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Abstract— We show that the principal attitude and inertial
dynamics of a quadrotor aircraft can be decomposed into a
cascade of three passive and one interior conic subsystem such
that a proportional digital feedback loop can effectively be
applied to each subsystem in a nested manner. This proportional
feedback architecture includes one saturation block nested
between the attitude and inertial control systems to account
for actuator saturation. Our architecture can control yaw
independently of the desired inertial position. Stability of this
architecture can be verified in both simulation and runtime
through the following corollary derived from the sector stability
theorem of Zames and later Willems. The corollary applies to
the control of a dynamic system H1 : x1 → y1 which is inside
the sector [a1, b1], in which −∞ < a1 < 0, 0 < b1 ≤ ∞,
and b1 > a1 . It states that if a negative feedback controller
with reference r1 and control gain k1 < −

1

a1

is applied to

H1 : x1 → y1 such that x1 = k1(r1 − y1) then the closed loop
system Hcl−1 : r1 → y1 is Lm

2 (lm2 ) stable. Simulations indicate
the controller performs exceptionally well when applied to
detailed STARMAC and Hummingbird aircraft models which
includes blade flapping effects.

I. INTRODUCTION

Quadrotor aircraft use four rotors to control both lift and

body torque for attitude and inertial control. Without a tail

rotor and rotors smaller than the primary rotor of a heli-

copter a quadrotor can achieve higher velocities before blade

flapping effects begin to introduce instabilities. However an

attitude control system is required for a human to pilot such

a vehicle. Thus current research has focused on developing

embedded control systems for these quadrotor aircraft.

Building off the earlier work of [1], [2], the authors in [3]

present an attitude and height control system with nested

saturation blocks for a quadrotor aircraft which achieves

asymptotic stability. In [4] a model-independent quaternion-

based proportional derivative (PD) attitude controller per-

forms as well as more computationally complex nonlin-

ear controllers. Using backstepping techniques [5] derives

image based visual servo control algorithms which exploit

passivity-like properties of the dynamic model in order to

obtain a Lyapunov stable system. All the above papers, and

others contain fairly detailed models which guide their over-

all control design. Most of the Lyapunov control proposals

typically are fairly computationally expensive and it is not

clear how robust they are to model uncertainties.

In particular, all of the aforementioned papers appear to

neglect a significant time lag characteristic related to the

motor thrust command and the corresponding thrust which

results due to the acceleration of the air column. With
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Fig. 1. Proposed quadrotor control system.

[3] as an exception, almost all other model descriptions

neglect the limited control thrust due to motor saturation.

All model descriptions in previous literature neglect digital

platform implementation effects such as sampling delay,

quantization, etc. In order to address these effects we propose

that Corollary 1 provides a formal test to verify that the sector

stability condition is satisfied in simulation and during field

testing.

As depicted in Fig. 1 we propose to use two PD controllers

(denoted as PD Cont. in Fig. 1). The inner-most loop

controller is a ’fast’ PD attitude controller. The attitude

controller’s proportional feedback term includes the roll (φ),

pitch (θ), and yaw ψ Euler angles η = [φ, θ, ψ]T. The attitude

controller’s derivative feedback term yω includes the product

of the moment of inertia matrix Ib and the body angular

velocities ω such that yω = Ibω. The attitude controller

design is initially justified by showing that the dynamic

relationships between the body torques Γ and yω are passive

and assuming that the dynamic relationship between yω and

η is passive. Next, we further assume that the resulting

attitude control system dynamics are ’fast’ enough so that

we can close the loop with a second PD inertial controller.

The proportional feedback term is the inertial position ζ

and the derivative feedback term is the inertial velocity

ζ̇ = vI . This design is justified because the relationship

between the inertial force fI and velocity vI is passive as

is the relationship from vI to ζ. Under these preliminary

assumptions our control system will result in an overall Lm2 -

stable (or bounded) system.

