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Abstract— This paper presents a novel multi-rate digital-
control system which preserves stability while providing robust-
ness to time-delay and data loss. In addition, this architecture
allows for high-order anti-aliasing filters to be included which
do not adversely affect system stability. Therefore, it allows for
improved noise-rejection and system performance as compared
to traditional digital control systems. It is shown that this frame-
work, based on passivity-based networked control principles,
can be used to control not only passive-(dissipative) systems
(systems inside the sector [0,∞]) but conic-(dissipative) systems
which are inside the sector [a, b] in which |a| < b, 0 < b ≤ ∞.
We demonstrate the applicability of our result through the direct
position control of two three-degree of freedom haptic paddles
which are inside the sector [−τ,∞] in which 0 < τ < ∞.

I. INTRODUCTION

Our team has investigated the use of passivity for the

design of Networked Control Systems (NCS) [1] in the

presences of time-varying delays [2], [3]. This paper presents

an important new step in the design of networked control

systems as it applies to control of a conic-(dissipative) plant

inside the sector [a, b] in which |a| < b, 0 < b ≤ ∞.

Passive systems [4] are a special case of conic-(dissipative)

systems inside the sector [0,∞], thus this paper expands the

applicability of our framework.

Our approach employs wave variables to transmit infor-

mation over the network for the feedback control while

remaining passive when subject to arbitrary fixed time delays

and data dropouts [5], [6]. The primary advantage of using

wave variables is that they tolerate most time-varying delays,

such as those occurred when using the TCP/IP transmission

protocol. In addition, our architecture adopts a multi-rate

digital control scheme to account for: i) different time scales

at different part of the network; and ii) bandwidth constraints.

This paper provides sufficient conditions for stability of

conic systems that are interconnected over wireless networks,

and which can tolerate networked delays and data loss. The

continuous-time bounded results can be achieved for linear

and nonlinear conic systems. The paper also demonstrates

how the proposed architecture can be implemented using

a new linear passive sampler. Finally, our architecture can

be used to isolate wideband and correlated noise without

affecting stability through the use of a discrete-time anti-

aliasing filter HLP (z) which was synthesized by applying

the conic-preserving IPESH-Transform to a high-order But-

terworth filter HLP (s).
In order to motivate our analysis, Section II recalls the

classic point mass model for a single degree of freedom

haptic paddle in which we wish to directly control by

using position feedback instead of indirectly using velocity

feedback. Section III describes our new high-performance

digital control system and provides the analysis and stability

results. Section IV validates our results by applying our

architecture to control the position of a simulated single
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Fig. 1. High Performance, multi-rate digital control network for continuous-
time systems.

Fig. 2. Plant Dynamics Hp(s)

degree of freedom haptic paddle. Section VI provides the

conclusions of our paper.

II. MOTIVATION

In [2] we proved that a fixed-rate (M = 1) digital control

framework depicted in Fig. 1 could be used to control the

position of a nonlinear robotic systems Hp by i) rendering it

strictly output passive (inside the sector [0, bp], bp < ∞)

with velocity feedback and gravity compensation; and ii)

applying a digital controller Hc to indirectly control the

robot’s position by integrating its velocity error ec(j) with

a lag compensator. As a result of being restricted to use

indirect velocity feedback, the robotic manipulators position

may drift due to imperfect cancellation of gravitational

effects, contacting immovable obstacles, and losing data. One

way to address this drift problem is to directly control the

position of the robot yp(t); however, it is well known that

the relationship between the position of the robot and the

controlling torque input eMp(t) is not passive, a sufficient

condition required of the earlier results presented in [2].

Therefore, we will show how to weaken this condition such

that the continuous-time plant is only required to be a conic

(dissipative) system inside the sector [ap, bp] |ap| < bp ≤ ∞
and derive the corresponding conditions required of the

digital controller inside the sector [ac, bc].
For simplicity of discussion, we will neglect gravitational

effects and consider a LTI model of a single degree of

freedom haptic paddle with mass Mp which is subject to

a low-pass filtered velocity feedback whose time constant

is τ > 0 as depicted in Fig. 2. By selecting K =
Mp

τ
,

the resulting transfer function for this system is Hp(s) =
Yp(s)
Ep(s)

= τs+1
s(τ2s2+τs+1) which is clearly not positive real

(or equivalently passive) [7]. However the following system

H(s) = (Hp(s) + τ) is indeed passive as it has the following

three required properties [7, Theorem 3] i) all elements of

H(s) are analytic in Re[s] > 0, ii) H(−jω) + H(jω) ≥ 0
for all ω ∈ R in which jω ( 6= j0) is not a pole of H(s), and

iii) for the only simple pure imaginary pole jωo = j0 our

associated residue matrix Ho = lims→jωo
(s−jωo)H(s) = 1

is clearly nonnegative definite Hermitian (Ho = H∗
o ≥ 0).

One important property of passive systems such as H(s) is
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that they are Lyapunov stable as a result Hp(s) = H(s)−τ is

obviously Lyapunov stable as well. In addition both systems

are interior conic-dissipative systems in which H(s) is inside

the sector [0,∞] (as are all linear and nonlinear passive-

dissipative systems) and Hp(s) is inside the sector [−τ,∞]
(as are many Lyapunov stable dissipative systems which

have the same number of inputs and outputs). Additional

details with respect to interior conic-dissipative systems,

their properties and the system architecture are presented in

Section III.

III. HIGH PERFORMANCE DIGITAL CONTROL

NETWORKS

Fig. 1 depicts a multi-rate digital control network which

interfaces a conic digital controller Hc : ec → yc to a

continuous-time conic plant Hp : ep → yp [8]–[10]. The

digital control network is a hybrid network consisting of both

continuous-time wave variables (up(t), vp(t))) and discrete-

time wave variables (uc(j), vc(j)) in which j = ⌊ t
MTs

⌋
[5], [6], [11]. The relationships between the continuous-

time and discrete-time wave variables is determined by the

multi-rate passive sampler (denoted PS : MTs) and multi-

rate passive hold (denoted PH : MTs). These two elements

are a combination of the passive sampler and passive hold

blocks (which have been instrumental in showing how to

interconnect digital controllers to continuous-time systems

in order to achieve Lm
2 -stability [2], [11]; see [12]–[15] for

interconnecting continuous-time plants to continuous-time

controllers over digital networks) and a discrete-time passive

upsampler and passive downsampler [3]. At the interface to

the digital controller is an inner product equivalent sample

(IPES) and zero-order (ZOH) hold block yct(t) = ys(j), t ∈
[jMTs, (j + 1)MTs) [11] which are used for analysis in

order to relate continuous-time control inputs rct(t) and

continuous-time control outputs yct(t) to the continuous-time

plant inputs rp(t) and outputs yp(t).
The architecture has the following advantages over tradi-

tional digital control systems: 1) Lm
2 -stability can be guaran-

teed for all (non)linear (dissipative)-conic plants Hp inside

the sector [ap, bp] in which |ap| < bp, 0 ≤ bp ≤ ∞; 2)

the PS : MTs can be implemented as a high order anti-

aliasing filter in order to more effectively remove wideband,

and correlated noise introduced into the signal yp(t) without

adversely affecting stability.

