

ADAS Virtual Prototyping using Modelica and Unity Co-simulation
via OpenMETA

Masahiro Yamaura1 Nikos Arechiga1 Shinichi Shiraishi1

Scott Eisele2 Joseph Hite2 Sandeep Neema2 Jason Scott2 Theodore Bapty2

1Toyota InfoTechnology Center, U.S.A., Inc., U.S.A., {myamaura, narechiga, sshiraishi}@us.toyota-
itc.com

Institute for Software-Integrated Systems, Vanderbilt University, U.S.A., {eiseles, jhite7, sandeep,
jscott, bapty}@isis.vanderbilt.edu

Abstract
Automotive control systems, such as modern
Advanced Driver Assistance Systems (ADAS), are
becoming more complex and prevalent in the
automotive industry. Therefore, a highly-efficient
design and evaluation methodology for automotive
control system development is required. In this paper,
we propose a closed-loop simulation framework that
improves ADAS design and evaluation. The proposed
simulation framework consists of four tools: Dymola,
Simulink, OpenMETA and Unity 3D game engine.
Dymola simulates vehicle dynamics models written in
Modelica. Simulink is used for vehicle control software
modeling. OpenMETA provides horizontal integration
between design tools. OpenMETA also has the
capability to improve design efficiency through the use
of PET (Parametric Exploration Tool) and DSE
(Design Space Exploration) tools. Unity provides the
key functionality to enable interactive, or closed-loop
ADAS simulation, which contains sensor models for
ADAS, road environment models and provides
visualization.
Keywords: ADAS, Efficient Design, Game Engine,
Modelica, Simulink

1 Introduction
The number of installations of Advanced Driver
Assistance Systems (ADAS) is rapidly growing in the
automotive industry. In the case of Toyota cars, Toyota
Safety Sense, which is a type of ADAS package, will
be available in most passenger cars released by Toyota
Motor Corporation in Japan, North America, and
Europe by the end of 2017 (Toyota Motor Corporation,
2014). This emerging market of ADAS poses difficult
system design problems. That is, we cannot use a
traditional development methodology that considers
only a target vehicle. We need to derive a new
methodology which allows us to take its environment
into account, e.g., road, other vehicles, pedestrians, etc.
With the announcement that the majority of cars will
contain an ADAS, it is apparent that the design space
of future cars will be vast. Moreover, the complexity of

these systems is also increasing along with their
extended features, e.g., communication with other
vehicles, cooperation with a navigation system, etc.

The above problems imply that a highly-efficient
design and evaluation methodology for ADAS
development is required. Van Waterschoot and van der
Voort have recognized this same need for efficient
design when looking at ADAS as a human factors
problem (van Waterschoot et al, 2009). Simulation-
based verification and validation can be a key
technology in such a methodology as shown by Gruyer
et al. (Gruyer et al, 2011). More precisely, closed-loop
simulation including vehicle dynamics and road
environments is essential.

Our work addresses the need for closed-loop
simulation by using Simulink to model software
components and Modelica to model physics
components. Simulink is currently the state-of-the art
tool for developing and analyzing automotive software
models. Modelica is well suited to describe and
simulate physics which includes vehicle dynamics.
However, the task of describing complex conditions
around the vehicle, such as traffic events, pedestrian
activity and weather activity is complex and results in
simulations not amenable to interactive simulation. Our
work uses Unity to model complex environmental
conditions. Unity is a video game development tool
which is well suited to describe complex road
situations. Our proposed framework consists of a co-
simulation-based solution for ADAS development
challenges by using OpenMETA to integrate Simulink,
Modelica and Unity, and provide some features which
aid in the design of complex systems.

Generally, game engines provide sophisticated
virtual reality environments, and can be used to allow
users to collaborate. These game engine advantages
support valuable features in ADAS development such
as gamified and crowd-sourced vehicle testing, and
virtual dealership, which are described below.

 Section 2 provides a background on existing design
tools. Section 3 describes our tool framework. Section
4 describes our case study and Section 5 presents our
conclusions and possible directions for future work.