However, there is significant lag between rotor thrust

commands and the resulting change in thrust due to the

acceleration of the air columns above their respective rotors

[6]. A lead compensator denoted as Lead Comp. in Fig. 1)

is used to account for the rotor dynamics. The rotors can

only apply a fixed range of thrust (denoted σ(T̄c) in which

T̄c denotes the corresponding thrust command vector) due

to motor driver voltage limits. It can be inferred from [3]

that the relationship between roll (φ), pitch (θ), and thrust

T to the corresponding desired inertial position can be

approximated as a cascade of four integrators subject to input

actuator saturation. As a result our linear control law needs
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to be modified with a saturation block in order to achieve

asymptotic stability [1, Theorem 2.2]. We do so by limiting

the range of the pitch and roll commands to our attitude

controller to the interval [−π
4
, π
4
] with a saturation function

block denoted as σc() in Fig. 1.

We limit desired inertial position setpoint (denoted as ζs)

with a position rate change limiter (depicted as ’Rate Limiter’

in Fig. 1) in order to avoid destabilizing velocities caused

by rotor blade flapping effects. The rate change limiter

includes an additional second order filter applied to ζs which

minimizes overshoot. A similar filter is applied to the yaw

set-point ψs as well. Other non ideal effects – non passive

attitude coordinates (Euler angles η), quantization, floating

point math errors, and time delay can be addressed by testing

Corollary 1 to verify through simulation.

Section II introduces a few definitions regarding passivity,

boundedness, and corollaries regarding stability. Section III

provides an appropriate model to describe the quadrotor

dynamics as it relates to statements regarding the design

of a controller for the quadrotor. Section IV provides a

description of our control implementation and corresponding

stability arguments which lead us to an overall feasible

control design. Section V provides a detailed discussion of

detailed simulations of our control system used to control a

detailed model of the STARMAC and Hummingbird quadro-

tor aircraft which includes highly nonlinear blade flapping

effects [6], [7]. Section VI presents our conclusions and

points to future research directions.

II. PASSIVITY AND SECTOR STABILITY

In order to discuss the (boundedness) or stability properties

of the quadrotor with our proposed control system we

recall the following nomenclature, definitions and present

Corollary 1 in order to verify stability. Let T be the set

of times of interest in which T = R
+ for continuous-time

signals and T = Z
+ for discrete-time signals. Let V be a

linear space R
m and denote as H the space of all functions

u : T → V which satisfy the following:

‖u‖22 =

∫

∞

0

uT(t)u(t)dt <∞, (1)

for continuous-time systems (Lm2 ), and

‖u‖22 =
∞
∑

0

uT(i)u(i) <∞, (2)

for discrete-time systems (lm2 ). Similarly, we will denote

by He the extended space of functions (u : T → V) by

introducing the truncation operator:

xT (t) =

{

x(t), t < T,

0, t ≥ T

for continuous time, and

xT (i) =

{

x(i), i < T,

0, i ≥ T

for discrete time. The extended space He satisfies the fol-

lowing:

‖uT ‖
2
2 =

∫ T

0

uT(t)u(t)dt <∞; ∀T ∈ T (3)

for continuous time systems (Lm2e), and

‖uT ‖
2
2 =

T−1
∑

0

uT(i)u(i) <∞; ∀T ∈ T (4)

for discrete time systems (lm2e).
Definition 1: A dynamic system H : He → He is Lm2

stable if

u ∈ Lm2 =⇒ Hu ∈ Lm2 . (5)

in which Hu = y corresponds to the dynamic output of the

system, and the value of Hu at time t will be denoted as

Hu(t) = y(t).
Definition 2: A dynamic system H : He → He is lm2

stable if

u ∈ lm2 =⇒ Hu ∈ lm2 . (6)

in which Hu = y corresponds to the dynamic output of

the system, and the value of Hu at discrete time i will be

denoted as Hu(i) = y(i).
The inner product over the interval [0, T ] for continuous time

is denoted as follows:

〈y, u〉T =

∫ T

0

yT(t)u(t)dt

similarly the inner product over the discrete time interval

{0, 1, . . . , T − 1} is denoted as follows:

〈y, u〉T =

T−1
∑

0

yT(i)u(i).

