which interconnects n systems

(in which 1 ≤ m < n < ∞) with the corresponding

wave variable pairs (u1, v1), (u2, v2), . . . , (un, vn) such that

the power-output-wave pairs are denoted (uj , vj), j ∈
{1, . . . ,m} (in which uj ∈ R

ms is an outgoing-power-

output-wave and vj ∈ R
ms is an incoming-power-

output-wave) and the power-input-wave pairs are denoted

(uk, vk), k ∈ {m + 1, . . . , n} (in which uk ∈ R
ms is an

incoming-power-input-wave and vk ∈ R
ms is an outgoing-

power-input-wave from the network).

Wave-variables in these networks denoted by the symbol u∗

(v∗) will sometimes be referred to as power-output-u (v)-

waves or power-input-u (v)-waves. We now provide a formal

definition for the power-junction-network.

Definition 2: A power-junction-network is any io-wave-

variable-network (Definition 1) such that the passive inequal-

ity
n

∑

k=m+1

(uT
kuk − vT

k vk) ≥
m

∑

j=1

(uT
j uj − vT

j vj) (4)

always holds. In other words, a power-junction-network is

an io-wave-variable-network in which the total wave-power-

input is always greater than or equal to the total wave-

power-output. A lossless-power-junction network is a power-

junction-network in which (4) is always satisfied with an

equality.

Power-junction-networks provide a new way to interconnect

multiple plants to multiple controllers. Figure 2 depicts

m = 1 controller Gc1 with the corresponding wave variables

(uc1, vc1), and each plant Gpk, k ∈ {2, . . . , n = 4} has

the corresponding wave variables (upk, vpk). vc1 represents

the wave-variable-control-output. uc1 represents a delayed

feedback term which depends on the type of power-junction-

network implemented and the corresponding wave-variable

sensor outputs upk from the remaining n− 1 plants. Finally,

for each plant vpk represents the corresponding delayed

control-command which depends on the type of power-

junction-network implemented and vc1.

There are many ways to realize a power-junction-network,

in order to focus our discussion to a particular realization of

a power-junction-network we present Lemma 1 which allows

us to focus on satisfying two respective inequalities relating

to the scalar components of a given set of u-waves and a

given set of v-waves which are sufficient to create a power-

junction-network.

Lemma 1: Any io-wave-variable-network (Definition 1) in

which the power-output-waves (uj , vj), j ∈ {1, . . . ,m}
and power-input-waves (uk, vk), k ∈ {m + 1, . . . , n} are

combined in such a manner such that each lth scalar com-

ponent (in which l ∈ {1, . . . ,ms}) of the outgoing ms-

dimensional power-output-u-waves ujl
are related to their

respective incoming components of the power-input-u-waves

ukl
such that

m
∑

j=1

u2
jl
≤

n
∑

k=m+1

u2
kl

∀l ∈ {1, . . . ,ms} (5)

always holds in addition each lth scalar component of the

outgoing power-input-v-waves vkl
are related to the incom-
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ing components of the power-output-v-waves vjl
such that

n
∑

k=m+1

v2
kl

≤
m

∑

j=1

v2
jl

∀l ∈ {1, . . . ,ms} (6)

always holds then Definition 2 is satisfied.

The proof of Lemma 1 is in Appendix A.

Definition 3: An averaging-power-junction-network is

any io-wave-variable-network (Definition 1) such that each

lth component (l ∈ {1, . . . ,ms}) of the outgoing-power-

input-wave vk (denoted vkl
) are computed from the respec-

tive lth component of the incoming-power-output-wave vj

(denoted vjl
) as follows:

vkl
= sgn(

m
∑

j=1

vjl
)

√

∑m

j=1 v2
jl√

n − m
, k ∈ {m + 1, . . . , n} (7)

Similarly, each lth component (l ∈ {1, . . . ,ms}) of the

outgoing-power-output-wave uj (denoted ujl
) are computed

from the respective lth component of the incoming-power-

input-wave uk (denoted ukl
) as follows:

ujl
= sgn(

n
∑

k=m+1

ukl
)

√

∑n

k=m+1 u2
kl√

m
, j ∈ {1, . . . ,m}

(8)

Note, that for the special case when m = 1 then (7) and (8)

respectively simplify to

vkl
=

v1l√
n − 1

, k ∈ {2, . . . , n}

u1l
= sgn(

n
∑

k=2

ukl
)

√

√

√

√

n
∑

k=2

u2
kl

.

Lemma 2: The averaging-power-junction-network (Defi-

nition 3) satisfies the inequality in (4) in order to be a power-

junction-network (Definition 2), furthermore it satisfies (4)

as an equality and is therefore a lossless-power-junction-

network.

The proof of Lemma 2 is in Appendix B.

The engineer will need to scale the control input rocj in

an appropriate manner, in order for the outputs fopk of each

plant to track the desired control input rosj at steady-state.

The following scaling relationship is proposed in which the

scalar gain kpj is used to account for the affects of a given

power-junction-network implementation, and the scalar gain

KM is used to account for the scaling effects of the passive

upsampler and passive downsampler.

rocj = −ksrosj = −(kpjKM )rosj . (9)

When using the averaging-power-junction, the relationships

can be quite complex, however, it is indeed possible to

formulate a recursive structure to determine steady-state

responses based on steady-state gains and steady-state in-

puts for a given plant-controller structure, as was done

recently for averaging-power-junction-networks which inter-

connected continuous-time-plants to digital controllers [17,

Theorem 16]. In general we would like to consider the case

when m identical controllers with identical references are

used to command n − m plants with identical steady-state

gains. Assuming that the product of the steady-state gains for

one plant and one controller is large then the scaling-gain kpj

should be computed such that

kpj =

√

n − m

m
(10)

in order for rosj = fopk at steady-state when no PUS or

PDS are used (KM = 1). Note, that it is indeed the case

that when the number of controllers equals the number of

plants kpj = 1. In other words, kpj equals the square-root of

the ratio of the number of plants to the number of controllers.