By choosing, to use wave variables, a negative output

feedback loop is introduced for both the plant and controller

in which we provide the analysis to determine its effects in

Section III-A. Section III-B presents the multi-rate passive

sampler and multi-rate passive hold which consists of a

simplified linear passive sampler and our main stability re-

sults. Section III-C provides the necessary results to construct

conic digital filters (which are inside the sector [af , bf ] from

conic continuous-time filters which are inside the sector

[af , bf ].

A. Control of Conic-Dissipative Systems

In order to leverage the pioneering work of [8], [9] in

regards to the control of conic systems and connect it to

dissipative systems theory [16], we shall consider the follow-

ing class of causal nonlinear finite-dimensional continuous-

time (discrete-time) systems H : u → y which are affine in

control:

ẋ(t) = f(x(t)) +G(x(t))u(t), x(0) = x0 = 0, t ≥ 0 (1)

y(t) = h(x(t)) + J(x(t))u(t)

for the continuous-time case in which the functions indicated

in (1) are sufficiently smooth to make the system well defined

[17], and

x(j + 1) = f(x(j)) +G(x(j))u(j), x(0) = x0 = 0 (2)

y(j) = h(x(j)) + J(x(j))u(j)

for the discrete time case (j = {0, 1, . . . }) in which x ∈
R

n, u, y ∈ R
m in which n and m are positive integers.

In addition it is assumed that there exists a finite square-

integrable (summable) function u(·) such that all x ∈ R
n

are reachable from the zero-state x0. Finally it is assumed

that x0 is the only equilibrium point such that f(x0) = 0
and f(x) 6= 0 when x 6= x0. Finally, we shall consider the

following interior conic-dissipative supply function s(u, y)
as it relates to conic-dissipative systems which are inside the

sector [a, b] (a < b) [18]–[20]:

s(u, y) =

{

−yTy + (a+ b)yTu− abuTu, |a|, |b| < ∞
yTu− auTu, |a| < ∞, b = ∞.

(3)

Definition 1: The continuous-time system H : u → y,

x0 = x(0) = 0 whose dynamics are determined by (1) is

a continuous conic-dissipative system inside the sector [a, b]
with respect to the supply (3) if:

∫ T

0

s(u, y)dt ≥ 0, T ∈ R
+. (4)

Analogously the discrete-time system H : u → y, x0 =
x(0) = 0 whose dynamics are determined by (2) is a discrete

conic-dissipative system inside the sector [a, b] with respect

to the supply (3) if:

N−1
∑

j=0

s(u, y) ≥ 0, ∀N ∈ {1, 2, . . . }. (5)

NB. the smoothness condition required by [17] appears

to limit the discussion to systems which have finite state

space descriptions and the resulting control system we will

examine will be subject to time delays which result in an

infinite state space. Therefore, if functions indicated in (1)

are not sufficiently smooth but (4) is satisfied then the system

H : u → y is a continuous conic system inside the sector

[a, b]. Finally the following notation will be used in order to

represent time integrals, sums and norms:

〈y, u〉T =

∫ T

0

yT(t)u(t)dt; ‖(y)T ‖22 = 〈y, y〉T

〈y, u〉N =

N−1
∑

j=0

yT(j)u(j); ‖(y)N‖22 = 〈y, y〉N

‖y(t)‖22 = lim
T→∞

‖(y)T ‖22; ‖y(j)‖22 = lim
N→∞

‖(y)N‖22.
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Fig. 3. Nominal closed-loop system Hcl resulting from ǫ and H .

If it is clear that y is either a continuous or discrete-time

function then the two-norm of y will be denoted simply ‖y‖2.

From [17], [20] in regards to Lyapunov stability and from

[8]–[10] in regards to Lm
2 (lm2 ) stability conic-dissipative

systems have the following important properties:

Property 1: There exists a storage function V (x) ≥ 0
∀x 6= 0, V (0) = 0 such that V̇ (x) ≤ s(u, y) for a continuous

conic-dissipative system and V (x(j + 1)) − V (x(j)) ≤
s(u(j), y(j)) for a discrete-time conic-dissipative system.

Therefore if H : u → y is inside the sector [a, b]:

i) and zero-state detectable 1(implies V (x) > 0 ∀x 6= 0)
and |a| < ∞, b = ∞ it is Lyapunov stable.

ii) and zero-state detectable and |a|, |b| < ∞ it is asymp-

totically stable.

iii) and |a|, |b| < ∞ then it is inside the sector [−γ, γ] in

which γ = max{|a|, |b|}. Therefore, it is Lm
2 (lm2 )-stable

in which:

‖y‖2 ≤ γ‖u‖2. (6)

iv) and k ≥ 0 then kH is inside the sector [ka, kb]; −kH

is inside the sector [−kb,−ka].
v) (Sum Rule) if in addition H1 : u1 → y1 is inside the

sector [a1, b1] then (H +H1) : u → (y + y1) is inside

the sector [a+ a1, b+ b1].
We are particularly interested in determining the resulting

gain g(Hcl) (‖(y)T ‖2 ≤ g(Hcl)‖(rcl)T ‖2) when closing the

loop of a conic system H which is inside the sector [a, b] as

depicted in Fig. 3.

Theorem 1: Let the conic system H : e → y depicted in

Fig. 3 be inside the sector [a, b], ǫ > 0. The input e is related

to the reference rcl and output y by the following feedback

equation: e(t) = rcl(t)−ǫy(t), ∀t ≥ 0. The resulting closed-

loop system is denoted Hcl : rcl → y. For the case when:

I. 0 ≤ a < b ≤ ∞, Hcl is inside the sector [ a
1+ǫa

, b
1+ǫb

]

in which g(Hcl) =
b

1+ǫb
.