2 Background

2.1 Existing Tools
Modelica is a multi-physics, multi-domain, acausal
modeling language. Dymola, developed by Dassault
Systèmes, is a powerful tool as an editor and simulator
of Modelica models (Dassault Systèmes, 2015).

Simulink is a graphical modeling tool produced by
MathWorks. It provides a graphical modeling editor, a
customizable set of block libraries, and solvers for
simulations (Mathworks, 2015). Designers can edit
models by deploying blocks from the libraries and
adding causal connections between blocks. Simulink is
widely used in the automotive industry for vehicle
control system software design, such as ADAS
systems, engine control systems, transmission control
systems, etc. This is the reason why we selected
Simulink for control system software modeling.

The OpenMETA toolchain was developed by
Vanderbilt University in conjunction with the Adaptive
Vehicle Make program of DARPA (Sztipanovits et al,
2014; Sztipanovits et al, 2015). OpenMETA is a tool
infrastructure with the goal of enabling development of
cyber-physical systems. This is accomplished by
providing horizontal integration between external
software tools. A model in OpenMETA references
component models which exist in external tools such as
Dymola, Creo, or ADAMS. In order to interface with
an external tool, an interpreter is created for
OpenMETA which transforms the model into a format
the external tool can use. Typically OpenMETA is
setting parameters which are then used to provide
inputs into a detailed model that exists in the external
tool. Once the interface is in place, then any parametric
changes made to the model in OpenMETA will also
appear in the external tool. Additionally, if the internals
of any tool specific model are changed, as long as the
interface remains, the models will function as they

would if the model had been generated entirely in the
external tool.

In the case of Simulink integration, a Simulink
model is wrapped as a C library which is referenced in
OpenMETA. The representation of this library in
OpenMETA includes the interfaces exposed in the
original Simulink model.

Additionally, OpenMETA has other features for
highly-efficient design, such as the Parametric
Exploration Tool (PET) and Design Space Exploration
(DSE). Automotive control software generally has
many parameters that should be calibrated in the
development phase. PET enables a designer to explore
the interactions between parameters in an automated
fashion and then displays the results in a way which
allows the designer to make tradeoffs and select the
parameter set which is most suited to the design
criteria. Since OpenMETA has this feature, there is
interest in applying OpenMETA to ADAS
development. In this paper, we focus more on utilizing
the PET in OpenMETA to calibrate system parameters
with the simulation models.

A growing challenge with the design of complex
systems is that each system may be designed using a
variety of architectures and each architecture is
comprised of components which also have variations
as shown in Figure 1. This information is represented
in OpenMETA through the use of design spaces. A
design space is a set of design containers which contain
a family of components which share a common
interface. Alternate design architectures are similarly
represented except rather than alternative components
there are alternative architectures where the
architecture is in turn made up of components. This
results in an explosion in the number of configurations
that could be considered. OpenMETA provides a tool,
which is called DSE, to list all of the candidate design
configurations and simulate those that meet the static

Standard architecture with
variants of components

Parallel architecture with
parametric variants of
components

Series architecture with
parametric variants of
components

Engine Generator Converter Battery

Motors Brakes

Engine Transmission Drivetrain Brakes

Engine Generator Converter Battery

Motors Brakes

Engine Generator Converter Battery

Motors Brakes

Engin
e

Transmiss
ion

Drivetr
ain

Brake
s Engine Transmission Drivetrain Brakes Engine Transmission Drivetrain Brakes

Standard architecture with
parametric components

Engine
(Hp=200,cyl=4
, ….)

Transmission
(gears=4, ratio = [a,b,])

Drivetrain
(l=10, r=2.5…)

Brakes

Engine Transmission

Motor Converter Battery

Drivetrain Brakes
Engine Transmission

Motor Converter Battery

Drivetrain Brakes
Engine Transmission

Motor Converter Battery

Drivetrain Brakes

Figure 1. An example of multiple architectures with component alternatives.

constraints which are specified by the designer.
OpenMETA also provides a visualization tool that
allows a designer to compare the designs which meet
system requirements from DSE simulation results.