Such a relationship implies some resiliency to controller loss

as was studied in [13] for the special-case when m redundant

controllers, controlled a single plant over a resilient-power-

junction-network.

Remark 1: For simplicity we will consider the case in

which ropk = 0 and all plants Gpk are single-input single-

output satisfying:

fopk(i) = −kpkedock(i), kpk > 0

from (3) we see that:

edock(i) = −
√

2bvpk(i) − bkpkedock(i)

therefore,

fopk(i) = −kpk(i)edock(i) =
kpk

√
2b

1 + bkpk

vpk(i).

If (bkpk >> 1), ∀k ∈ {m + 1,m + 2, . . . , n} then

fopk(i) ≈
√

2

b
vpk(i).

This implies that as long as each plant processes the aver-

age wave commands from the controllers satisfying (8) for

example, then as the system reaches a steady state vpk(i) =
0, ∀i > iS and the delays are fixed then the following will

approximately hold for some real constant C:

√

b

2

is
∑

i=0

fopk(i) ≈
is

∑

i=0

vpk(i) = C.

Furthermore these tracking-like properties of each system

connected to a power-junction-network can be extended to

consider LTI systems in the frequency-domain in which the

frequency content of vpk(ejω) is bandwidth limited such that

vpk(ejω) ≈ 0, when ωM < ω ≤ π

bHpk(ejω) >> 1, when 0 ≤ ω ≤ ωM .

Remark 2: Power-junction-networks complement prior

work related to telemanipulation as summarized in

[6, Section 6.4]. In particular, a method is described showing

how to augment potential position drift by modifying one of

the waves um in a passive manner [6, Fig. 9].
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Fig. 3. The passive downsampler and passive upsampler construction.

Fig. 4. The NLA-PDS and hold-PUS implementation.

B. The Passive Up/Downsamplers.

In [5] it was shown how a passive sampler (PS) and passive

hold (PH) could be used to achieve a Lm
2 -stable system for a

passive robot and a digital controller. Clearly, these devices

could be introduced into Figure 2 to create an overall Lm
2 -

stable system. In fact, this initial observation presented in

this paper resulted in the Lm
2 -stability and passivity theorem

for digital control of continuous-time plants interconnected

over power-junction-networks [17, Theorem 12]. However,

since our discussion is focused on discrete-time systems, we

will now introduce the passive upsampler (PUS) and passive

downsampler (PDS).

Definition 4: Figure 3 represents the passive upsam-

pler (PUS) and passive downsampler (PDS) construc-

tion. wo(i) denotes a discrete wave variable going out

of a wave transform block, for example in Figure 2

vc1(i), up2(i), up3(i), upn(i) are all unique wo(i)’s. Sim-

ilarly, wi(i) represents the respective discrete wave vari-

able going in to a wave transform block, for example

in Figure 2 uc1(i), vp2(i), vp3(i), vpn(i) are all unique

wi(i)’s. Downsample index j =
⌊

i
M

⌋

, therefore, we use the

notation, woDS(j) to represents the effective downsampled

wave version of wo(i) and wi(i) can be thought of as the

respective upsampled version of wiDS(j). Therefore, a valid

PDS PUS pair is one which satisfies the following inequality:

〈wo(i), wo(i)〉MN − 〈wi(i), wi(i)〉MN ≥
〈woDS(j), woDS(j)〉N − 〈wiDS(j), wiDS(j)〉N ∀N > 0.

(11)
There are many ways to satisfy (11), we chose to imple-

ment the PDS PUS pairs as indicated in Figure 4. Lemma 3

states this more formally.

Lemma 3: The following non-linear-averaging-PDS

(NLA-PDS) and hold-PUS satisfies the inequality (11)

Fig. 5. Simplified controller/plant with PDS/PUS in order to determine
KM .

required of Definition 4:

• NLA-PDS: Let wo, woDS ∈ R
m, in which each kth

element within their respective vectors wo, woDS are

denoted wok
, woDSk

k ∈ {1, . . . ,m}. Therefore the

NLA-PDS is implemented as follows:

woDSk
(j) =

√

√

√

√

Mj−1
∑

i=M(j−1)

w2
ok

(i)sgn(

Mj−1
∑

i=M(j−1)

wok
(i))

(12)

• hold-PUS: Similarly let wi, wiDS ∈ R
m, in which each

kth element within their respective vectors wi, wiDS

are denoted wik
, wiDSk

k ∈ {1, . . . ,m}. Therefore the

hold-PUS is implemented as follows:

wik
(i) =

√

1

M
wiDSk

(j−1), i = Mj, . . . ,M(j + 1) − 1

(13)

The proof of Lemma 3 is in Appendix C. Figure 5 shows a

single-input single-output (SISO) controller with steady state

gain Kc1 controlling a SISO plant with steady state gain Kp2.

The steady state gain Kss for any system with input u(i) and

output y(i) is computed as follows

Kss = lim
i→∞

y(i)

u(i)
.

Recall, that since n − m = 2 − 1 = m = 1 then kpj = 1, in

addition knowing the corresponding steady state gains Kc1

and Kp2 we can compute the appropriate scaling gain KM

so that fop2(i) = ros1(j) in the limit as i, j → ∞. The

SISO case is treated for simplicity of discussion, however, if

the controller-plant-steady-state-gain-matrix-product is much

larger along the diagonal component and small elsewhere

then the scaling matrix can be replaced with a scalar scaling

term KM ∈ R.

Lemma 4: In order for the steady state output of the SISO

plant fop2(i) with steady state gain Kp2 to equal the desired

reference ros1(j) to the SISO controller with steady state

gain Kc1 depicted in Figure 5. The reference scaling gain

KM should be computed as follows

KM =
1 + Kc1Kp2

Kc1Kp2

√
M

≈
√

M (when Kc1Kp2 is large)

in which M relates the downsample/upsample rates for the

respective NLA-PDS/hold-PUS described in Lemma 3 in

which i = Mj.

The proof of Lemma 4 is in Appendix D.

