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Abstract 
Automotive control systems, such as modern 
Advanced Driver Assistance Systems (ADAS), are 
becoming more complex and prevalent in the 
automotive industry. Therefore, a highly-efficient 
design and evaluation methodology for automotive 
control system development is required. In this paper, 
we propose a closed-loop simulation framework that 
improves ADAS design and evaluation. The proposed 
simulation framework consists of four tools: Dymola, 
Simulink, OpenMETA and Unity 3D game engine. 
Dymola simulates vehicle dynamics models written in 
Modelica. Simulink is used for vehicle control software 
modeling. OpenMETA provides horizontal integration 
between design tools. OpenMETA also has the 
capability to improve design efficiency through the use 
of PET (Parametric Exploration Tool) and DSE 
(Design Space Exploration) tools. Unity provides the 
key functionality to enable interactive, or closed-loop 
ADAS simulation, which contains sensor models for 
ADAS, road environment models and provides 
visualization. 
Keywords:     ADAS, Efficient Design, Game Engine, 
Modelica, Simulink 

1 Introduction 
The number of installations of Advanced Driver 
Assistance Systems (ADAS) is rapidly growing in the 
automotive industry. In the case of Toyota cars, Toyota 
Safety Sense, which is a type of ADAS package, will 
be available in most passenger cars released by Toyota 
Motor Corporation in Japan, North America, and 
Europe by the end of 2017 (Toyota Motor Corporation, 
2014). This emerging market of ADAS poses difficult 
system design problems. That is, we cannot use a 
traditional development methodology that considers 
only a target vehicle. We need to derive a new 
methodology which allows us to take its environment 
into account, e.g., road, other vehicles, pedestrians, etc. 
With the announcement that the majority of cars will 
contain an ADAS, it is apparent that the design space 
of future cars will be vast. Moreover, the complexity of 

these systems is also increasing along with their 
extended features, e.g., communication with other 
vehicles, cooperation with a navigation system, etc. 

The above problems imply that a highly-efficient 
design and evaluation methodology for ADAS 
development is required. Van Waterschoot and van der 
Voort have recognized this same need for efficient 
design when looking at ADAS as a human factors 
problem (van Waterschoot et al, 2009). Simulation-
based verification and validation can be a key 
technology in such a methodology as shown by Gruyer 
et al. (Gruyer et al, 2011). More precisely, closed-loop 
simulation including vehicle dynamics and road 
environments is essential. 

Our work addresses the need for closed-loop 
simulation by using Simulink to model software 
components and Modelica to model physics 
components. Simulink is currently the state-of-the art 
tool for developing and analyzing automotive software 
models. Modelica is well suited to describe and 
simulate physics which includes vehicle dynamics. 
However, the task of describing complex conditions 
around the vehicle, such as traffic events, pedestrian 
activity and weather activity is complex and results in 
simulations not amenable to interactive simulation. Our 
work uses Unity to model complex environmental 
conditions. Unity is a video game development tool 
which is well suited to describe complex road 
situations. Our proposed framework consists of a co-
simulation-based solution for ADAS development 
challenges by using OpenMETA to integrate Simulink, 
Modelica and Unity, and provide some features which 
aid in the design of complex systems. 

Generally, game engines provide sophisticated 
virtual reality environments, and can be used to allow 
users to collaborate.  These game engine advantages 
support valuable features in ADAS development such 
as gamified and crowd-sourced vehicle testing, and 
virtual dealership, which are described below. 

 Section 2 provides a background on existing design 
tools. Section 3 describes our tool framework. Section 
4 describes our case study and Section 5 presents our 
conclusions and possible directions for future work. 



 

 

2 Background 

2.1 Existing Tools 
Modelica is a multi-physics, multi-domain, acausal 
modeling language. Dymola, developed by Dassault 
Systèmes, is a powerful tool as an editor and simulator 
of Modelica models (Dassault Systèmes, 2015). 