Although existing tools mentioned above allow us to

build a vehicle model with cyber components and
physical components, the proposed integration with
Unity allows us to provide a far richer, virtual reality
testing environment, including traffic, pedestrians,
sensor models and effects of weather and the
environment, such as those due to fog, heavy rain, and
icy road conditions. These effects are important,
because they can potentially compromise the correct
functionality of ADAS systems.

2.2 Unity
Instead of commercial tools of ADAS simulation, e.g.,
PreScan, CarMaker, etc. we use Unity (Unity
Technologies, 2015), which is a 3D game engine for
video game development, for road environment
modeling, and sensor modeling. The primary reason
that we selected a game engine was to leverage the
capability to involve users from all over the world in
our ADAS evaluation tests. This concept is referred to
as “gamified and crowd-sourced virtual testing”.
Generally, many situations would need to be
considered in order to evaluate an ADAS
implementation such as driver input, other vehicle
behaviors, road geometry and so on. By using a game
environment populated by human and virtual users, the
ADAS software can be tested more extensively than
with traditional static test scenarios.

In addition to providing a multi-user platform, Unity
has a user friendly GUI editor, 3D physics engine,
animation engine, 3D model import, and scripting in
C# or JavaScript. These features help a simulation
designer model cities which contain road models and

other dynamic objects, such as vehicles, pedestrians,
motorcycles, and bicycles. Although other 3D game
engines are available, Unity was selected because of its
large asset library, multiplatform support, and large
community support.. Many assets are available through
the Unity Asset Store which accelerates development
and would not be available in other tools. For example,
road editors, vehicle physics, and car traffic simulators
are available as ready-to-use assets with Unity.

3 Methodology

3.1 Simulation Architecture
We integrated the four tools for the simulation
framework: Dymola, Simulink, OpenMETA and
Unity. The architecture is shown in Figure 2.
OpenMETA integrates the Dymola and Simulink
models. The Dymola model has some vehicle physical
components, including the engine, transmission,
driveshaft, and differential from Vehicle Dynamics
Library. The Vehicle Dynamics Library is developed
by Modelon (Modelon, 2014). Other components, such
as wheels, are modeled in Unity. The interfaces
between Unity and Dymola are wheel torques and
wheel rotation speeds. The Dymola simulation sends
wheel torques to the Unity simulation, and the Unity
simulation sends wheel rotation speeds to Dymola.
These interfaces are implemented by UDP socket
communication. The Modelica Device Drivers
(Bernhard et al, 2015) library provides UDP
communication blocks used in Dymola.

The Unity model also has road environments, other
vehicle models, and sensor models for ADAS systems.
The sensor data in Unity is also sent to the Simulink
controller via UDP. The list of UDP interfaces is
shown in Table 1. In the Unity model, some assets
from Unity Asset Store were used for modeling. For
example, EasyRoad3D Pro is used for road building,

Figure 2. Simulation architecture

OpenMETA

Dymola Modelica model
(Library which is used)

Legends:

Simulink model

Unity

Control Software Model

Vehicle Dynamics Model
(Vehicle Dynamics Library)

•  Engine
•  Transmission
•  Drive Shaft
•  Differential

UDP Socket Communication Model
(Modelica_DeviceDrivers)

UDP
•  Vehicle Dynamics

!  Tire-road Interaction
•  User Interface

!  Gas Pedal
!  Brake Pedal
!  Steering
!  Cruise Control Switches

•  Roads
•  Other Vehicles

UDP data are shown in Table 1

and the Urban Construction Pack for building city
models.

Table 1. UDP Communication data list

Direction Data

Dymola →
Unity

Wheel torques

Vehicle status (ADAS status, etc.)

Unity →
Dymola

Wheel rotation speeds

Sensor data (Millimeter wave radar, etc.)

User operation (Pedals, steering, etc.)

4 Case Study
In this paper, we show simulation results with PET in
OpenMETA to illustrate the advantages of this
simulation framework. The PET is a highly-efficient
methodology for calibrating control software
parameters.