Remark 3: Although we chose to implement and inves-

tigate the NLA-PDS and hold-PUS there are indeed linear
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Fig. 6. Standard anti-aliasing down-sampler / up-sampler which are also
a suitable PDS and PUS pair.

implementations which satisfy Definition 4. Noting that (11)

can be written in the following compact form:

‖(wo)MN‖2
2 − ‖(wi)MN‖2

2 ≥ ‖(woDS)N‖2
2 − ‖(wiDS)N‖2

2

(14)

and denoting the respective upsampling (downsampling)-

gains as gPUS(M) and gPDS(M) which are determined as

follows:

gPUS(M) = sup
‖(wiDS)N‖2

2
6=0

‖(wi)MN‖2
2

‖(wiDS)N‖2
2

(15)

gPDS(M) = sup
‖(wo)MN‖2

2
6=0

‖(woDS)N‖2
2

‖(wo)MN‖2
2

(16)

After careful inspection of (14), (15), and (16) it is clear

that for a proposed-PUS if gPUS(M) ≤ 1 then it is a PUS,

likewise if for a proposed-PDS if gPDS(M) ≤ 1 then it

is a PDS. Therefore, traditional anti-aliasing up-sampling

and down-sampling configurations [18, Chapter 10], such

as those depicted in Figure 6, in which the low-pass-filters

(HLP(z)) lm2 -gains are less-than or equal to one satisfy

Definition 4.

C. lm2 Stable Power Junction Control Networks

Figure 2 depicts m controllers interconnected to n −
m plants over a power-junction-network. It can be shown

that this power-junction-control-network will remain lm2 /Lm
2 -

stable when subject to either fixed delays and/or data

dropouts. For the discrete time case we can show how to

safely handle time varying delays by dropping duplicate

transmissions from the power-junction-network. Please refer

to Appendix for corresponding definitions or nomenclature.

Theorem 1: The power-junction-control-network depicted

in Figure 2 is lm2 -stable if all plants Gpk(eopk(i)), k ∈ {m+
1, . . . , n} and all controllers Gcj(focj(i)), j ∈ {1, . . . ,m}
are strictly-output passive and

n
∑

k=m+1

〈fopk, edock〉N ≥
m

∑

j=1

〈eocj , fopdj〉N (17)

holds for all N ≥ 1.

Proof: Each strictly-output passive plant for k ∈ {m+
1, . . . , n} satisfies

〈fopk, eopk〉N ≥ ǫopk‖(fopk)N‖2
2 − βopk (18)

while each strictly-output passive controller for j ∈
{1, . . . ,m} satisfies (19).

〈eocj , focj〉N ≥ ǫocj‖(eocj)N‖2
2 − βocj (19)

Substituting, edock = ropk − eopk and fopdj = focj − rocj

into (17) yields

n
∑

k=m+1

〈fopk, ropk − eopk〉N ≥
m

∑

j=1

〈eocj , focj − rocj〉N

which can be rewritten as
n

∑

k=m+1

〈fopk, ropk〉N +

m
∑

j=1

〈eocj , rocj〉N ≥

n
∑

k=m+1

〈fopk, eopk〉N +

m
∑

j=1

〈eocj , focj〉N (20)

so that we can then substitute (18) and (19) into (20) to yield

n
∑

k=m+1

〈fopk, ropk〉N +
m

∑

j=1

〈eocj , rocj〉N ≥

ǫ[

n
∑

k=m+1

‖(fopk)N‖2
2 +

m
∑

j=1

‖(eocj)N‖2
2] − β (21)

in which ǫ = min(ǫopk, ǫocj), k ∈ {m + 1, . . . , n} j ∈
{1, . . . ,m} and β =

∑n

k=m+1 βopk +
∑m

j=1 βocj . Thus (21)

satisfies Definition 8-iii for strictly-output passivity in which

the input is the row vector of all controller and plant inputs

[roc1, . . . , rocm, rop(m+1), . . . , ropn], and the output is the

row vector of all controller and plant outputs

[eoc1, . . . , eocm, fop(m+1), . . . , fopn].
Remark 4: When we let ǫopk = ǫocj = 0 we see that all

the plants and controllers are passive, therefore the system

depicted in Figure 2 is passive if it satisfies (17).

With these proofs complete, it is a fairly simple exercise to

use Definition 2 and use the techniques shown in the proof

for [3, Lemma 2] in order to prove the following:

Corollary 1: If all of the discrete time varying delays in

the network depicted in Figure 2 are fixed pl(i) = pl, cl(i) =
cl, l ∈ {1, . . . , n} and/or data packets are dropped then (17)

holds.

Corollary 2: The discrete time varying delays

pl(i), cl(i), l ∈ {1, . . . , n} depicted in Figure 2 can

vary arbitrarily as long as (17) holds. The main assumption

(17) will hold if duplicate transmissions to the power-

junction-network are dropped when received, and duplicate

transmissions from the power-junction-network to the

receivers are dropped. This can be accomplished for

example by transmitting the tuple (i,upk(i)) to the power-

junction-network, if i ∈ { the set of received indexes } then

set upk(i) = 0 before computing uj(i) to transmit to the

controllers, etc.

Using a averaging-power-junction-network, we shall use

a single controller to control the velocity (and indirectly

the position) of 2 masses using an idealized force source

to actuate each mass. We chose this simple example in order

to focus on implementing a more complete network control

example and to simplify the discussion, the interested reader
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.

is referred to [9] in which we studied the control of n − m
motors over a token network with perturbed dynamics.

Each plant with respective mass Mp2 = 2 kg and Mp3 =
0.25 kg has the following transfer function

Hpk(s) =
1

Mpks
. (22)

We will transform each plant to its discrete time passive

equivalent using the inner-product equivelant sample and

hold-transform (IPESH-transform) as defined by Defini-

tion 5.