For simplicity of discussion we note the following equiva-

lence for our inner-product space:

〈(Hu)T , uT 〉 = 〈(Hu)T , u〉 = 〈Hu, uT 〉 = 〈Hu, u〉T .

Definition 3: Assuming that Hu(0) = y(0) = 0, then a

dynamic system H : He → He is (strictly) inside the sector

[a, b], b > 0, a ≤ b, ǫ > 0 if

‖yT ‖
2
2 − (a+ b)〈y, u〉T + ab‖uT ‖

2
2 ≤ 0 (≤ −ǫ‖uT ‖

2
2) (7)

Property 1: Assume the following dynamic systems H :
u → y, H1 : u1 → y1 are inside their respective sectors

[a, b], [a1, b1], and k ≥ 0 is a constant then:

(i) I can be said to be inside [1, 1], [ǫ, 1] ∀0 < ǫ ≤ 1, or

strictly inside [0, 1 + ǫ] ∀0 < ǫ ≤ 1.

(ii) kH is inside [ka, kb]
(iii) Sum Rule: (H +H1) is inside [a+ a1, b+ b1].

Definition 4: If we assume that Hu(0) = 0, then if H is

inside the sector:

i) [0,∞] it is a passive (positive) system

ii) [0, b], b <∞ it is strictly output passive

iii) [ǫ,∞], ǫ > 0 it is strictly input passive

iv) [a, b], a > 0, b <∞ it is strictly input-output passive

v) [a, b], −∞ < a, b < ∞ it is a bounded (lm2 -stable for

discrete time, or Lm2 -stable for continuous time) system.
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Fig. 2. Bounded system H : [uT

1
, uT

2
]T → [yT

1
, yT

2
]T.

The following Theorem serves as the basis for proposing the

linear PD controllers depicted in Fig. 1. It is a weaker form

of the passivity theorem [8] which considers when the input

u2 6= 0. Parts of the theorem have appeared in [9]–[12], we

generalize it slightly by adding kI to the structure.

Theorem 1: Assume that the combined system H : u1 →
y1, u2 = 0 depicted in Fig. 2 has 0 < k < ∞ and consists

of two dynamic systems H1 : u1 → y1 and H2 : u2 → y2
which are either:

i) respectively inside the sector [a1, b1], a1 = 0, b1 < ∞
(H1 is strictly output passive) and inside the sector

[0,∞] (H2 is passive) or

ii) respectively inside the sector [a1, b1], a1 = 0, b1 = ∞
(H1 is passive) and inside the sector [a2,∞] in which

a2 > 0 (H2 is strictly input passive),

then H : u1 → y1 is strictly output passive and bounded

(lm2 stable for the discrete time case, or Lm2 stable for the

continuous time case).

The following corollary provides a way to verify stability

if the closed loop system can not satisfy either of the

passivity conditions listed in Theorem 1. In particular we

consider the case when H1 is inside the sector [a1,∞] in

which −∞ < a1 < 0 1.

Corollary 1: Assume that the combined dynamic system

H : [uT1 , u
T

2 ]
T → [yT1 , y

T

2 ]
T depicted in Fig. 2 consists of

two dynamic systems H1 : u1 → y1 and H2 : u2 → y2
which are respectively inside the sector [a1, b1] and strictly

inside the sector [0, 1+ǫ], for all ǫ > 0. Then H is bounded

(Lm2 stable for the continuous time case or lm2 stable for the

discrete time case) if:

−
1

max{|a|, b}
< k < −

1

a1
, if a1 < 0

−
1

b
< k <∞, otherwise.