II. a < 0, −a < b ≤ ∞, 0 ≤ ǫ < − 1
2

(

1
a
+ 1

b

)

then Hcl is

inside the sector [ a
1+ǫa

, b
1+ǫb

] in which g(Hcl) =
b

1+ǫb
.

Proof:

I. If (a+b) > 0 then our conic system H : e → y satisfies

〈y, e〉T ≥ 1

a+ b
‖(y)T ‖22 +

ab

a+ b
‖(e)T ‖22.

Substituting in the feedback equation for e results in

〈y, rcl〉T ≥
(

ǫ+
1

a+ b

)

‖(y)T ‖22+

ab

a+ b
‖(rcl − ǫy)T ‖22.

1if u(t) = y(t) = h(x(t)) = 0 for all t ≥ t0 and as t → ∞ x(t) = 0

Denote c1 =
a+ b+ 2ǫab

a+ b
.

Solving for the norm of the feedback error results in

c1〈y, rcl〉T ≥1 + ǫ(a+ b) + ǫ2ab

a+ b
‖(y)T ‖22+

ab

a+ b
‖(rcl)T ‖22.

Dividing both sides by c1 results in

〈y, rcl〉T ≥ 1

acl + bcl
‖(y)T ‖22 +

aclbcl

acl + bcl
‖(rcl)T ‖22

in which acl =
a

1 + ǫa
, bcl =

b

1 + ǫb
.

II. We observe when a < 0 and −a < b ≤ ∞ then if

0 ≤ ǫ < − 1
2

(

1
a
+ 1

b

)

holds then c1 > 0 therefore all

the inequalities for proving the previous case hold.

g(Hcl) =
b

1+ǫb
is a direct result from Property 1-iii).

1) Wave Variable Networks: In order to analyze the

closed-loop effects on Hp and Hc we recall our use of wave

variables. As discussed in [11], scattering [21] – or their

reformulation known as the wave variable networks – allow

controller and plant variables (yc(j), yp(t)), to be transmit-

ted over a network while remaining passive when subject to

arbitrary fixed time delays and data dropouts [5]. Denote

I ∈ R
m×m as the identity matrix. When implementing

the wave variable transformation the continuous time plant

“outputs” (up(t), ydc(t)) are related to the corresponding

“inputs” (vp(t), yp(t)) as follows (Fig. 1):
[

up(t)
ydc(t)

]

=

[

−I
√
2ǫI

−
√
2ǫI ǫI

] [

vp(t)
yp(t)

]

(7)

Next, the discrete time controller “outputs” (vc(j), ydp(j))
are related to the corresponding “inputs” (uc(j), yc(j)) as

follows (Fig. 1):

[

vc(j)
ydp(j)

]

=





I −
√

2
ǫ
I

√

2
ǫ
I − 1

ǫ
I





[

uc(j)
yc(j)

]

(8)

It has been shown that the digital control network for M =
1 depicted in Fig. 1 results in a Lm

2 -stable system if the

discrete-time controller Hc is strictly output passive (inside

the sector [0, bc]) and the continuous-time plant Hp is strictly

output passive (inside the sector [0, bp]) [2], [11]. In order

to study the case when Hp is not passive we need to: i)

explicitly consider the network structure which results from

using wave variables; and ii) use Assumption 1.

Assumption 1: The plant depicted in Fig. 1 Hp is inside

the sector [ap, bp]; in addition the controller Hc is inside

the sector [ac, bc] (ac ≥ 0); the scattering gain ǫ satisfies

the following bounds: i) 0 < ǫ < ∞, if ap ≥ 0; or ii)

0 < ǫ < − 1
2

(

1
ap

+ 1
bp

)

, if ap < 0.

Assumption 1, Lemma 4 and Lemma 5 (see Appendix) allow

us to state Theorem 2.

Theorem 2: The plant-controller network depicted in

Fig. 1 can be transformed to the final form depicted in Fig. 4

if Assumption 1 is satisfied. The transformed plant subsystem√
2ǫHpe : êclp → ype is denoted with the shorthand notation√
2ǫHpe in which: i) êclp(t) =

1√
2ǫ
rp(t) + vp(t); and
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Fig. 4. Final Plant-Controller wave network realization.

Fig. 5. Multi-rate passive sampler, passive hold.

ii) ype(t) =
√
2ǫyp(t) − êclp(t) hold. In addition the trans-

formed control subsystem

√

2
ǫ
Hce : êclc → yce is denoted

with the shorthand notation

√

2
ǫ
Hce in which: i) êclc(j) =

√

ǫ
2rc(j)+uc(j); and ii) yce(j) = −

√

2
ǫ
yc(j)+ êclc(j) hold.

Each is a conic-dissipative system such that

√
2ǫHpe is inside the sector

[

ǫap − 1

ǫap + 1
,
ǫbp − 1

ǫbp + 1

]

and

√

2

ǫ
Hce is inside the sector

[

ǫ− bc

ǫ+ bc
,
ǫ− ac

ǫ+ ac

]

.

B. Multi-Rate Passive Sampler(Hold)

Fig. 5 depicts our proposed multi-rate passive sampler

(PS:MTs), and passive hold (PH:MTs) subsystem. The

multi-rate passive sampler (PS:MTs) consists of a cascade of

a linear passive sampler (linear-PS:Ts) and a passive down-

sampler (PDS:M ). The multi-rate passive hold (PH:MTs)

subsystem consists of a cascade of a hold-passive upsampler

(hold-PUS:M ) and passive hold (PH:Ts). For simplicity of

discussion the figure is for the single-input, single-output

(SISO) case but we note all elements depicted can be

diagonalized to handle m-dimensional waves. The standard

anti-aliasing downsampler (HLP (z), ↓ M) system depicted

in Fig. 5 has been shown to be a PDS, in addition the hold-

PUS depicted is a PUS [3, Definition 4]. A valid PDS:M

and PUS:M satisfy the following inequalities:

‖(uc(j))N‖22 ≤ ‖(up(i))MN‖22 (9)

‖(vp(i))MN‖22 ≤ ‖(vc(j))N‖22 (10)

which hold ∀N ≥ 0 2. The scaled ZOH block in which

vp(t) =
1
Ts
vp(i), t ∈ [iTs, (i+ 1)Ts) has been shown to be

a valid passive hold system PH:Ts in which

‖(vp(t))MNTs
‖22 ≤ ‖(vp(i))MN‖22 (11)

[2]. A valid passive sampler will satisfy the following

inequality

‖(up(i))MN‖22 ≤ ‖(up(t))MNTs
‖22, (12)

unlike the nonlinear averaging passive sampler [11, Defini-

tion 6] implementation which was shown to be a valid PS

we choose to implement a linear version which is a filtered

and appropriately scaled version of the passive interpolative

downsampler [15] in order to satisfy (12).