Definition 5: Let Hp(s) and Hp(z) denote the respective

continuous and discrete time transfer functions which de-

scribe a plant. Furthermore, let Ts denote the respective

sample and hold time. Finally, denote Z{F (s)} as the z-

transform of the sampled time series whose Laplace trans-

form is the expression of F (s), given on the same line in

[19, Table 8.1 p.600]. Hp(z) is generated using the following

IPESH-transform

Hp(z) =
(z − 1)2

Tsz
Z

{

Hp(s)

s2

}

.

The IPESH-transform is a result from applying the inner-

product equivelant sample and hold (see Definition 9 in

Appendix E) which is formally stated as Lemma 5 with the

corresponding proof provided in Appendix E.

Lemma 5: Applying the inner-product equivelant sample

and hold to a single-input-single-output (SISO) passive

linear-time invariant (LTI) plant with transfer function Hp(s)
results in a corresponding passive LTI plant Hp(z) which

results from the IPESH-transform.

Therefore, the respective discrete time passive model for each

mass is

Hpk(z) =
Ts

2Mpk

z + 1

z − 1
.

Remark 5: For this example, the exact transfer function

would have been obtained if we had chosen instead to

use the bilinear transform and substituted s = 2
Ts

z−1
z+1 .

It has been well known that the bilinear transformation

preserves passivity [7], however the two transforms are

not equivalent as can be appreciated by viewing Figure 7.

Figure 7 clearly shows that the bilinear transformation for

the plant H(s) = s
s2+0.2s+1 , while still passive, suffers from

significant warping in amplitude and phase shift, which the

IPESH-transform is much less sensitive to the low sampling

rate.

Each plant is next rendered strictly-output passive by

adding a small amount of damping using velocity feedback,

such that the strictly output passive plants will have the

following form:

Hspk(z) =
Hpk(z)

1 + ǫHpk(z)
.

Since the plants are essentially integrators we will simply

use a proportional feedback controller with gain K. Using

loop-shaping techniques we choose K =
Mp2π

2TsM
. This will

provide a reasonable crossover frequency at roughly one half

the controllers-Nyquist frequency (ωn = π
TsM

) and maintain

a 90 degree phase margin. Note, that we chose the largest

mass to dictate the gain limit, as the system tolerated the

larger overall system gain. In fact, the gain can be arbitrarily

larger since this system will always have 90 degrees phase

margin, however the trade-off is a more oscillatory response

which is verified in simulation.

Remark 6: The proof of Lemma 5 given in Appendix E

shows that causality is preserved when applying the IPESH-

transform to a causal transfer function Hp(s). But, can

the IPESH formulation be applied to an actual physical

system? Since a ZOH is applied to the input, it should

be clear that a causal prediction can indeed be made if

exact knowledge of the plant is known through the use

of an observer structure. This has indeed been shown by

[20] using dissipative-systems theory which resulted in an

observer structure which used the measured output of the

plant. In addition, we showed that by simply applying

the IPESH definition, it is a straight forward exercise to

synthesize a passive observer structure which uses the in-

tegrated output of the plant [16, Section 2.3.1]. It should

also be noted, that although the synthesis arguments required

precise knowledge of the plant in order to make a prediction

in order to implement a causal observer, passivity is still

typically preserved even when exact knowledge of the plant

is unknown. The reason for this robustness to uncertainty

lies in the observer structure which includes a feed-forward

term whose magnitude typically increases as sampling time

increases. Therefore, the engineer should be careful that her

implementation is well-posed [21] (all instantaneous feed-

back loop-gains are less than one, (bHpk(z)|z=∞ < 1, since

the controller is linear and known, the inherent feed-back

loop resulting from the wave-transform can be precomputed

so as to avoid any explicit loops [16, (2.62) p.37])). It is

a much more challenging problem to design observers for

non-linear systems in this framework, however, as such the

causal PS, PH combined with the power-junction-network

framework presented here does indeed apply [17]. For an

account on how the robotics community, in which the

IPESH-like formulation first originated from as it applies

to Port-Controlled-Hamiltonian Systems, has applied it with
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TABLE I

SIMULATION SUMMARY.

Plant/ Assumptions
Controller

Gc1 K =
Mp2π

2TsM
, event-driven controller

Gp2 Mp2 = 2.0 kg, ǫ = .01, M = 10, Ts = .01 s
Gp3 Mp3 = 0.25 kg ǫ = .01, M = 10, Ts = .01 s

Fig. 8. Platform layer used for experiment.

much success in an approximately passive manner by using

energy dissipation techniques see [22, Sections 3.4,4.4].

III. EXPERIMENTS

In this section we present a detailed experiment in which

two ’soft-real-time’ simulated plants are controlled over an

ad-hoc wireless network by a single controller which are

connected over an averaging-power-junction-network.

A. Experimental Setup

Table I summarizes the respective properties and assump-

tions related to the controller and plants. In particular each

plant is connected to a hold-PUS/NLA-PDS pair so that

their respective velocity measurements are only transmitted

every TsM = .1 seconds over the network. The controller,

connected to the averaging-power-junction-network is imple-

mented in an event driven manner as new data arrives over

the network. Such an asynchronous controller is possible

and can be justified using a construct similar to the Passive

Asynchronous Transfer Unit (PATRU) [4, Definition 4].

Furthermore a network flood attack will be initiated from

four nodes which is directed towards the simulated plant

Gp2. This network attack creates both an asymmetric delay

and loss of data which allows us to evaluate these effects

on the overall system. As indicated in Figure 8 each plant

was simulated on a unique laptop, the controller which was

implemented on its own personal laptop as well. Each Flood

Node ran on a unique embedded ’brick’ to launch its ping-

flood attacks from.

Fig. 9. Computational layer used to implement controllers and plants.

B. Software Implementation

Each plant was simulated using Simulink which included

a ’soft-real-time’ timer which we denote as rt_clock. The

development of rt_clock resulted from the need to pace

Simulink simulations which required a variable step solver

in order to be executed. We have refined our implementation

such that we can pace our simulations to run at around

98% real-time. The key was to use MATLAB’s non-blocking

pause command and a moving time window indexed by i

as show in Listing 1.