III. QUAD-ROTOR MODEL

Let I = {eN , eE , eD} (North-East-Down) denote the

inertial frame, and A = {ex, ey, ez} denote a frame rigidly

attached to the aircraft as depicted in Fig. 3. Let ζ denote

inertial position, η denote the vector of Euler angles ηT =
[

φ, θ, ψ
]T

in which φ is the roll, θ is the pitch and ψ

is the yaw. R(η) = R ∈ SO(3) is the orthogonal rotation

1The upper bound on k follows directly from [13, Corollary 4.3.3, case
3] (MIMO) and [14, Theorem 2a, case 2] (SISO). The lower bound on k
results from the small gain condition.

Fig. 3. UAV with depiction of inertial and body frames.

matrix (RTR = I) which describes the orientation of the

airframe in which R describes the rotation matrix from the

inertial frame to the body frame as is the convention used

in [15], [16]. The rotation matrix allows coordinates relative

to the inertial frame such as inertial angular velocity ωI to

coordinates relative to the body frame such as the angular

velocity ω = [p, q, r]T as follows

ωI = RTω.

The standard equations of motion in terms of the aircrafts

mass m, and its moment of inertia matrix Ib with respect to

its body reference frame are as follows:

ζ̇ = vI

mv̇I = fI = mgeD − TRTez (8)

Ibω̇ = −ω × Ibω + Γ (9)

η̇ = J(η)ω. (10)

Which results in a cascade structure, where the inertial force

(fI ) depends on the orientation as described by the Euler

angle η. (10) relates the frame angular velocity ω to the rate

change of the Euler angle η̇ which depends on the frame

control torque ΓT = [γx, γy, γz]
T. Each control torque is

applied about each corresponding frame axis and positive

torque follows the right hand rule. This cascade structure

is an overall nonpassive structure which has many passive

subsystems. The overall approach in designing a controller

for this system will be to close the loop on the passive

subsystems with proportional feedback in order to design a

passive attitude controller. The closed-loop dynamics of the

resulting attitude control system can be neglected in order to

justify an inertial position (ζT = [ζN , ζE , ζD]
T) controller.

In the inertial frame, ζN is the distance from the origin along

the eN axis, ζE is the distance from the origin along the eE



4

axis, and ζD is the distance from the origin along the eD
axis. Note that ζD < 0, ζ̇D < 0 corresponds to the UAV

flying above and away from the inertial origin.

Using the shorthand notation cx = cosx and sx = sinx,

the rotation matrix R is related to the Euler angles as follows

[15, Section 5.6.2]:

R =





cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ cθsφ
cφsθcψ + sφsψ cφsθsψ − sφcψ cθcφ.



 (11)

The matrix J(η) is the inverse of the Euler angle rates matrix

[E′

123(η)]
−1 [15, Section 5.6.4] such that

J(η) =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



 . (12)

Simulations indicate that when |p|, |q|, |r| < 0.5, and the

pitch and roll are limited to the range of [−π
4
, π
4
] then

H : ω → η is inside the sector [−.004,∞]. Other attitude

parametrizations such as the modified Rodrigues parameters

are passive with angular velocity as the input [11].

The relationship between inertial acceleration, control

thrusts, and the Euler angles is

mv̇I =





0
0
mg



+ fIc, fIc = −T





cφsθcψ + sφsψ
cφsθsψ − sφcψ

cθcφ



 (13)

in which fIc denotes the inertial control force, T =
∑4

i=1
Ti

is the total thrust applied by each rotor Ti, i ∈ {1, 2, 3, 4}.

Ignoring blade flapping effects, the control torques Γ and

total thrust T have the following relationship:








γx
γy
γz
T









=









0 −δ 0 δ

δ 0 −δ 0
−Kt Kt −Kt Kt

1 1 1 1

















T1
T2
T3
T4









(14)

in which δ is the distance from the center of gravity for

each rotor of the UAV along the x and y body frame axis

and Kt captures the relationship between rotor velocity and

corresponding torques applied about the z-axis. If δKt 6=
0 then the matrix in (14) is invertible and can be used to

compute Ti from T and Γ. Since J(η) does not depend on

ψ then we can control yaw independent of ζ. With yaw as a

free variable and using a small angle assumption on φ and

θ we have

fIc

−T
≈





0
0
1



+





sψ cψ
−cψ sψ
0 0





[

φ

θ

]