Definition 2: The linear passive sampler (Fig. 5) with

input up(t) and output up(i) is implemented as follows:

1. up(t) passes through an analog low-pass anti-aliasing

filter denoted HLPc(s) whose magnitude |HLPc(jω)| ≤ 1
with passband ωp = π

MTs
and stopband ωs =

π
Ts

[22].

2. the output of HLPc(s) we denote as upLPc(t) in which

up(i) =
1√
Ts

∫ iTs

0

(upLPc(t)− upLPc(t− Ts))dt (13)

Lemma 1: The linear passive sampler (Definition 2) sat-

isfies (12).

Proof: Since up(t) = 0, t < 0 by assumption, and the

low-pass filter is assumed to be causal therefore up(0) =
0 which implies that 0 = ‖(up(i))0‖22 ≤ ‖(up(t))0‖22.

Next, we note that (13) can be equivalently written as

up(i) = 1√
Ts

∫ iTs

(i−1)Ts
upLPc(t)dt and after squaring both

sides results in u2
p(i) = 1

Ts
(
∫ iTs

(i−1)Ts
upLPc(t)dt)

2. Af-

ter applying the Schwarz Inequality results in u2
p(i) ≤

Ts

Ts

∫ iTs

(i−1)Ts
u2
pLPc(t)dt. Therefore

‖(up(i))MN‖22 =

MN−1
∑

i=0

u2
p(i)

≤
MN−1
∑

i=0

∫ iTs

(i−1)Ts

u2
pLPc(t)dt

≤ ‖(upLPc(t))(MN−1)Ts
‖22

≤ ‖(upLPc(t))MNTs
‖22.

Since the low-pass filter has a gain less than or equal to one

(‖(upLPc(t))MNTs
‖22 ≤ ‖(up(t))MNTs

‖22) then (12) clearly

results from these last two inequalities.

Finally, from (9) and (12) it is obvious that the following

inequality holds for the multi-rate passive sampler PS:MTs

‖(uc(j))N‖22 ≤ ‖(up(t))MNTs
‖22 (14)

2N.B. our downsampling operation is a sampled weighted average

(uc(j) = 1
√

M

∑jM

i=(j−1)M+1
upLP (i)) which results in the same in-

equality given by (9) if uc(j) = upLP (Mj).
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and from (11) and (10) the following holds for the multi-rate

passive hold PH:MTs

‖(vp(t))MNTs
‖22 ≤ ‖(vc(j))N‖22 (15)

With these two inequalities established, and Theorem 2 we

can now prove the following Lemma.

Lemma 2: Denote the Lm
2 -gain of the plant subsystem√

2ǫHpe : êclp → ype as γpe in which ‖(ype)MNTs
‖2 ≤

γpe‖(êclp)MNTs
‖2. In addition, denote the lm2 -gain of

the controller subsystem

√

2
ǫ
Hce : êclc → yce as

γce in which ‖(yce)N‖2 ≤ γce‖(êclc)N‖2. In addition

we shall use the following shorthand notation in which

Êclp = ‖(êclp)MNTs
‖2, Êclc = ‖(êclc)N‖2, Rp =

‖(rp)MNTs
‖2, and Rc = ‖(rc)N‖2. If γpeγce < 1

then Êclc ≤ γpe+1
1−γpeγce

(

√

ǫ
2Rc +

1√
2ǫ
Rp

)

and Êclp ≤
γce+1

1−γpeγce

(

√

ǫ
2Rc +

1√
2ǫ
Rp

)

.

Proof: From the triangle inequality we have:

‖(êclp)MNTs
‖2 ≤ 1√

2ǫ
‖(rp)MNTs

‖2 + ‖(vp)MNTs
‖2 (16)

‖(êclc)N‖2 ≤
√

ǫ

2
‖(rc)N‖2 + ‖(uc)N‖2 (17)

‖(uc)N‖2 ≤ γpe‖(êclp)MNTs
‖2 +

1√
2ǫ

‖(rp)MNTs
‖2 (18)

‖(vp)MNTs
‖2 ≤ γce‖(êclc)N‖2 +

√

ǫ

2
‖(rc)N‖2 (19)

in which the final two inequalities were a direct result of

(14) and (15) respectively. Substituting (19) into (16) results

in

Êclp ≤ γceÊclc +

(

1√
2ǫ

Rp +

√

ǫ

2
Rc

)

. (20)

Similarly substituting (18) into (17) results in

Êclc ≤ γpeÊclp +

(

1√
2ǫ

Rp +

√

ǫ

2
Rc

)

. (21)

Substituting (20) into (21) results in the following inequality

Êclc ≤ γpeγceÊclc + (γpe + 1)
(

1√
2ǫ
Rp +

√

ǫ
2Rc

)

which

simplifies to Êclc ≤ γpe+1
1−γpeγce

(

1√
2ǫ
Rp +

√

ǫ
2Rc

)

likewise,

substituting (21) into (20) results in the following inequality

Êclp ≤ γpeγceÊclp + (γce + 1)
(

1√
2ǫ
Rp +

√

ǫ
2Rc

)

which

simplifies to Êclp ≤ γce+1
1−γpeγce

(

1√
2ǫ
Rp +

√

ǫ
2Rc

)

. N.B. the

final inequalities only result if γpeγce < 1.

Next we note the following observation that γpe =

g(
√
2ǫHpe) = g(−

√
2ǫHpe) and γce = g(

√

2
ǫ
Hce) =

g(−
√

2
ǫ
Hce) therefore using Theorem 1, Theorem 2 the

following Corollary follows.

Corollary 1:

γpe = g(
√
2ǫHpe) = max

{∣

∣

∣

∣

ǫap − 1

ǫap + 1

∣

∣

∣

∣

,

∣

∣

∣

∣

ǫbp − 1

ǫbp + 1

∣

∣

∣

∣

}

(22)

γce = g(

√

2

ǫ
Hce) = max

{∣

∣

∣

∣

ǫ− bc

ǫ+ bc

∣

∣

∣

∣

,

∣

∣

∣

∣

ǫ− ac

ǫ+ ac

∣

∣

∣

∣

}

(23)

Therefore:

1. when the plant is passive (ap = 0, bp = ∞) then γpe = 1
which implies γpeγce < 1 if the controller is strictly input-

output passive 0 < ac ≤ bc < ∞ (and vice versa).