Simulink is a graphical modeling tool produced by 
MathWorks. It provides a graphical modeling editor, a 
customizable set of block libraries, and solvers for 
simulations (Mathworks, 2015). Designers can edit 
models by deploying blocks from the libraries and 
adding causal connections between blocks. Simulink is 
widely used in the automotive industry for vehicle 
control system software design, such as ADAS 
systems, engine control systems, transmission control 
systems, etc. This is the reason why we selected 
Simulink for control system software modeling. 

The OpenMETA toolchain was developed by 
Vanderbilt University in conjunction with the Adaptive 
Vehicle Make program of DARPA (Sztipanovits et al, 
2014; Sztipanovits et al, 2015). OpenMETA is a tool 
infrastructure with the goal of enabling development of 
cyber-physical systems. This is accomplished by 
providing horizontal integration between external 
software tools.  A model in OpenMETA references 
component models which exist in external tools such as 
Dymola, Creo, or ADAMS. In order to interface with 
an external tool, an interpreter is created for 
OpenMETA which transforms the model into a format 
the external tool can use. Typically OpenMETA is 
setting parameters which are then used to provide 
inputs into a detailed model that exists in the external 
tool. Once the interface is in place, then any parametric 
changes made to the model in OpenMETA will also 
appear in the external tool. Additionally, if the internals 
of any tool specific model are changed, as long as the 
interface remains, the models will function as they 

would if the model had been generated entirely in the 
external tool. 

In the case of Simulink integration, a Simulink 
model is wrapped as a C library which is referenced in 
OpenMETA. The representation of this library in 
OpenMETA includes the interfaces exposed in the 
original Simulink model.  

Additionally, OpenMETA has other features for 
highly-efficient design, such as the Parametric 
Exploration Tool (PET) and Design Space Exploration 
(DSE). Automotive control software generally has 
many parameters that should be calibrated in the 
development phase. PET enables a designer to explore 
the interactions between parameters in an automated 
fashion and then displays the results in a way which 
allows the designer to make tradeoffs and select the 
parameter set which is most suited to the design 
criteria. Since OpenMETA has this feature, there is 
interest in applying OpenMETA to ADAS 
development. In this paper, we focus more on utilizing 
the PET in OpenMETA to calibrate system parameters 
with the simulation models. 

A growing challenge with the design of complex 
systems is that each system may be designed using a 
variety of architectures and each architecture is 
comprised of components which also have variations 
as shown in Figure 1. This information is represented 
in OpenMETA through the use of design spaces. A 
design space is a set of design containers which contain 
a family of components which share a common 
interface. Alternate design architectures are similarly 
represented except rather than alternative components 
there are alternative architectures where the 
architecture is in turn made up of components. This 
results in an explosion in the number of configurations 
that could be considered. OpenMETA provides a tool, 
which is called DSE, to list all of the candidate design 
configurations and simulate those that meet the static 
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Figure 1. An example of multiple architectures with component alternatives. 



 

 

constraints which are specified by the designer. 
OpenMETA also provides a visualization tool that 
allows a designer to compare the designs which meet 
system requirements from DSE simulation results. 

 
Although existing tools mentioned above allow us to 

build a vehicle model with cyber components and 
physical components, the proposed integration with 
Unity allows us to provide a far richer, virtual reality 
testing environment, including traffic, pedestrians, 
sensor models and effects of weather and the 
environment, such as those due to fog, heavy rain, and 
icy road conditions. These effects are important, 
because they can potentially compromise the correct 
functionality of ADAS systems. 

2.2 Unity 
Instead of commercial tools of ADAS simulation, e.g., 
PreScan, CarMaker, etc. we use Unity (Unity 
Technologies, 2015), which is a 3D game engine for 
video game development, for road environment 
modeling, and sensor modeling. The primary reason 
that we selected a game engine was to leverage the 
capability to involve users from all over the world in 
our ADAS evaluation tests. This concept is referred to 
as “gamified and crowd-sourced virtual testing”. 
Generally, many situations would need to be 
considered in order to evaluate an ADAS 
implementation such as driver input, other vehicle 
behaviors, road geometry and so on. By using a game 
environment populated by human and virtual users, the 
ADAS software can be tested more extensively than 
with traditional static test scenarios.  