As the first case study for this simulation toolchain
with PET, we decided to model the Adaptive Cruise
Control (ACC) system. The ACC is one of the ADAS
systems. This system helps mitigate driver fatigue by
assisting accelerator operations. Toyota’s ACC system
has 2 modes: constant speed control mode and vehicle-
to-vehicle distance control mode. Constant speed
control mode is the same as a conventional cruise
control system. While this mode is active the system
works to maintain a target velocity. Vehicle-to-vehicle
distance mode works with sensors, such as millimeter
wave radar sensor that detects the presence of lead
vehicles. Upon detecting a vehicle, the ACC adjusts the
speed in order to maintain a safe following distance.
The control flow is shown in Figure 3. The driver can
choose the following distance: Long, Middle or Short.
Actual distances are determined based on the velocity
of the vehicle.

For the ACC case study in this paper, we defined
following scenario as shown in Figure 4. There is an
ACC installed in host vehicle A, which has initial
speed of v0 and a lead vehicle B, which has constant
speed vfront. Vehicle A is initialized with the ACC
active and velocity set point vset. The initial distance
between two vehicles was set so that vehicle A
accelerates to the speed vset. After some time vehicle A
senses vehicle B and transitions to vehicle following
mode. Vehicle A decelerates to maintain the distance
between two vehicles dset. In this paper, we used values
in Table 2.

Figure 3. Adaptive cruise control diagram (Shiraishi et al,
2011)

Figure 4. Case study of ACC system

Table 2. Parameters used in the simulation

Parameters Values

v0 0 km/h

vset 70 km/h

vfront 50 km/h

d0 150 m

dset 40m

1 2 3

v0

vfront

vset

v

t

Maintain
set distance

1

2

3

Vehicle A Vehicle B

d0

vfront

vset

v0 vfront

vfront

vfront
dset

4.1 Controller Model
The controller1 developed for this experiment is
bimodal. The first mode utilizes vehicle-to-vehicle
distance as the desired value and the second mode uses
a velocity set point as the desired value. Both
controllers were implemented using PD controllers.
The controller behavior is to maintain a safe following
distance if there is a lead vehicle. Otherwise, it keeps
vehicle speed to the set speed. The PD gains are
calibrated by using PET which is discussed below. The
ACC is always activated during the simulations so that
the simulation does not need any driver inputs.

4.2 Unity Model
For the ACC case study, we added a long straight road,
two vehicles and a millimeter wave radar sensor
model. The sensor model obtains a distance between
two vehicles and their relative speed. These signals are
communicated to Dymola via UDP and are used as
inputs to the controller. The sensor model was built by
using “Ray” class in Unity scripting C# API which is
often used in shooting games.

4.3 Parametric Exploration Tool and Test
Bench

To run the simulation from OpenMETA with PET,
designers have to set up some Dymola parameters,
such as simulation time, solver, etc. in the OpenMETA
Test Bench as shown in Figure 5. Additionally,
metrics, which are used for evaluations of the models,
need to be described in the Test Bench. The metrics in
the ACC case study are velocity and gap distance
overshoot. Settling time and rise time are also major
metrics of this kind of system, but have not been
included in this case study.

Next step toward parameter design is building a PET
test bench. PD gains, which are speed control P, D
gains and distance control P, D gains, are target
parameters to be calibrated. In the PET test bench,

1 The ACC controller model in this paper is not a real
ACC model

designers need to assign parameters, their ranges, and
testbench outputs or metrics. The PET test bench is
also shown in Figure 5.

4.4 Simulation Results
We ran the PET of the ACC case study with
parameters which are shown in Table 2. The result of
the PET simulation results can be visualized as a
“Constraint Plot” in the OpenMETA dashboard, which
is shown in Figure 6. The horizontal axis and vertical
axis of this plot are the PD gains mentioned above. The
plots show boundaries, which represent which
combinations of parameters that meet the overshoot
requirements. Thresholds are adjustable in the
dashboard. The threshold values in Figure 6 are
overshoot < 0.