2. when the plant is inside the sector [ap,∞] in which ap <

0 then γpeγce < 1 if the controller is inside the sector

[ac, bc] in which −ǫ2ap < ac, bc <
−1
ap

.

As was shown in [11] the IPESH blocks can be used to aid

with analysis such that

‖(yc)N‖2 =
1√

MTsKMTs

‖(yct)MNTs
‖2 (24)

holds. In addition, the following inequality result from ap-

plying the Schwarz inequality as demonstrated in [23, proof

of Theorem 1-III].

‖(rc)N‖2 ≤
√

MTsKMTs
‖(rct)MNTs

‖2 (25)

Theorem 3: When γpeγce < 1 the digital control network

depicted in Fig. 1 is Lm
2 -stable in which there exists a 0 <

γ < ∞ such that ‖y(t)‖2 ≤ γ‖u(t)‖2 in which

yT(t) = [yTp (t), y
T
ct(t)] and uT(t) = [rTp (t), r

T
ct(t)].

Proof: (Sketch) From Corollary 4 in the Appendix we

have that Hclc : eclc → yc has finite gain g(Hclc) =
ǫbc
ǫ+bc

and
√

2
ǫ
Êclc = ‖(eclc)N‖2, therefore ‖(yc)N‖2 ≤ ǫbc

ǫ+bc

√

2
ǫ
Êclc

substituting (24) for the left-hand-side results in
1√

MTsKMTs

‖(yct)MNTs
‖2 ≤ ǫbc

ǫ+bc

√

2
ǫ
Êclc. Similarly

‖(yp)MNTs
‖2 ≤ bp

1+ǫbp

√
2ǫÊclp holds since from Corollary 3

in the Appendix we know that the closed-loop plant Hclp :

eclp → yclp has finite gain g(Hclp) =
bp

1+ǫbp
and that√

2ǫÊclp = ‖(eclp)MNTs
‖2. Finally, we observe that (25)

along with the other continuous-time norm inequalities can

be substituted into the final two inequalities of Lemma 2 such

that both inequalities involve only continuous-time norms in

which the outputs yp(t) and yct(t) are bounded by the inputs

rp(t) and rct(t). Therefore, when γpeγce < 1 the digital

control network depicted in Fig. 1 is Lm
2 -stable.

C. Conic Digital Filters

The section shows how an engineer can synthesize a

discrete-time controller/filter from a continuous-time refer-

ence model. In particular, we show how a continuous-time

conic system can be transformed into a discrete-time conic

system using the inner product equivalent sample and hold

(IPESH). Additionally, we present a corollary for trans-

forming a continuous-time conic single-input, single-output

(SISO) linear time-invariant (LTI) system into a discrete-

time conic SISO LTI system using the IPESH-Transform.

We begin by recalling the definition for the IPESH which is

based on the earlier work of [24], [25].

Definition 3: [26, Definition 4] Let a continuous one-port

plant be denoted by the input-output mapping Hct : L
m
2e →

Lm
2e . Denote continuous time as t, the discrete time index

as i, the sample and hold time as Ts, the continuous input

as u(t) ∈ Lm
2e , the continuous output as y(t) ∈ Lm

2e , the

transformed discrete input as u(i) ∈ lm2e , and the transformed

discrete output as y(i) ∈ lm2e . The inner product equivalent

sample and hold (IPESH) is implemented as follows: I.
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x(t) =
∫ t

0
y(τ)dτ ; II. y(i) = x((i + 1)Ts) − x(iTs); III.

u(t) = u(i), ∀t ∈ [iTs, (i+1)Ts). As a result 〈y(i), u(i)〉N =
〈y(t), u(t)〉NTs

holds ∀N ≥ 1.

Lemma 3: If Hct is inside the sector [a, b] and |a| < b then

Hd resulting from the IPESH is inside the sector [aTs, bTs].
Proof: Since Hct is inside the sector [a, b] and (a+b) >

0, then

〈y, u〉T ≥ 1

a+ b
‖(y)T ‖22 +

ab

a+ b
‖(u)T ‖22. (26)

But, from Definition 3-III. it can be shown that

‖(u)T ‖22 = Ts‖(u)N‖22. (27)

Additionally, from Definition 3-II. and the Schwarz inequal-

ity, the following inequality can be shown to hold [23, proof

of Theorem 1-III]

‖(y)T ‖22 ≥ 1

Ts

‖(y)N‖22. (28)

Finally, we use the equivalence of the discrete-time and

continuous-time inner products combined with (27) and (28),

and substitute into (26) to obtain

〈y, u〉N ≥ 1

Ts(a+ b)
‖(y)N‖22 +

abTs

a+ b
‖(u)N‖22

=
1

(aTs) + (bTs)
‖(y)N‖22 +

(aTs)(bTs)

(aTs) + (bTs)
‖(u)N‖22.

The IPESH similar to the bilinear transform can be used

to synthesize stable digital controllers from continuous-time

models. Therefore, we recall the IPESH-Transform definition

as it applies to SISO LTI systems.

Definition 4: [3, Definition 5] Let Hp(s) and Hp(z)
denote the respective continuous and discrete time trans-

fer functions which describe a plant. Furthermore, let Ts

denote the respective sample and hold time. Finally, de-

note Z{F (s)} as the z-transform of the sampled time

series whose Laplace transform is the expression of F (s),
given on the same line in [27, Table 8.1 p.600]. Hp(z) is

generated using the following IPESH-Transform Hp(z) =
(z−1)2

Tsz
Z
{

Hp(s)
s2

}

.

N.B. the term z−1
z

Z
{

Hp(s)
s2

}

represents the exact discrete

equivalent for the LTI system
Hp(s)

s
preceded by a ZOH

[27, p. 622] as noted in a detailed proof of [3, Lemma 5]

which shows that the IPESH-Transform is a scaled version

(k = 1
Ts

) of the IPESH (Definition 3). The scaling property

(Property 1-iv) and Lemma 3 lead directly to Corollary 2.

Corollary 2: If a SISO LTI system H(s) is inside the

sector [a, b] then Hp(z) resulting from applying the IPESH-

Transform to Hp(s) is inside the sector [a, b].