Listing 1. Snippet from rt clock.m.

i f dT < r t t i m e r s . T ( i d )∗ r t t i m e r s . i ( i d )
p t = r t t i m e r s . T ( i d )∗ r t t i m e r s . i ( i d ) − dT ;
pause ( p t ) ;

end

The basic networking interface for each plant and controller

was built around a simple UDP client-server model in which

the power-junction-network server (PJ) was listening to ports

6000 and 6001 and each plant (P2, P3) would send data

to their respective port. However, to simulate running the

system in a potentially hostile environment we used an

SSH server running on the controller platform to permit

secure tunnels from the respective plants on ports 7000 and

7001 respectively. In order to use SSH, we have to use a

TCP/IP protocol which our initial UDP client-server interface

did not support. Therefore we used netcat in order to

create a UDP to TCP/IP bridge between the SSH tunnel

and the respective plants and clients [23]. nc_bridge is

a utility we created in order to establish the respective

tunnels and bridges. In order to redirect connections on

port 7000 from P2’s host (192.168.1.111) to the power-

junction-network-server on port 7000 (192.168.1.110)

nc_bridge does the following from P2’s host:

s s h −L 7 0 0 0 : 1 2 7 . 0 . 0 . 1 : 7 0 0 0 1 9 2 . 1 6 8 . 1 . 1 1 0 n c s 0

nc_s_0 is run on the power-junction-network-servers host

to establish the netcat bridge which serves TCP/IP clients on

port 7000 and relays these packets back and forth as UDP

packets via port 6000.

nc − l 7000 < / t / f i f o 0 | nc −u 1 2 7 . 0 . 0 . 1 6000 > / t / f i f

Finally a netcat bridge is established on P2’s host which

serves UDP clients (from Simulink) locally which connect to

port 6000 and relays these packets back and forth as TCP/IP

packets via port 7000.

nc −u − l 6000 < / t / f i f o | nc 1 2 7 . 0 . 0 . 1 7000 > / t / f i f o
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The power-junction-network-server is a C-based server

which ran in a completely event driven manner, as we

highlight the main parts in Listing 2.

Listing 2. Snippet from powerjuncudp.c.

whi le ( 1 ){
i f ( t i c k f l a g ){

t s += TS∗DOWNSAMPLE;
t i c k f l a g =0;

}
r [ 0 ] = AMPLITUDE∗ s i n ( omega∗ t s ) ;
FD ZERO(& p l ) ;
f o r ( i =0 ; i<N P ; i ++)

FD SET ( s o c k e t m a t l a b [ i ] ,& p l ) ;
/ / B lock u n t i l da ta a r r i v e s from any N P p l a n t
s o c k e t c h o s e n = s e l e c t ( n fds , &pl , 0 , 0 , 0 ) ;
f o r ( i =0 ; i<N P ; i ++){

i f ( FD ISSET ( s o c k e t m a t l a b [ i ] ,& p l ) ) {
i f ( s t a t e [ i ] ){

/∗ For a l l i i n { s t a t e [ i ] == 1 } :
∗ c a l c u l a t e v o u t from u i n [ i ] ,
∗ v f i f o [ i ] = v o u t ,
∗ s t a t e [ i ] = 0 . ∗ /

c a l c v o u t ( s t a t e , u i n , r , v f i f o , N P , WAVE N ) ;
t i c k f l a g =1;

}
i f ( r e c v f r o m ( s o c k e t m a t l a b [ i ] , u i n [ i ] , . . . ) )

s t a t e [ i ] = 1 ;
}

}
f o r ( i =0 ; i<N P ; i ++){

i f ( ! s t a t e [ i ] )
break ;

}
i f ( i == N P ){

c a l c v o u t ( s t a t e , u i n , r , v f i f o , N P , WAVE N ) ;
t i c k f l a g =1;

}
/ / Send o u t da ta from pend ing v f i f o [ i ] ’ s
f o r ( i =0 ; i<N P ; i ++){

i f ( ! v f i f o [ i ] . empty ( ) ) {
v o u t = p o p v f i f o ( v f i f o , i ) ;
s e n d t o ( s o c k e t m a t l a b [ i ] , v ou t , . . . ) ;

}
}

}

C. Experimental Results

Three experiments were performed. The first experiment

established a nominal system response of the system when

operating over a wireless network. Both velocity and position

tracking performed quite well as indicated in Figure 10 and

Figure 11 respectively. The nominal round trip time delay is

indicated in Figure 12, it can vary quite substantially over

long periods of time, however under nominal conditions it is

roughly the same for each respective plant. The substantial

variance during normal operation in the time delay is cap-

tured in our second experiment and is displayed in Figure 14,

where in a controlled manner we took plant-two ’off-line’ at

around 30 seconds and then brought plant-two back ’on-line’

at 60 seconds. As Figure 13 indicates, when plant-two is

’off-line’ the velocity of the plant goes to zero (m/s) until it

goes back ’on-line’ and receives additional commands from

the controller. These results lead us to our discussion of our
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Fig. 10. Nominal velocity response over wireless network.
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Fig. 11. Nominal position response over wireless network.

final experiment in which a flood attack is commenced on

plant-two.

However, when a substantial network attack is commenced

at around 50 seconds, as indicated in Figure 17 an asym-

metric round-trip delay pattern results in which ∆Tp2 grows

to over 3 seconds while ∆Tp3 slowly grows to around 1
second. As can be seen in Figure 15 a substantial amount

of data is lost which forces the velocity of plant-two to

stay near 0 while the velocity profile for plant-three is just

a bit more oscillatory and unbiased relative to the desired

trajectory. As a result, an overall position drift occurs with

plant-two relative to plant-three as indicated in Figure 16.

We noticed that as the asymmetry in the delay between

the two plants round-trip delays grew, there was a bit more

oscillatory behavior for plant-three in attempting to follow

the same profile (which is intuitive). Therefore, we limited

our input FIFO to hold only up to a maximum of 2 seconds

(20 samples) worth of data. Note that only by dropping or

compressing data can the overall round-trip delay be reduced.
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Fig. 15. Velocity response over wireless network when subject to network
attack.
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The effect of limiting the size of the FIFO causes the delay

to reduce from roughly 3.25 seconds to 2.25 seconds for

plant-two.