In addition to providing a multi-user platform, Unity 
has a user friendly GUI editor, 3D physics engine, 
animation engine, 3D model import, and scripting in 
C# or JavaScript. These features help a simulation 
designer model cities which contain road models and 

other dynamic objects, such as vehicles, pedestrians, 
motorcycles, and bicycles. Although other 3D game 
engines are available, Unity was selected because of its 
large asset library, multiplatform support, and large 
community support.. Many assets are available through 
the Unity Asset Store which accelerates development 
and would not be available in other tools. For example, 
road editors, vehicle physics, and car traffic simulators 
are available as ready-to-use assets with Unity. 

3 Methodology 

3.1 Simulation Architecture 
We integrated the four tools for the simulation 
framework: Dymola, Simulink, OpenMETA and 
Unity. The architecture is shown in Figure 2. 
OpenMETA integrates the Dymola and Simulink 
models. The Dymola model has some vehicle physical 
components, including the engine, transmission, 
driveshaft, and differential from Vehicle Dynamics 
Library. The Vehicle Dynamics Library is developed 
by Modelon (Modelon, 2014). Other components, such 
as wheels, are modeled in Unity. The interfaces 
between Unity and Dymola are wheel torques and 
wheel rotation speeds. The Dymola simulation sends 
wheel torques to the Unity simulation, and the Unity 
simulation sends wheel rotation speeds to Dymola. 
These interfaces are implemented by UDP socket 
communication. The Modelica Device Drivers 
(Bernhard et al, 2015) library provides UDP 
communication blocks used in Dymola. 

The Unity model also has road environments, other 
vehicle models, and sensor models for ADAS systems. 
The sensor data in Unity is also sent to the Simulink 
controller via UDP. The list of UDP interfaces is 
shown in Table 1. In the Unity model, some assets 
from Unity Asset Store were used for modeling. For 
example, EasyRoad3D Pro is used for road building, 

Figure 2. Simulation architecture 
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and the Urban Construction Pack for building city 
models. 

 

Table 1. UDP Communication data list 

Direction Data 

Dymola → 
Unity 

Wheel torques 

Vehicle status (ADAS status, etc.) 

Unity → 
Dymola 

Wheel rotation speeds 

Sensor data (Millimeter wave radar, etc.) 

User operation (Pedals, steering, etc.) 

 

4 Case Study 
In this paper, we show simulation results with PET in 
OpenMETA to illustrate the advantages of this 
simulation framework. The PET is a highly-efficient 
methodology for calibrating control software 
parameters.  

As the first case study for this simulation toolchain 
with PET, we decided to model the Adaptive Cruise 
Control (ACC) system. The ACC is one of the ADAS 
systems. This system helps mitigate driver fatigue by 
assisting accelerator operations. Toyota’s ACC system 
has 2 modes: constant speed control mode and vehicle-
to-vehicle distance control mode. Constant speed 
control mode is the same as a conventional cruise 
control system. While this mode is active the system 
works to maintain a target velocity. Vehicle-to-vehicle 
distance mode works with sensors, such as millimeter 
wave radar sensor that detects the presence of lead 
vehicles. Upon detecting a vehicle, the ACC adjusts the 
speed in order to maintain a safe following distance. 
The control flow is shown in Figure 3. The driver can 
choose the following distance:  Long, Middle or Short. 
Actual distances are determined based on the velocity 
of the vehicle. 

For the ACC case study in this paper, we defined 
following scenario as shown in Figure 4. There is an 
ACC installed in host vehicle A, which has initial 
speed of v0 and a lead vehicle B, which has constant 
speed vfront. Vehicle A is initialized with the ACC 
active and velocity set point vset. The initial distance 
between two vehicles was set so that vehicle A 
accelerates to the speed vset. After some time vehicle A 
senses vehicle B and transitions to vehicle following 
mode. Vehicle A decelerates to maintain the distance 
between two vehicles dset. In this paper, we used values 
in Table 2. 
 