IV. CONTROLLER VALIDATION & SIMULATION

Next, we validate our results through the control of an ide-

alized single degree of freedom haptic paddle as described in

Section II and depicted in Fig. 2. This nominal plant system

Hp(s) will be controlled using our digital control network

depicted in Fig. 1 in which we shall use a proportional

Fig. 6. The classical digital control design for position tracking
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Fig. 7. Baseline tracking response with minimal delay n(t) 6= 0.

controller yc(j) = kcec(j) in which the gain kc is chosen

to satisfy the conditions in Corollary 1 such that −ǫ2ap =
ǫ2τ < kc < 1

τ
= − 1

ap
. In addition KMTs

=
√
MTs is

chosen so that rs(j) = yp(t) at steady-state. Fig. 6 depicts

a classic digital position feedback control scheme in which

rc(j) = yp−classic(jMTs) at steady-state when n(t) = 0.

In order to compare the effects of band-limited noise n(t),
the low-pass filtered and noise-corrupted feedback signal

ynp(j) is periodically sampled every MTs seconds for the

classical scheme whereas the signal yp depicted in Fig. 1 is

corrupted similarly such that yp(t) = (Hpep(t) + n(t)). For

our high-performance system we filter the noise corrupted

signal using the multi-rate passive sampler subsystem (Fig. 5)

described in Section III-B in which HLPc(s) = 1
τs+1 . In

addition a second stage digital anti-aliasing filter HLP (z)
was synthesized by applying the IPESH-Transform to a

sixth order low-pass Butterworth filter model HLP (s) with

passband ωp = π
MTs

[22, Section 9.7.5].

The simulation parameters are as follows: ǫ = 2, Mp = 2
kg, Ts = .01 seconds, M = 10, τ = MTs

π
, .4

π
< kc =

3 < 10π and KMTs
=

√
MTs. Fig. 7 indicates that our

high-performance position yp(t) response tracks the desired

reference rs(j) closer than the classic digital control system

response yp−classic(t) when subject to band-limited noise

within the frequency band [ π
MTs

, π
Ts
]. Finally, Fig. 8 indicates

that our proposed system is significantly less sensitive to the

introduction of a 0.5 second delay between the controller and

the plant.

V. APPLICATION FOR TELEMANIPULATION

The Novint Falcon [28] is a low cost haptic interface which

provides a 10 cm × 10 cm × 10 cm workspace providing

position information ypl ∈ R
3 while allowing for up to a 10

N force input eMpl ∈ R
3 to be applied to the user in each
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Fig. 8. Position response with 0.5 second delay.

Fig. 9. Haptic Paddle Dynamics Hpl : epl → ypl.

of the three directions. Although the kinematics are quite

complex [29] the standard drivers provided by Novint and

standard Simulink interface provided by the Haptik Library

[30] adequately allow us to model the haptic interface as

a three dimensional point mass system. As was previously

discussed for the single input-output point mass system

applies to the three dimensional systems Hpl : epl → ypl
l ∈ {1, 2} with filtered velocity compensation depicted in

Fig. 9. In order to simplify discussion we ignore the effects

of gravity which can be compensated for by either i) the

human operator, ii) adding an appropriate bias term to rc(j)
for the telemanipulation control subsystem Hc : ec → yc,

ec = [eTc1, e
T
c2]

T, yc = [yTc1, y
T
c2]

T, ecl, ycl ∈ R
3 depicted in

Fig. 10 or iii) adding gravity compensation directly to each

paddle subsystem Hpl. The role of the controller is to make

yp1 = yp2 and eMp1 = −eMp2 while satisfying the constraints

required by Corollary 1 which are sufficient for stability.

We therefore choose to couple each plant Hpl : epl → ypl
subsystem such that Hp : ep → yp in which ep = [eTp1, e

T
p2]

T

and yp = [yTp1, y
T
p2]

T. It is obvious that such a coupling can be

accomplished with either one or two synchronized embedded

controllers since the inputs and outputs are in parallel. In

addition the control subsystem can be implemented on either

a shared or an entirely separate embedded controller in which

data between each devices can be exchanged using wave

Fig. 10. Telemanipulation Controller Hc : ec → yc.

Fig. 11. Experimental Setup for Telemanipulation

variables and subjected to appropriately handled time delays

and data loss without adversely affecting stability.

The control subsystem depicted in Fig. 10 is designed

such that Hc : ec → yc is inside the sector [ac, bc]. This

can be verified by noting that: R = 1√
2

[

I I

−I I

]

is an

orthogonal matrix such that RTR = I . Using Theorem 4

in Appendix II we can verify that the intermediate ma-

trix Kc =

[

ac+bc
2 I 0

0 2acbc
ac+bc

I

]

is inside the sector [ac, bc].

Specifically Kc can be thought of two subsystems in which

HKc1 :
1√
2
(ec1 − ec2) → Kc1√

2
(ec1 − ec2) is inside the sector

[ac+bc
2 , ac+bc

2 ] and HKc2 :
1√
2
(ec1 + ec2) → Kc2√

2
(ec1 + ec2)

is inside the sector [ 2acbc
ac+bc

, 2acbc
ac+bc

]. We choose ac+bc
2 > 2acbc

ac+bc
in order to make ypd1 ≈ ypd2 (rc = 0) (Ideally ac =
0 however if ap < 0 then we will need some minimal

feedthrough). Therefore a + b = 2(ac+bc)
2 = ac + bc and

ab
a+b

= 4(acbc)
2(ac+bc)

4acbc(ac+bc)2
= acbc

ac+bc
. Finally, from Theorem 5 in

Appendix II since R is an orthogonal matrix then RKcR
T

is inside the sector [ac, bc].

Fig. 11 shows an experimental setup designed for the

application of the framework for telemanipulation. The ex-

perimental setup consists of two Novint Falcons, connected

using a networked computing platform with one paddle

acting as the “Leader” and the other the “Follower”. The

computing platform consists of two networked Windows

PCs with Matlab/Simulink. The haptic paddles are each

connected to two respective PCs via USB interface utilizing

Matlab/Simulink APIs. The haptic paddle API also enables

a user to feel the feedback of forces and this in a sense

enables transparency. In the setup, the “Follower” runs on

one of the PCs denoted “Follower PC” and the “Leader”

paddle runs on the other PC. The controller described in

Fig. 10 is implemented as a Simulink model and runs on the

same PC as the “Leader” paddle.
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Fig. 12. Plot of Leader and Follower paddles’ x-position

In [30], the authors described the sampling rate limitation

in accessing the position information from the haptic paddles.