IV. CONCLUSIONS

We have shown how to interconnect multiple passive

plants and controllers (systems) over a passive power-

junction-network (Definition 2). In addition we showed how

to implement an averaging-power-junction-network (Defini-

tion 3) and proved that it satisfied the conditions required to

be a power-junction-network (Lemma 2). Remark 1 provides

sufficient conditions required in order for different LTI

passive plants Gpk to track each other when interconnected

over a power-junction-network. Theorem 1 states that if

each plant and controller are connected to a power-junction-

network as illustrated in Figure 2 are strictly-output passive

then a lm2 -stable power-junction-control-network is created

which can tolerate both fixed delays and data dropouts

(Corollary 1) as well as time-varying delays which don’t

generate additional power in the network (Corollary 2). The

TCP/IP protocol does not duplicate data transmissions there-

fore power-junction-control-networks which transmit wave

variables using TCP/IP will satisfy Corollary 2. The UDP

protocol can potentially duplicate packets, however if the
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Fig. 17. Time delay over wireless network when subject to network attack.

user is careful not to process these duplicate transmissions

then Corollary 2 will be satisfied.

In order to reduce networking traffic and computational

demands on a controller we introduce the PUS and PDS

(Definition 4) and showed how a NLA-PDS satisfied the PDS

requirements while a hold-PUS satisfied the PUS require-

ments (Lemma 3). Lemma 4 showed that a set-point scaling

gain KM ≈
√

M should be used in conjunction with a hold-

PUS and NLA-PDS networked control system such as those

depicted in Figure 5. Remark 3 shows that traditional up-

sampling/down-sampling schemes with an anti-aliasing filter

can be implemented which satisfy the PUS PDS require-

ments, and warrants further investigation.

In order to simulate a continuous time plant Hpk(s) we

presented and used the IPESH-Transform (Definition 5) as

depicted in Figure 18 in which we showed this to be a direct

result of applying the inner-product equivelant sample and

hold (Definition 9) to a continuous time SISO LTI plant

(Lemma 5). In addition, a detailed set of experiments were

conducted to evaluate the averaging-power-junction-network

in conjunction with the hold-PUS/NLA-PDS system.

We evaluated a secure networked control system over

an ad-hoc wireless network as described in Section III. In

particular the plants and clients could communicate over a

connectionless UDP client-server architecture in which the

averaging-power-junction-network was implemented around

an event driven UDP server architecture. In order to establish

secure connections, however each plant and controller were

placed behind a firewall and communications were estab-

lished over a TCP/IP-based ssh-tunnel in which netcat

provided a UDP-to-TCP/IP bridge (Figure 9). Both velocity

and position tracking were verified under normal operations

as indicated in Figure 10 and Figure 11 respectively. When

taking one plant entirely ’off-line’ the other plant which is

still ’on-line’ has a different tracking-scale-factor than the

one when both plants are on-line as shown in Figure 13. Even

when the round trip delay exceeds 3.5 seconds (Figure 14 )

both controlled plants exhibit exceptional velocity tracking.

However, when a significant network flooding attack is

directed at an individual plant an asymmetry results in the

velocity profile which results in position drift (Figure 15 and

Figure 16). Figure 15 and Figure 17 also indicate that the

velocity output remains slightly oscillatory when the round

trip delay for each plant is significantly different.

APPENDIX

The following is a brief summary on passive systems. The

interested reader is referred to [24], [25], [26] for additional

information. Let T represent a set indicating time in which

T = R
+ for continuous time signals and T = Z

+ for

discrete time signals. Let V be a linear space R
m and denote

the space of all functions u : T → V by the symbol H which

satisfy the following:

‖u‖2
2 =

∫ ∞

0

uT(t)u(t)dt < ∞, (23)

for continuous time systems (Lm
2 ), and

‖u‖2
2 =

∞
∑

0

uT(i)u(i) < ∞, (24)

for discrete time systems (lm2 ). Similarly we will denote the

extended space of functions u : T → V in He which satisfy

the following:

‖uT ‖2
2 = 〈u, u〉T =

∫ T

0

uT(t)u(t)dt < ∞; ∀T ∈ T (25)

for continuous time systems (Lm
2e), and

‖uT ‖2
2 = 〈u, u〉T =

T−1
∑

0

uT(i)u(i) < ∞; ∀T ∈ T (26)

for discrete time systems (lm2e). Furthermore let y = Hu
describe a relationship of the function y to the function u
in which the instantaneous output value at continuous time

t is denoted y(t) = Hu(t) and respectively y(i) = Hu(i) at

discrete time i.
Definition 6: A continuous time dynamic system H :

He → He is Lm
2 stable if

u ∈ Lm
2 =⇒ Hu ∈ Lm

2 . (27)

Definition 7: A discrete time dynamic system H : He →
He is lm2 stable if

u ∈ lm2 =⇒ Hu ∈ lm2 . (28)

Definition 8: Let H : He → He. We say that H is

i) passive if ∃β ≥ 0 s.t.

〈Hu, u〉T ≥ −β, ∀u ∈ He, ∀T ∈ T (29)

ii) strictly-input passive if ∃δ > 0 and ∃β ≥ 0 s.t.

〈Hu, u〉T ≥ δ‖uT ‖2
2 − β, ∀u ∈ He, ∀T ∈ T (30)

iii) strictly-output passive if ∃ǫ > 0 and ∃β ≥ 0 s.t.

〈Hu, u〉T ≥ ǫ‖HuT ‖2
2 − β, ∀u ∈ He, ∀T ∈ T (31)

iv) non-expansive if ∃γ̂ > 0 and ∃β̂ ≥ 0 s.t.