. (15)

Therefore the desired inertial control command fTIc =
[fIcx, fIcy, fIcz], will be used to compute φset and θset such

that
[

φset
θset

]

=

[

sψ −cψ
cψ sψ

]

[

fIcx
fIcz
fIcy
fIcz

]

. (16)

The lag between each motors thrust command Tc−i (i ∈
{1, 2, 3, 4}) and the actual thrust applied by each rotor in

terms of the time constant τ is

Ti(s) =
Tc−i(s)

τs+ 1
. (17)

Fig. 4. Proposed attitude control system.

Fig. 5. Relationship between desired inertial control force (fIc) and control
torque Γc to actual inertial force fI and torque Γ.

IV. CONTROL IMPLEMENTATION

A. Attitude Control System

There are numerous Lyapunov (and/or) passivity based

approach to control attitude [3], [4], [12], [17]–[21]. We

will follow the passivity based approach to control attitude

by considering the scaled output yω = Ibω and assuming

the inertia matrix is constant and invertable such that ω =
I−1

b yω. Under these assumptions H : Γ → yω is passive.

Theorem 2: Any rigid body with a full-rank inertia matrix

such that I−1

b exists and İb = 0 whose dynamics satisfying

the Euler-Lagrange equation (9) (in which ω, Γ ∈ R
3 and

yω = Ibω) is a lossless passive system H : Γ → yω .

If Γ = kyω (kηeη−yω) then the closed loop system Hkyω :
kηeη → yω is inside the sector [0, 1]. In addition if Hηyω →
η is passive then Theorem 1-i can be used to show that the

the closed loop system depicted in Fig. 4 is stable. However,

simulations inidcate that Hη : yω → η is inside the sector

[ayω−η,∞] (ayω−η = −λ−1

min
(Ib).004).

Corollary 1 is used to address the fact that Hη : yω → η is

not passive (but stable). It allows us to accurately assume that

the resulting cascade of Hkyω : kηeη → yω and Hη : yω → η

(denoted as HηHkyω : kηeη → η) is inside the sector [aη,∞]
(−∞ < aη < 0).

Corollary 2: If the cascaded system HηHkyω : kηeη → η

is inside the sector [aη,∞] (aη < 0) and 0 < kη < − 1

aη
then the proposed closed-loop attitude control system Hclyω :
ηd → yω, kω > 0 depicted in Fig. 4 is bounded.

The lead compensator depicted in Fig. 5 as diag{ τs+1
Ts
π
s+1

}

maximizes aη which allows for a larger gain kη to be

realized.

B. Inertial Control System

In discussing stability for the inertial control system we

will denote the system which includes the gravity compen-
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Fig. 6. Proposed inertial control system.

sation as Hgcomp : kvI evI → vI in which

fIc = kvIevI −





0
0
mg



 .

If fI = (fIc + mgeD) then mv̇I = kvIevI , therefore

Hgcomp : kvIevI → vI is passive.

Corollary 3: The proposed closed-loop inertial control

system Hclζ : ζd → vI , kvI > 0 depicted in Fig. 6

is bounded if the gravity-compensated system Hgcomp :
kvIevI → vI is passive, since

∫

: vI → ζ is passive.

Finally, when Hgcomp : kvIevI → vI is cascaded with an

integrator in which

ζ =

∫ T

0

vIdt,

we denote this cascaded system as
∫

Hgcomp : kvIevI → ζ

and state the following corollary.

Corollary 4: The proposed closed-loop inertial control

system Hclζ : ζd → vI , kvI > 0 depicted in Fig. 6 is

bounded if the cascaded system
∫

Hgcomp : kvIevI → ζ

is inside the sector [aζ ,∞] (aζ < 0) and 0 < kζ < − 1

aζ
.

V. SIMULATION AND VERIFICATION

A. Verification Sector Bounds Through Simulation

The sector relations from the previously given corollaries

allow verification of the sector bounds in a simulation

environment. Definition 3 gives the required equation in

terms of the input x and output y = Hx and sector limits

[a, b].

