Scalable Cyber-Physical Simulation for Automated Cyber Agent Training

Modern cyber-physical systems (CPS) are highly complex systems-of-systems, in which understanding the breadth and severity of cyberattacks is highly challenging. As cyberattacks and defensive operations become increasingly automated, there is a greater need to understand the complexities of interactions between the cyber and physical worlds. A scalable, detailed simulation platform will provide a means of developing and evaluating automated techniques within these complex systems.

Benching Computer Vision Algorithms for Basketball

Science Projects Integrating Computing and Engineering (SPICE)

SPICE curriculum materials blend disciplinary core ideas, science and engineering design practices, and crosscutting concepts as called for in the the Next Generation Science Standards (NGSS). We incorporate principles of evidence-centered design, knowledge integration, and informed engineering design to develop project-based curriculum materials that promote the integration of science, engineering, and computational thinking (CT).

Multi-level Learner Modeling for Land Navigation Training Applications

Rapid Scenario-Driven Integrated Simulation Experimentation Framework

Cyber-Physical Systems (CPS) are composed of a wide range of networked physical, computational, and human/organization components. These systems are highly complex as they have many different heterogeneous components, such as physical, computational, and human. Simulation-based evaluation of the behavior of CPS is complex, as it involves multiple, heterogeneous, interacting domains. Each simulation domain has sophisticated tools, but their integration into a coherent framework is a difficult, time-consuming, labor-intensive, and error-prone task.

Implementing Betty's Brain in the PILA Environment

Cyber Makerspace - Science of Security for Cyber-Physical Systems Lablet

Makerspaces are very popular because they provide a hands-on experience for young learners to experiment with technology. One drawback is that the focus of educational experiences in makerspaces are necessarily on the hardware. Computing aspects, especially more advanced concepts such as cybersecurity, take a back seat. We will team up with Martin Luther King Jr.

Collaborative Research: Beyond CS Principles: Engaging Female High School Students in New Frontiers of Computing

Building on the foundations set by the AP Computer Science (CS) Principles course, this project seeks to dramatically expand access, especially for high school girls, to the most exciting and emerging frontiers of computing, such as distributed computation, the internet of things (IoT), cybersecurity, and machine learning, as well as other 21st century skills required to productively leverage computational methods and tools in virtually every profession.

Collaborative Research: Computational Modeling for Integrating Science and Engineering Design (CMISE): Model Construction, Manipulation, and Exploration

Computational Modeling for Integrating Science and Engineering Design (CMISE) will conduct a series of experiments to systematically compare different computational modeling activities on 5th and 6th grade students’ engineering design processes, their understanding of engineering, science and computational thinking concepts, as well as science teachers’ confidence and ability to implement integrated STEM and computing curricula.

Collaborative Research: An Interdisciplinary Approach to Prepare Undergraduates for Data Science Using Real-World High Frequency Data

With support from the NSF Improving Undergraduate STEM Education Program: Education and Human Resources (IUSE: EHR), this project aims to serve the national interest by improving undergraduate understanding of data science. It will accomplish this goal by incorporating data science concepts and skill development in undergraduate courses in biology, computer science, engineering, and environmental science.

Subscribe to Learning and Training Environments