‖HuT ‖2
2 ≤ β̂ + γ̂2‖uT ‖2

2, ∀u ∈ He, ∀T ∈ T (32)
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Remark 7: A non-expansive system H is equivalent to any

system which has finite Lm
2 (lm2 ) gain in which there exists

constants γ and β ≥ 0 s.t. 0 < γ < γ̂ and satisfy

‖HuT ‖2 ≤ γ‖uT ‖2 + β, ∀u ∈ He, ∀T ∈ T . (33)

Furthermore a non-expansive system implies Lm
2 (lm2 ) sta-

bility [25, p.4]

([3, Remark 1]).

A. Proof of Lemma 1

Proof: Summing both sides of (5) with respect to l ∈
{1, . . . ,ms} we have

ms
∑

l=1

m
∑

j=1

u2
jl
≤

ms
∑

l=1

n
∑

k=m+1

u2
kl

m
∑

j=1

uT
j uj ≤

n
∑

k=m+1

uT
kuk

n
∑

k=m+1

uT
kuk ≥

m
∑

j=1

uT
j uj (34)

Likewise, summing (6) with respect to l ∈ {1, . . . ,ms} we

have

ms
∑

l=1

n
∑

k=m+1

v2
kl

≤
ms
∑

l=1

m
∑

j=1

v2
jl

n
∑

k=m+1

vT
k vk ≤

m
∑

j=1

vT
j vj

n
∑

k=m+1

−vT
k vk ≥

m
∑

j=1

−vT
j vj . (35)

The sum of the left sides of (34) and (35) and the respective

sum of the right sides of (34) and (35) results in

n
∑

k=m+1

(uT
kuk − vT

k vk) ≥
m

∑

j=1

(uT
j uj − vT

j vj)

which is the required power-junction-network inequality

given by (4).

B. Proof of Lemma 2

Proof: First we square both sides of (7) and (8), which

results in

v2
kl

=

∑m

j=1 v2
jl

n − m
, k ∈ {m + 1, . . . , n} and (36)

u2
jl

=

∑n

k=m+1 u2
kl

m
, j ∈ {1, . . . ,m} respectively. (37)

Next we solve for the sum of v2
kl

for k ∈ {m + 1, . . . , n}
using (36) which results in

n
∑

k=m+1

v2
kl

=
(n − m)

∑m

j=1 v2
jl

n − m
=

m
∑

j=1

v2
jl

. (38)

Similarly we solve for the sum of u2
jl

for j ∈ {1, . . . ,m}
using (37) which results in

m
∑

j=1

u2
jl

=
m

∑n

k=m+1 u2
kl

m
=

n
∑

k=m+1

u2
kl

. (39)

Since (38) and (39) are satisfied for all l ∈ {1, . . . ,ms},

then they also satisfy (6) and (5) respectively for Lemma 1

therefore they satisfy the conditions for the lossless-power-

junction-network.

C. Proof of Lemma 3

Proof: It is assumed that we are referring to Figure 3

during this discussion. Our approach will be to show that the

NLA-PDS satisfies ∀N > 0:

〈wo(i), wo(i)〉MN ≥ 〈woDS(j), woDS(j)〉N , (40)

and that the hold-PUS satisfies ∀N > 0:

−〈wi(i), wi(i)〉MN ≥− 〈wiDS(j), wiDS(j)〉N equivalently

〈wi(i), wi(i)〉MN ≤〈wiDS(j), wiDS(j)〉N , (41)

since when both (40) and (41) are satisfied then (11) is

also satisfied. Next, we will focus on each kth element of

wi, wiDS , wo, woDS ∈ R
m such that if ∀N > 0 and

k ∈ {1, . . . ,m} that both

MN−1
∑

i=0

wok
(i)2 ≥

N−1
∑

j=0

woDSk
(j)2 (42)

and
MN−1
∑

i=0

wik
(i)2 ≤

N−1
∑

j=0

wiDSk
(j)2, (43)

are respectively satisfied, then so too will (40) and (41) be

also satisfied. Therefore, we will show that the proposed

NLA-PDS satisfies (42) and hold-PUS satisfies (43) respec-

tively.

• NLA-PDS: Substituting (12) into the right-hand side of

(42) results in:

MN−1
∑

i=0

wok
(i)2 ≥

N−1
∑

j=0





√

√

√

√

Mj−1
∑

i=M(j−1)

wok
(i)2





2

≥
N−1
∑

j=0

Mj−1
∑

i=M(j−1)

wok
(i)2

≥
M(N−1)−1

∑

i=0

wok
(i)2

MN−1
∑

i=M(N−1)

wok
(i)2 ≥ 0

in which the final inequality is clearly always satisfied

therefore (42) is always satisfied for this type of PDS.
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• hold-PUS: Substituting (13) into the left-hand side of

(43) results in:

N−1
∑

j=0

1

M

M(j+1)−1
∑

i=Mj

wiDSk
(j − 1)2 ≤

N−1
∑

j=0

wiDSk
(j)2

N−1
∑

j=0

wiDSk
(j − 1)2 ≤

N−1
∑

j=0

wiDSk
(j)2

N−2
∑

j=0

wiDSk
(j)2 ≤

N−1
∑

j=0

wiDSk
(j)2

0 ≤ wiDSk
(N − 1)2

in which the second to last inequality results from the

obvious assumption that wiDSk
(−1) = 0, and the final

inequality is obviously always satisfied therefore (43) is

always satisfied for this type of PUS.