‖yT ‖
2
2 − (a+ b)〈y, x〉T + ab‖xT ‖

2
2 ≤ 0

To find bounds for a given input signal x and output signal

y, consider the following:

lim
b→∞

{

1

b
‖yT ‖

2
2 −

a+ b

b
〈y, x〉T + a‖xT ‖

2
2

}

≤ 0

⇒ −〈y, x〉T + a‖uT ‖
2
2 ≤ 0

⇒ −∞ < a <
〈y, x〉T
‖xT ‖22

(18)

(18) is computed during the system simulation once ‖xT ‖
2
2 >

ǫmin > 0. ǫmin is selected during runtime by the engineer in

order to account for numerical effects related to dividing by

a number close to zero. The sector coefficient, a, should be

computed for the case when y(0) = 0.
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Fig. 7. Desired test flight trajectories for STARMAC and Hummingbird.

B. Simulation Parameters

Detailed models for both the STARMAC and Humming-

bird quadrotor aircrafts were developed in which their phys-

ical parameters are summarized in Table I. In addition the

TABLE I

QUADROTOR PHYSICAL PARAMETERS

Aircraft m (kg) δ (m) Kt (m) τ (s) Tmax (N)

STARMAC 1.8263 .3048 .47 0.1 9.8
Hummingbird 0.489 .1715 .0245 .05 3.7

moment of inertia matrix with respect to the body frame is

Ib = diag{27.59, 27.71, 48.06} (g·m2) for the STARMAC

and Ib = diag{2.32, 2.32, 4.41} (g·m2) for the Hummingbird

aircraft. The sampling rates for the STARMAC Ts = .02
seconds and the Hummingbird Ts = .01 seconds. The control

gains and the corresponding sector coefficients a are listed

in Table II.

TABLE II

QUADROTOR CONTROL GAINS

(k∗,a∗) STARMAC Hummingbird

(kyω ,ayω ) (10.4,-.04) (54,-.01)
(kη ,aη) (.314,-2.5) (.0535,-18)
(kvI ,avI ) (1,-.03) (1,-.04)

(kζ ,aζ ) ( 3
2

,-.62) ( 5
3

,-.59)

The following set of figures illustrates a nominal test flight

in which ψr(t) = π sin(.03125t) in which the sector stability

conditions are satisfied. Fig. 7 plot the desired inertial

trajectory for ζ with respect to time for the STARMAC

and Hummingbird aircrafts. Fig. 8 and Fig. 9 depict the

position tracking error for the respective STARMAC and

Hummingbird aircrafts.

VI. CONCLUSIONS

We have shown a way to design effective control systems

for quadrotor aircraft. These vehicles provide extremely chal-

lenging controller design problems; however, breaking the
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Fig. 8. Tracking error (STARMAC) for test flight.

0 20 40 60 80 100 120 140 160
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (s)

e
ζ
 =

 (
ζ

d
 −

 ζ
) 

(m
)

 

 

e
ζ

N

e
ζ

E

e
ζ

D

Fig. 9. Tracking error (Hummingbird) for test flight.

system down into passive components (i.e., treating inertial

and attitude control separately) allows us to propose the

use of simple yet effective PD controllers. We also showed

and verified that yaw can be controlled independently of the

desired inertial position. Furthermore, we can use a basic lead

compensator to account for non ideal lag effects due to thrust.

By limiting the command range for pitch and roll we can

naturally address actuator saturation issues. System stability

can then be verified over a fairly large range of operational

conditions by means of Corollary 1. Unfortunately, for higher

frequency setpoint content kζ will not satisfy Corollary 1 –

however, the quadrotor aircraft remains stable in simulation.

This simulation result emphasizes that Corollary 1 is a

sufficient condition for stability. Recent results involving

mixed passivity and small gain stability results [22], [23]

may provide a weaker set of conditions which will satisfy

our gains settings for our simulations which don’t satisfy

Corollary 1.
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