A designer can find PD gains by clicking on a point
in a plot. We picked gains which are close to the
boundary which meets both overshoot requirements.
The graphs in Figure 7 are Dymola simulation results
using gains selected by examining the constraint plot
shown in Figure 6. The upper graph in Figure 7
represents distance between two vehicles; the lower
graph in Figure 7 represents the velocity of vehicle A.
The red line represents the target value and the blue
line represents the current value. This plot shows that
there is no overshoot in either graph, demonstrating
that the PET was useful in selecting design parameters.

Figure 5. OpenMETA models for PET

PET Test Bench
•  Target parameter range
•  Metrics

Test Bench
•  Simulation settings

!  Simulation Time
!  Solver
!  Input parameters
!  Metrics

Model Integration
•  Controller model
•  Vehicle dynamics model

5 Conclusions
This paper described the methodology of integrating
OpenMETA and Unity. The foundation of an
integrated simulation framework, which includes PET
for ADAS evaluation, has been built. As a result,
designers may calibrate control software parameters
more efficiently. Next steps include developing high
quality and multi-fidelity models which would allow

for greater flexibility in the design process and
developing additional case studies including the
addition of driving scenarios such as: curves,
intersections, etc. Additionally, it is also planned to
consider driver-in-the-loop simulation which
incorporate user input from Unity clients. These
simulations would allow for some interesting
applications. One such application is developing a

Figure 6. PET result: Constraint Plot

Figure 7. Waveform results of PET

virtual dealership concept in which customers
participate in the design of their vehicles, and test-drive
their creations. This test environment would also be
used to crowd-source vehicle testing allowing for
improvements to systems like ADAS and resulting in
designs that have better performance and reliability.

References
Bernhard Thiele, Tobias Bellmann, tbeu,

Modelica_DeviceDrivers, 2015 URL:
https://github.com/modelica/Modelica_De
viceDrivers

Dassault Systèmes AB, Dymola 2015, 2015 URL:
http://www.3ds.com/products-
services/catia/products/dymola

D. Gruyer, S. Glaser, S. Pechbert, R. Gallen, and N.
Hautiere, Distributed Simulation Architecture for the
Design of Cooperative ADAS”, Presentation at First
International Symposium on Future Active Safety
Technology toward zerotraffic-accident, September 2011.

MathWorks, Simulink 8.6, 2015 URL:
http://jp.mathworks.com/products/simuli
nk/

Modelon, Vehicle Dynamics Library 1.9, 2014 URL:
http://www.modelon.com/products/modelic
a-libraries/vehicle-dynamics-library/

Shinichi Shiraishi and Mutsumi Abe. Automotive System
Development Based on Collaborative Modeling Using
Multiple ADLs. Presentation at ESEC/FSE 2011
Industrial Track, Sep. 2011.

Janos Sztipanovits, Ted Bapty, Sandeep Neema, Larry
Howard, and Ethan Jackson. OpenMETA: A Model- and
Component-Based Design Tool Chain for Cyber-Physical
Systems. From Programs to Systems. The Systems
perspective in Computing, pp. 235-248, 2014. doi:
10.1007/978-3-642-54848-2_16

Janos Sztipanovits, Ted Bapty, Sandeep Neema, Xenofon
Koutsoukos and Jason Scott. The META Toolchain:
Accomplishments and Open Challenges. Vanderbilt
University Institute for Software-Integrated Systems
Technical Report, 2015

Toyota Motor Corporation (2014). “2014 Toyota Safety
Technology Media Tour”, URL:
http://www.toyota-
global.com/innovation/safety_technology
/media-tour/ .

Unity Technologies, Unity 5.3.0, 2015 URL:
https://unity3d.com/unity

Boris van Waterschoot and Mascha van der Voort.
Implementing Human Factors within the Design Process
of Advanced Driver Assistance Systems (ADAS)
Engineering Psychology and Cognitive Ergonomics Vol.
5639, pp. 461-470, 2009. doi: 10.1007/978-3-642-02728-
4_49