D. Proof of Lemma 4

Proof: Since we treat each component as the system

reaches steady state we have the following relationships at

steady state:

uc1(j) =
√

Mup2(i) (44)

vp2(i) =
1√
M

vc1(j) (45)

[

vc1(j)
fopd2(j)

]

=





1 −
√

2
b

√

2
b

− 1
b





[

uc1(j)
eoc1(j)

]

(46)

[

up2(i)
edoc1(i)

]

=

[

−1
√

2b

−
√

2b b

] [

vp2(i)
fop2(i)

]

. (47)

Substituting (44) into (46), and (45) into (47) results in

[

vc1(j)
fopd2(j)

]

=





√
M −

√

2
b

√

2M
b

− 1
b





[

up2(i)
eoc1(j)

]

(48)

[

up2(i)
edoc1(i)

]

=





−
√

1
M

√
2b

−
√

2b
M

b





[

vc1(j)
fop2(i)

]

(49)

respectively. Which can be written in the following form:
[

edoc1(i)
fopd2(j)

]

= C1

[

vc1(j)
up2(i)

]

+ C2

[

eoc1(j)
fop2(i)

]

(50)

C1 =





−
√

2b
M

0

0
√

2M
b



 , C2 =

[

0 b
− 1

b
0

]

[

vc1(j)
up2(i)

]

= C3

[

vc1(j)
up2(i)

]

+ C4

[

eoc1(j)
fop2(i)

]

(51)

C3 =

[

0
√

M

−
√

1
M

0

]

, C4 =

[

−
√

2
b

0

0
√

2b

]

.

Solving for the wave variables in terms of the effort and flow

variables in (51) results in
[

vc1(j)
up2(i)

]

= (I − C3)
−1C4

[

eoc1(j)
fop2(i)

]

. (52)

Fig. 18. A representation of the IPESH for SISO LTI systems.

Substituting (52) into (50) results in the following expression

which relates effort-flow inputs to their delayed counterparts
[

edoc1(i)
fopd2(j)

]

= [C2 + C1(I − C3)
−1C4]

[

eoc1(j)
fop2(i)

]

. (53)

Solving for (53) results in
[

edoc1(i)
fopd2(j)

]

=

[
√

1/M 0

0
√

M

] [

eoc1(j)
fop2(i)

]

. (54)

Knowing (54) it is a simple exercise to show that

fop2(i) = KM

√

1

M

Kc1Kp2

1 + Kc1Kp2
ros1(j)+

Kp2

1 + Kp2Kc1
rop2(i) lim

i→∞
.

Therefore when rop2(i) = 0 (no steady state disturbance)

then fop2(i) = ros1(j) at steady state when

KM =
1 + Kc1Kp2

Kc1Kp2

√
M

≈
√

M when Kc1Kp2 is large.

E. Proof of Lemma 5

In order to prove Lemma 5 we recall the formal Defi-

nition 9 for the inner-product equivelant sample and hold

which is graphically illustrated for the SISO LTI case in

Figure 18. The inner-product equivelant sample and hold is

based on earlier work by [27], [28].

Definition 9: [3, Definition 4] Let a continuous one-port

plant be denoted by the input-output mapping Hct : Lm
2e

→
Lm

2e
. Denote continuous time as t, the discrete time index

as i, the sample and hold time as Ts, the continuous input

as u(t) ∈ Lm
2e

, the continuous output as y(t) ∈ Lm
2e

, the

transformed discrete input as u(i) ∈ lm2e
, and the transformed

discrete output as y(i) ∈ lm2e
. The inner-product equivalent

sample and hold (IPESH) is implemented as follows:

I. x(t) =
∫ t

0
y(τ)dτ

II. y(i) = x((i + 1)Ts) − x(iTs)
III. u(t) = u(i),∀t ∈ [iTs, (i + 1)Ts)

As a result

〈y(i), u(i)〉N = 〈y(t), u(t)〉NTs
,∀N ≥ 1 (55)

holds.

It should be obvious from the IPESH definition that it is

indeed causal as the output y(i) does not depend on any

future inputs u(i + n), n ≥ 1. To be clear, when people

speak of passive systems such as Hp(s) for example, it is
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implicitly assumed to be causal. It is sufficient therefore to

show that for the case when

y(t) =
1

Ts

u(t) =
1

Ts

u(i), ∀t ∈ [iTs, (i + 1)Ts)

that y(i) is indeed causal

y(i) =

∫ (i+1)Ts

iTs

u(t)

Ts

dt = u(i)
1

Ts

∫ (i+1)Ts

iTs

dt = u(i)

so even for the feed-through case y(i) = u(i) obviously

does not depend on any future input u(i + n). All that

remains to be shown therefore is that the IPESH-transform

satisfies Definition 9 and recall that the IPESH preserves

passivity [3, Theorem 3-I], noting that the preservation of

passivity has also been shown by both [27], [28] later in

[29] and, apparently not realizing that they had formulated a

problem which satisfied the IPESH which leads to a trivial

proof for preservation of passivity, resulted in an extremely

involved dissipative systems-theory proof [30]. Both [3,

Theorem 3] and later a slightly corrected [31, Theorem 1]

show that in general the IPESH preserves stronger forms of

passivity when transforming from the continuous-time model

to the discrete-time model including strictly-input passive

and strictly-output passive systems.

Proof: For simplicity of discussion it is assumed that y(0) =
0. Definition 9-I describes an integration operation, therefore

the corresponding transfer function
X(s)
Y (s) = 1

s
as indicated in

Figure 18. Next we denote the transfer function from
X(s)
U(s)

as HpI(s) which has the following form

HpI(s) =
Hp(s)

s
.

Definition 9-II can be described using a periodic sampling

operation in which x(t) = x(iTs) and applying the respective

z-transforms to x(i) (denoted X(z)) and y(i) (denoted Y (z))
in which

Y (z)

X(z)
= (z − 1)

as indicated in Figure 18. It is well known that an exact

discrete equivalent transfer function can be used to describe

the ZOH and periodic sampling operation such that

X(z)

U(z)
=

(z − 1)

z
Z

{

HpI(s)

s

}

HpI(z) =
(z − 1)

z
Z

{

Hp(s)

s2

}

as discussed in [19, Section 8.6.1]. This naturally leads to

the final expression describing the transfer function for the

discrete time passive plant Hp(z) ( in which 1
Ts

is used as

a typical scaling term )

Hp(z) =
(z − 1)

Ts

HpI(z) =
(z − 1)2

Tsz
Z

{

Hp(s)

s2

}

.

The preservation of passivity of the transform is a direct

consequence of using the IPESH as stated in

[3, Theorem 3-I].
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