Due to this limitation, a continuous signal of the position can

not be obtained through the haptic paddle interface therefore

the multi-rate passive sampler (PS : MTs) and passive hold

(PH : MTs) are not used. Instead, the experiment was carried

out using discrete-time the wave variables and the passive

upsampler (PUS : M ) and passive downsampler (PDS : M )

as described in [3]. Through a series of experiments, the

passive upsampler and passive downsampler were evaluated

and it was noticed that the apparent stiffness in controlling

the “Follower” manipulator decreases as we increase M .

Hence, using a small M allows for a better control of the

“Follower” manipulator.

The sampling time,Ts, of 0.04 seconds was used in the

course of the experiment. The other parameters for the

experiment are as follows: M = 1, Mp = 0.164kg, b = 1,

τ = MTs

π
, Kp = Mp∗π

2∗Ts
, ac = (b2)∗2∗Ts

π
, bc = π

(2∗Ts) .

During the course of the experiments, it was observed that

the paddles experience a large amount of friction which

limits tracking performance. In order to improve performance

without adversely affecting stability, the input to the haptic

paddle systems paddle,epl is amplified by a value of 4 before

sending it to the haptic paddle systems.

In a typical operation using this setup, when a paddle is

moved the position signal in x-y-z coordinates is sent to a

Matlab/Simulink haptic paddle interface block. This signal

is then transformed into wave variables and then sent to

the controller. The controller, using the position information

from both paddles, calculates the required control signal

needed to maintain position tracking. The computed control

signal is sent as wave variables over the network to the

“Follower” paddle and locally to the “Leader” paddle.

Fig. 12 shows a plot of the x-positions of the “Leader”

and “Follower” paddles after a trial run. From the figure,

it can be seen that the “Follower” paddle closely tracks the

position of the “Leader” paddle. Also, from the plot there

is slight discernible difference between the positions of the

“Leader” and “Follower” paddles. This can be attributed to

the excessive friction in the paddles which slightly affects

tracking performance.

VI. CONCLUSIONS

We have provided a set of sufficient conditions to guar-

antee delay independent stability for non-passive systems

Hp inside the sector [ap, bp] −∞ < ap < bp for our

networked control architecture depicted in Fig. 1. In par-

ticular, Theorem 1 and Assumption 1 allow us to derive

Theorem 2 which describe the internal network structure

depicted in Fig. 4. Lemma 1 shows that a linear passive

sampler depicted in Fig. 5 satisfied the key inequality (12).

As a result linear anti-aliasing filters can be introduced which

do not adversely affect stability or performance. Lemma 2

and Corollary 1 provide the sufficient sector conditions for

the controller and plant to achieve the small gain conditions

required of Theorem 3 in order to guarantee Lm
2 -stability.

Corollary 2 shows that the IPESH-Transform can be applied

to an analog controller to synthesize a digital controller such

that both controllers are inside the sector [a, b]. Simulation

results of our proposed architecture applied to direct position

control of a haptic paddle indicate good performance with

low sensitivity to band-limited noise and networked delay.
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APPENDIX I

WAVE VARIABLE NETWORK PROPERTIES

Fig. 13 depicts a graphical realization of (7) on the left-

hand-side (LHS), and the first obvious graphical transfor-

mation on the right-hand-side (RHS) in which we denote

closed-loop transformation of the plant Hp in terms of the

feedback gain ǫ as Hclp : eclp → yp in which

eclp(t) = rp(t) +
√
2ǫvp(t) = ep(t) + ǫyp(t). (29)

Fig. 14. Final Plant-rp-vp-yp-up-network realization.

Fig. 15. Controller-rc-uc-ep-vc-network realization and initial transfor-
mation.

In order to simplify discussion and to leverage Theorem 1

we use Assumption 1 in order to derive Corollary 3:

Corollary 3: If Assumption 1 is satisfied then Hclp :

eclp → yp is inside the sector
[

ap

1+ǫap
,

bp
1+ǫbp

]

.

Next we transform the RHS realization in Fig. 13 to the final

form depicted in Fig. 14.

Lemma 4: The RHS of Fig. 13 can be transformed to

the final form depicted in Fig. 14 (in which Hpeeclp =√
2ǫHclpeclp− 1√

2ǫ
eclp). In addition if Assumption 1 is satis-

fied, then
√
2ǫHpeêclp(t) is inside the sector

[

ǫap−1
ǫap+1 ,

ǫbp−1
ǫbp+1

]

.

Proof: From Fig. 14 it is clear that,

eclp(t) =
√
2ǫ

(

1√
2ǫ

rp(t) + vp(t)

)

= rp(t) +
√
2ǫvp(t)

which satisfies (29), next from Fig. 14 it is clear that,

up(t) =
√
2ǫyp(t)−

1√
2ǫ

eclp(t) +
1√
2ǫ

rp(t)

=
√
2ǫyp(t)−

1√
2ǫ

(

rp(t) +
√
2ǫvp(t)

)

+
1√
2ǫ

rp(t)

=
√
2ǫyp(t)− vp(t).

which satisfies (7) in regards to up(t). From Corollary 3

we have that Hclp : eclp → yp is inside the sector
[

ap

1+ǫap
,

bp
1+ǫbp

]

. From the scaling property (Property 1-iv),

we have that Hclp

√
2ǫ =

√
2ǫHclp in which

√
2ǫHclp is

inside the sector
[√

2ǫ
ap

1+ǫap
,
√
2ǫ

bp
1+ǫbp

]

. Using the sum

rule (Property 1-v) we have that Hpe is inside the sec-

tor
[

−1√
2ǫ

+
√
2ǫ

ap

1+ǫap
, −1√

2ǫ
+

√
2ǫ

bp
1+ǫbp

]

solving for ape we

have ape = −1√
2ǫ

+
√
2ǫ

ap

1+ǫap
= 1√

2ǫ

(

2ǫap−ǫap−1
ǫap+1

)

there-

fore Hpe is inside the sector
[

1√
2ǫ

(

ǫap−1
ǫap+1

)

, 1√
2ǫ

(

ǫbp−1
ǫbp+1

)]

finally from the scaling property we have that
√
2ǫHpe is

inside the sector
[

ǫap−1
ǫap+1 ,

ǫbp−1
ǫbp+1

]

.