 
Figure 3. Adaptive cruise control diagram (Shiraishi et al, 
2011) 
 
 
 

 
 
 
 
 

 
Figure 4. Case study of ACC system 

 
Table 2. Parameters used in the simulation 

Parameters Values 

v0 0 km/h 

vset 70 km/h 

vfront 50 km/h 

d0 150 m 

dset 40m 
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4.1 Controller Model 
The controller1 developed for this experiment is 
bimodal. The first mode utilizes vehicle-to-vehicle 
distance as the desired value and the second mode uses 
a velocity set point as the desired value. Both 
controllers were implemented using PD controllers. 
The controller behavior is to maintain a safe following 
distance if there is a lead vehicle. Otherwise, it keeps 
vehicle speed to the set speed. The PD gains are 
calibrated by using PET which is discussed below. The 
ACC is always activated during the simulations so that 
the simulation does not need any driver inputs. 

4.2 Unity Model 
For the ACC case study, we added a long straight road, 
two vehicles and a millimeter wave radar sensor 
model. The sensor model obtains a distance between 
two vehicles and their relative speed. These signals are 
communicated to Dymola via UDP and are used as 
inputs to the controller. The sensor model was built by 
using “Ray” class in Unity scripting C# API which is 
often used in shooting games. 

4.3 Parametric Exploration Tool and Test 
Bench 

To run the simulation from OpenMETA with PET, 
designers have to set up some Dymola parameters, 
such as simulation time, solver, etc. in the OpenMETA 
Test Bench as shown in Figure 5. Additionally, 
metrics, which are used for evaluations of the models, 
need to be described in the Test Bench.  The metrics in 
the ACC case study are velocity and gap distance 
overshoot. Settling time and rise time are also major 
metrics of this kind of system, but have not been 
included in this case study. 

Next step toward parameter design is building a PET 
test bench. PD gains, which are speed control P, D 
gains and distance control P, D gains, are target 
parameters to be calibrated. In the PET test bench, 

                                                
1 The ACC controller model in this paper is not a real 
ACC model 

designers need to assign parameters, their ranges, and 
testbench outputs or metrics. The PET test bench is 
also shown in Figure 5. 

4.4 Simulation Results 
We ran the PET of the ACC case study with 
parameters which are shown in Table 2. The result of 
the PET simulation results can be visualized as a  
“Constraint Plot” in the OpenMETA dashboard, which 
is shown in Figure 6. The horizontal axis and vertical 
axis of this plot are the PD gains mentioned above. The 
plots show boundaries, which represent which 
combinations of parameters that meet the overshoot 
requirements. Thresholds are adjustable in the 
dashboard. The threshold values in Figure 6 are 
overshoot < 0. 

A designer can find PD gains by clicking on a point 
in a plot. We picked gains which are close to the 
boundary which meets both overshoot requirements. 
The graphs in Figure 7 are Dymola simulation results 
using gains selected by examining the constraint plot 
shown in Figure 6. The upper graph in Figure 7 
represents distance between two vehicles; the lower 
graph in Figure 7 represents the velocity of vehicle A. 
The red line represents the target value and the blue 
line represents the current value. This plot shows that 
there is no overshoot in either graph, demonstrating 
that the PET was useful in selecting design parameters.  
  

Figure 5. OpenMETA models for PET 
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5 Conclusions 
This paper described the methodology of integrating 
OpenMETA and Unity. The foundation of an 
integrated simulation framework, which includes PET 
for ADAS evaluation, has been built. As a result, 
designers may calibrate control software parameters 
more efficiently. Next steps include developing high 
quality and multi-fidelity models which would allow 

for greater flexibility in the design process and 
developing additional case studies including the 
addition of driving scenarios such as: curves, 
intersections, etc. Additionally, it is also planned to 
consider driver-in-the-loop simulation which 
incorporate user input from Unity clients. These 
simulations would allow for some interesting 
applications. One such application is developing a 

Figure 6. PET result: Constraint Plot 

Figure 7. Waveform results of PET 



 

 

virtual dealership concept in which customers 
participate in the design of their vehicles, and test-drive 
their creations. This test environment would also be 
used to crowd-source vehicle testing allowing for 
improvements to systems like ADAS and resulting in 
designs that have better performance and reliability. 
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