Fig. 15 depicts a graphical realization of (8) on the left-hand-

side (LHS), and the first obvious graphical transformation on

the right-hand-side (RHS) in which we denote closed-loop
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Fig. 16. Final Controller-rc-uc-yc-vc-network realization.

transformation of the controller Hc in terms of the feedback

gain 1
ǫ

as Hclc : eclc → yc in which

eclc(j) = rc(j) +

√

2

ǫ
uc(j) = ec(j) +

1

ǫ
yc(j). (30)

Which allows us to state the following corollary:

Corollary 4: If Assumption 1 is satisfied then Hclc :

eclc → yc is inside the sector
[

ǫac

ǫ+ac
, ǫbc
ǫ+bc

]

.

Next we transform the RHS realization in Fig. 15 to the final

form depicted in Fig. 16.

Lemma 5: The RHS of Fig. 15 can be transformed to

the final form depicted in Fig. 16 (in which Hceeclc =

−
√

2
ǫ
Hclceclc +

√

ǫ
2eclc). In addition if Assumption 1 is sat-

isfied, then

√

2
ǫ
Hceêclc(j) is inside the sector

[

ǫ−bc
ǫ+bc

, ǫ−ac

ǫ+ac

]

.

Proof: From Fig. 16 it is clear that,

eclc(j) =

√

2

ǫ

(
√

ǫ

2
rc(j) + uc(j)

)

= rc(j) +

√

2

ǫ
uc(j)

which satisfies (30), next from Fig. 16 it is clear that,

vc(j) =−
√

2

ǫ
yc(j) +

√

ǫ

2
eclc(j)−

√

ǫ

2
rc(j)

=−
√

2

ǫ
yc(j) +

√

ǫ

2

(

rc(j) +

√

2

ǫ
uc(j)

)

−
√

ǫ

2
rc(j)

=−
√

2

ǫ
yc(j) + uc(j).

which satisfies (8) in regards to vc(j). From Corollary 4

we have that Hclc : eclc → yc is inside the sector
[

ǫac

ǫ+ac
, ǫbc
ǫ+bc

]

. From the scaling property, we have that

−Hclc

√

2
ǫ
= −

√

2
ǫ
Hclc in which −

√

2
ǫ
Hclc is inside the

sector
[

−
√

2
ǫ

ǫbc
ǫ+bc

,−
√

2
ǫ

ǫac

ǫ+ac

]

. Using the sum rule we have

that

Hce is inside the sector
[

√

ǫ

2
−
√

2

ǫ

ǫbc

ǫ+ bc
,

√

ǫ

2
−
√

2

ǫ

ǫac

ǫ+ ac

]

solving for bce we have

bce =

√

ǫ

2
−
√

2

ǫ

ǫac

ǫ+ ac
=

√

ǫ

2

(

1− 2ac
ǫ+ ac

)

therefore Hce is inside the sector
[
√

ǫ

2

(

ǫ− bc

ǫ+ bc

)

,

√

ǫ

2

(

ǫ− ac

ǫ+ ac

)]

finally from the scaling property we have that

Fig. 17. Concatenation of m conic systems H : u → y.

√

2

ǫ
Hce is inside the sector

[

ǫ− bc

ǫ+ bc
,
ǫ− ac

ǫ+ ac

]

.

APPENDIX II

ADDITIONAL PROPERTIES OF CONIC SYSTEMS

Fig. 17 depicts a concatenation of m conic systems Hl :
ul → yl inside the sector [al, bl] in which 0 ≤ |al|, bl < ∞,

(bl + al) > 0, u = [uT
1 , . . . , u

T
m]T and y = [yT1 , . . . , y

T
m]T,

l ∈ {1, . . . ,m} which we denote H : u → y.

Theorem 4: The concatenated system H : u → y depicted

in Fig. 17 is inside the sector [a, b] in which:

a+ b = max{al + bl}
ab

a+ b
= min{ albl

al + bl
} ∀ l ∈ {1, . . . ,m}

and V (x) =
∑m

l=1
a+b
al+bl

Vl(xl).
Proof: Assuming each subsystem Hl : ul → yl is a

conic-dissipative system in which 0 < (bl + al) < ∞ we

have that

〈yl, ul〉T ≥ 1

al + bl
‖(yl)T ‖22 +

albl

al + bl
‖(ul)T ‖22

+
1

al + bl
(Vl(xl(T ))− Vl(xl(0))) .

(31)

Summing both sides of (31) w.r.t. l ∈ {1, . . . ,m} results in:

〈y, u〉T ≥
m
∑

l=1

{

1

al + bl
‖(yl)T ‖22 +

albl

al + bl
‖(ul)T ‖22

+
1

al + bl
(Vl(xl(T ))− Vl(xl(0)))

}

.

≥ 1

max{al + bl}
‖(y)T ‖22 +min{ albl

al + bl
}‖(u)T ‖22

+

m
∑

l=1

1

al + bl
(Vl(xl(T ))− Vl(xl(0)))

≥ 1

a+ b
‖(y)T ‖22 +

ab

a+ b
‖(u)T ‖22

+
1

a+ b
[V (x(T ))− V (x(0))] .

The proof for the discrete-time case follows analogously.

Fig. 18 consists of orthogonal matrices RT and R (RTR = I)

and a conic-dissipative system H : RTu → y which is
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Fig. 18. Orthogonal matrices RTR = I preserve conic properties of
H : RTu → y.

inside the sector [a, b]. For the more general case when R

is simply a full column rank matrix that passivity is always

conserved as is done for passivity based network flow control

problems [31]. However, in order to preserve the overall

conic properties of the system we need to restrict the matrices

to be orthogonal.

Theorem 5: If the matrix R is an orthogonal matrix

(RTR) then H : RTu → y is a conic-dissipative system

inside the sector [a, b] iff HR : u → Ry is inside the sector

[a, b].
Proof: Since uTRTRu = uTu and if H : RTu → y is

inside the sector [a, b] then

s(RTu, y) =

{

−yTy + (a+ b)yTRTu− abuTu, |a|, |b| < ∞
yTRTu− auTu, |a| < ∞, b = ∞.

Next we assume that HR : u → Ry is inside the sector [ā, b̄]
and since yTRTRy = yTy then:

s(u,Ry) =

{

−yTy + (ā+ b̄)yTRTu− āb̄uTu, |ā|, |b̄| < ∞
yTRTu− āuTu, |ā| < ∞, b̄ = ∞.

Since s(u,Ry) = s(RTu, y) if ā = a and b̄ = b then HR :
u → Ry is inside the sector [a, b]. Necessity can be easily

shown by changing the order of assumptions.


